Age | Commit message (Collapse) | Author |
|
Reorganize code to avoid forward declaration in boot.c, no function
changes.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Link: http://lkml.kernel.org/r/1402302011-23642-5-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Simplify arch/x86/include/asm/mpspec.h by
1) Change max_physical_apicid to static as it's only used in apic.c.
2) Kill declaration of mpc_default_type, it's never defined.
3) Delete default_acpi_madt_oem_check(), it has already been declared
in apic.h.
4) Make default_acpi_madt_oem_check() depends on CONFIG_X86_LOCAL_APIC
instead of CONFIG_X86_64 to support i386.
5) Change mp_override_legacy_irq(), mp_config_acpi_legacy_irqs() and
mp_register_gsi() as static because they are only used in acpi/boot.c.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/1402302011-23642-4-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Use pr_lvl() helper utilities to replace printk(KERN_LVL) for readability,
no function changes. Also use pr_cont() to avoid multiple newlines in
one printk().
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1402302011-23642-3-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
"This is larger than usual: the main reason are the ARM symbol lookup
speedups that came in late and were hard to resist.
There's also a kprobes fix and various tooling fixes, plus the minimal
re-enablement of the mmap2 support interface"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/kprobes: Fix build errors and blacklist context_track_user
perf tests: Add test for closing dso objects on EMFILE error
perf tests: Add test for caching dso file descriptors
perf tests: Allow reuse of test_file function
perf tests: Spawn child for each test
perf tools: Add dso__data_* interface descriptons
perf tools: Allow to close dso fd in case of open failure
perf tools: Add file size check and factor dso__data_read_offset
perf tools: Cache dso data file descriptor
perf tools: Add global count of opened dso objects
perf tools: Add global list of opened dso objects
perf tools: Add data_fd into dso object
perf tools: Separate dso data related variables
perf tools: Cache register accesses for unwind processing
perf record: Fix to honor user freq/interval properly
perf timechart: Reflow documentation
perf probe: Improve error messages in --line option
perf probe: Improve an error message of perf probe --vars mode
perf probe: Show error code and description in verbose mode
perf probe: Improve error message for unknown member of data structure
...
|
|
With this change, doing 'make vdso_install' and telling gdb:
set debug-file-directory /lib/modules/KVER/vdso
will enable vdso debugging with symbols. This is useful for
testing, but kernel RPM builds will probably want to manually delete
these symlinks or otherwise do something sensible when they strip
the vdso/*.so files.
If ld does not support --build-id, then the symlinks will not be
created.
Note that kernel packagers that use vdso_install may need to adjust
their packaging scripts to accomdate this change. For example,
Fedora's scripts create build-id symlinks themselves in a different
location, so the spec should probably be updated to remove the
symlinks created by make vdso_install.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Link: http://lkml.kernel.org/r/a424b189ce3ced85fe1e82d032a20e765e0fe0d3.1403291930.git.luto@amacapital.net
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
This patch introduces "by8" AES CTR mode AVX optimization inspired by
Intel Optimized IPSEC Cryptograhpic library. For additional information,
please see:
http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=22972
The functions aes_ctr_enc_128_avx_by8(), aes_ctr_enc_192_avx_by8() and
aes_ctr_enc_256_avx_by8() are adapted from
Intel Optimized IPSEC Cryptographic library. When both AES and AVX features
are enabled in a platform, the glue code in AESNI module overrieds the
existing "by4" CTR mode en/decryption with the "by8"
AES CTR mode en/decryption.
On a Haswell desktop, with turbo disabled and all cpus running
at maximum frequency, the "by8" CTR mode optimization
shows better performance results across data & key sizes
as measured by tcrypt.
The average performance improvement of the "by8" version over the "by4"
version is as follows:
For 128 bit key and data sizes >= 256 bytes, there is a 10-16% improvement.
For 192 bit key and data sizes >= 256 bytes, there is a 20-22% improvement.
For 256 bit key and data sizes >= 256 bytes, there is a 20-25% improvement.
A typical run of tcrypt with AES CTR mode encryption of the "by4" and "by8"
optimization shows the following results:
tcrypt with "by4" AES CTR mode encryption optimization on a Haswell Desktop:
---------------------------------------------------------------------------
testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 343 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 336 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 491 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1130 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7309 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 346 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 361 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 543 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1321 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9649 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 369 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 366 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 595 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1531 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 10522 cycles (8192 bytes)
testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 336 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 350 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 487 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1129 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7287 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 350 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 359 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 635 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1324 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9595 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 364 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 377 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 604 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1527 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 10549 cycles (8192 bytes)
tcrypt with "by8" AES CTR mode encryption optimization on a Haswell Desktop:
---------------------------------------------------------------------------
testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 340 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 330 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 450 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1043 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 6597 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 339 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 352 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 539 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1153 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 8458 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 353 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 360 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 512 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1277 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 8745 cycles (8192 bytes)
testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 348 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 335 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 451 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1030 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 6611 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 354 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 346 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 488 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1154 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 8390 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 357 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 362 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 515 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1284 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 8681 cycles (8192 bytes)
crypto: Incorporate feed back to AES CTR mode optimization patch
Specifically, the following:
a) alignment around main loop in aes_ctrby8_avx_x86_64.S
b) .rodata around data constants used in the assembely code.
c) the use of CONFIG_AVX in the glue code.
d) fix up white space.
e) informational message for "by8" AES CTR mode optimization
f) "by8" AES CTR mode optimization can be simply enabled
if the platform supports both AES and AVX features. The
optimization works superbly on Sandybridge as well.
Testing on Haswell shows no performance change since the last.
Testing on Sandybridge shows that the "by8" AES CTR mode optimization
greatly improves performance.
tcrypt log with "by4" AES CTR mode optimization on Sandybridge
--------------------------------------------------------------
testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 383 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 408 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 707 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1864 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 12813 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 395 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 432 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 780 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 2132 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 15765 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 416 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 438 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 842 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 2383 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 16945 cycles (8192 bytes)
testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 389 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 409 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 704 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1865 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 12783 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 409 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 434 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 792 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 2151 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 15804 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 421 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 444 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 840 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 2394 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 16928 cycles (8192 bytes)
tcrypt log with "by8" AES CTR mode optimization on Sandybridge
--------------------------------------------------------------
testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 383 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 401 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 522 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1136 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7046 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 394 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 418 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 559 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1263 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9072 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 408 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 428 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 595 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1385 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 9224 cycles (8192 bytes)
testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 390 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 402 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 530 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1135 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7079 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 414 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 417 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 572 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1312 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9073 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 415 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 454 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 598 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1407 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 9288 cycles (8192 bytes)
crypto: Fix redundant checks
a) Fix the redundant check for cpu_has_aes
b) Fix the key length check when invoking the CTR mode "by8"
encryptor/decryptor.
crypto: fix typo in AES ctr mode transform
Signed-off-by: Chandramouli Narayanan <mouli@linux.intel.com>
Reviewed-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Patch adds x86_64 assembly implementation of Triple DES EDE cipher algorithm.
Two assembly implementations are provided. First is regular 'one-block at
time' encrypt/decrypt function. Second is 'three-blocks at time' function that
gains performance increase on out-of-order CPUs.
tcrypt test results:
Intel Core i5-4570:
des3_ede-asm vs des3_ede-generic:
size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec
16B 1.21x 1.22x 1.27x 1.36x 1.25x 1.25x
64B 1.98x 1.96x 1.23x 2.04x 2.01x 2.00x
256B 2.34x 2.37x 1.21x 2.40x 2.38x 2.39x
1024B 2.50x 2.47x 1.22x 2.51x 2.52x 2.51x
8192B 2.51x 2.53x 1.21x 2.56x 2.54x 2.55x
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
There's no need for the K_table to be made of 64-bit words. For some
reason, the original authors didn't fully reduce the values modulo the
CRC32C polynomial, and so had some 33-bit values in there. They can
all be reduced to 32 bits.
Doing that cuts the table size in half. Since the code depends on both
pclmulq and crc32, SSE 4.1 is obviously present, so we can use pmovzxdq
to fetch it in the correct format.
This adds (measured on Ivy Bridge) 1 cycle per main loop iteration
(CRC of up to 3K bytes), less than 0.2%. The hope is that the reduced
D-cache footprint will make up the loss in other code.
Two other related fixes:
* K_table is read-only, so belongs in .rodata, and
* There's no need for more than 8-byte alignment
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: George Spelvin <linux@horizon.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
When invoced for positive values, DIV_ROUND macro defined in
arch/x86/kernel/tsc.c behaves exactly like DIV_ROUND_CLOSEST from
include/linux/kernel.h file, so remove the custom macro in favour
of the shared one.
[ hpa: changed line breaks ]
Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Link: http://lkml.kernel.org/r/1403143116-21755-1-git-send-email-mina86@mina86.com
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management fixes from Rafael Wysocki:
"These are fixes mostly (ia64 regression related to the ACPI
enumeration of devices, cpufreq regressions, fix for I2C controllers
included in Intel SoCs, mvebu cpuidle driver fix related to sysfs)
plus additional kernel command line arguments from Kees to make it
possible to build kernel images with hibernation and the kernel
address space randomization included simultaneously, a new ACPI
battery driver quirk for a system with a broken BIOS and a couple of
ACPI core cleanups.
Specifics:
- Fix for an ia64 regression introduced during the 3.11 cycle by a
commit that modified the hardware initialization ordering and made
device discovery fail on some systems.
- Fix for a build problem on systems where the cpufreq-cpu0 driver is
built-in and the cpu-thermal driver is modular from Arnd Bergmann.
- Fix for a recently introduced computational mistake in the
intel_pstate driver that leads to excessive rounding errors from
Doug Smythies.
- Fix for a failure code path in cpufreq_update_policy() that fails
to unlock the locks acquired previously from Aaron Plattner.
- Fix for the cpuidle mvebu driver to use shorter state names which
will prevent the sysfs interface from returning mangled strings.
From Gregory Clement.
- ACPI LPSS driver fix to make sure that the I2C controllers included
in BayTrail SoCs are not held in the reset state while they are
being probed from Mika Westerberg.
- New kernel command line arguments making it possible to build
kernel images with hibernation and kASLR included at the same time
and to select which of them will be used via the command line (they
are still functionally mutually exclusive, though). From Kees
Cook.
- ACPI battery driver quirk for Acer Aspire V5-573G that fails to
send battery status change notifications timely from Alexander
Mezin.
- Two ACPI core cleanups from Christoph Jaeger and Fabian Frederick"
* tag 'pm+acpi-3.16-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
cpuidle: mvebu: Fix the name of the states
cpufreq: unlock when failing cpufreq_update_policy()
intel_pstate: Correct rounding in busy calculation
ACPI: use kstrto*() instead of simple_strto*()
ACPI / processor replace __attribute__((packed)) by __packed
ACPI / battery: add quirk for Acer Aspire V5-573G
ACPI / battery: use callback for setting up quirks
ACPI / LPSS: Take I2C host controllers out of reset
x86, kaslr: boot-time selectable with hibernation
PM / hibernate: introduce "nohibernate" boot parameter
cpufreq: cpufreq-cpu0: fix CPU_THERMAL dependency
ACPI / ia64 / sba_iommu: Restore the working initialization ordering
|
|
.data doesn't need to be separate from .rodata: they're both readonly.
.altinstructions and .altinstr_replacement aren't needed by anything
except vdso2c; strip them from the final image.
While we're at it, rather than aligning the actual executable text,
just shove some unused-at-runtime data in between real data and
text.
My vdso image is still above 4k, but I'm disinclined to try to
trim it harder for 3.16. For future trimming, I suspect that these
sections could be moved to later in the file and dropped from
the in-memory image:
.gnu.version and .gnu.version_d (this may lose versions in gdb)
.eh_frame (should be harmless)
.eh_frame_hdr (I'm not really sure)
.hash (AFAIK nothing needs this section header)
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Link: http://lkml.kernel.org/r/2e96d0c49016ea6d026a614ae645e93edd325961.1403129369.git.luto@amacapital.net
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Fully stripping the vDSO has other unfortunate side effects:
- binutils is unable to find ELF notes without a SHT_NOTE section.
- Even elfutils has trouble: it can find ELF notes without a section
table at all, but if a section table is present, it won't look for
PT_NOTE.
- gdb wants section names to match between stripped DSOs and their
symbols; otherwise it will corrupt symbol addresses.
We're also breaking the rules: section 0 is supposed to be SHT_NULL.
Fix these problems by building a better fake section table. While
we're at it, we might as well let buggy Go versions keep working well
by giving the SHT_DYNSYM entry the correct size.
This is a bit unfortunate: it adds quite a bit of size to the vdso
image.
If/when binutils improves and the improved versions become widespread,
it would be worth considering dropping most of this.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Link: http://lkml.kernel.org/r/0e546a5eeaafdf1840e6ee654a55c1e727c26663.1403129369.git.luto@amacapital.net
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Rather than using a separate macro for each replacement, use generic
macros.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Link: http://lkml.kernel.org/r/d953cd2e70ceee1400985d091188cdd65fba2f05.1403129369.git.luto@amacapital.net
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
It serves no purpose in user code.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Link: http://lkml.kernel.org/r/2a5bebff42defd8a5e81d96f7dc00f21143c80e8.1403129369.git.luto@amacapital.net
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull Xen fixes from David Vrabel:
"Xen regression and PVH fixes for 3.16-rc1
- fix dom0 PVH memory setup on latest unstable Xen releases
- fix 64-bit x86 PV guest boot failure on Xen 3.1 and earlier
- fix resume regression on non-PV (auto-translated physmap) guests"
* tag 'stable/for-linus-3.16-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/grant-table: fix suspend for non-PV guests
x86/xen: no need to explicitly register an NMI callback
Revert "xen/pvh: Update E820 to work with PVH (v2)"
x86/xen: fix memory setup for PVH dom0
|
|
KVM does not really do much with the PAT, so this went unnoticed for a
long time. It is exposed however if you try to do rdmsr on the PAT
register.
Reported-by: Valentine Sinitsyn <valentine.sinitsyn@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When kvm_write_guest writes the tsc_ref structure to the guest, or it will lead
the low HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT bits of the TSC page address
must be cleared, or the guest can see a non-zero sequence number.
Otherwise Windows guests would not be able to get a correct clocksource
(QueryPerformanceCounter will always return 0) which causes serious chaos.
Signed-off-by: Xiaoming Gao <newtongao@tencnet.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
VMX instructions use 32-bit operands in 32-bit mode, and 64-bit operands in
64-bit mode. The current implementation is broken since it does not use the
register operands correctly, and always uses 64-bit for reads and writes.
Moreover, write to memory in vmwrite only considers long-mode, so it ignores
cs.l. This patch fixes this behavior.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
On 32-bit mode only bits [31:0] of the CR should be used for setting the CR
value. Otherwise, the host may incorrectly assume the value is invalid if bits
[63:32] are not zero. Moreover, the CR is currently being read twice when CR8
is used. Last, nested mov-cr exiting is modified to handle the CR value
correctly as well.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently, the hypercall handling routine only considers LME as an indication
to whether the guest uses 32/64-bit mode. This is incosistent with hyperv
hypercalls handling and against the common sense of considering cs.l as well.
This patch uses is_64_bit_mode instead of is_long_mode for that matter. In
addition, the result is masked in respect to the guest execution mode. Last, it
changes kvm_hv_hypercall to use is_64_bit_mode as well to simplify the code.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When the guest sets DR6 and DR7, KVM asserts the high 32-bits are clear, and
otherwise injects a #GP exception. This exception should only be injected only
if running in long-mode.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Many real CPUs get this wrong as well, but ours is totally off: bits 9:1
define the highest index value.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Allow L1 to "leak" its debug controls into L2, i.e. permit cleared
VM_{ENTRY_LOAD,EXIT_SAVE}_DEBUG_CONTROLS. This requires to manually
transfer the state of DR7 and IA32_DEBUGCTLMSR from L1 into L2 as both
run on different VMCS.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
SDM says bits 1, 4-6, 8, 13-16, and 26 have to be set.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
We already have this control enabled by exposing a broken
MSR_IA32_VMX_PROCBASED_CTLS value. This will properly advertise our
capability once the value is fixed by clearing the right bits in
MSR_IA32_VMX_TRUE_PROCBASED_CTLS. We also have to ensure to test the
right value on L2 entry.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
We already implemented them but failed to advertise them. Currently they
all return the identical values to the capability MSRs they are
augmenting. So there is no change in exposed features yet.
Drop related comments at this chance that are partially incorrect and
redundant anyway.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The spec says those controls are at bit position 2 - makes 4 as value.
The impact of this mistake is effectively zero as we only use them to
ensure that these features are set at position 2 (or, previously, 1) in
MSR_IA32_VMX_{EXIT,ENTRY}_CTLS - which is and will be always true
according to the spec.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
On long-mode the current NOP (0x90) emulation still writes back to RAX. As a
result, EAX is zero-extended and the high 32-bits of RAX are cleared.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Even if the condition of cmov is not satisfied, bits[63:32] should be cleared.
This is clearly stated in Intel's CMOVcc documentation. The solution is to
reassign the destination onto itself if the condition is unsatisfied. For that
matter the original destination value needs to be read.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Return unhandlable error on inter-privilege level ret instruction. This is
since the current emulation does not check the privilege level correctly when
loading the CS, and does not pop RSP/SS as needed.
Cc: stable@vger.kernel.org
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The emulator does not emulate the xadd instruction correctly if the two
operands are the same. In this (unlikely) situation the result should be the
sum of X and X (2X) when it is currently X. The solution is to first perform
writeback to the source, before writing to the destination. The only
instruction which should be affected is xadd, as the other instructions that
perform writeback to the source use the extended accumlator (e.g., RAX:RDX).
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The current emulation of bit operations ignores the offset from the destination
on 64-bit target memory operands. This patch fixes this behavior.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
use mm.h definition
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
It was using the wrong member of the union.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Memory is always the destination for BitOp instructions.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
For boot efi kernel directly without bootloader.
If the kernel support XLF_CAN_BE_LOADED_ABOVE_4G, we should
not limit initrd under hdr->initrd_add_max.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
The kbuild reports the following sparse errors,
>> arch/x86/platform/efi/quirks.c:242:23: sparse: incorrect type in >> argument 1 (different address spaces)
arch/x86/platform/efi/quirks.c:242:23: expected void [noderef] <asn:2>*addr
arch/x86/platform/efi/quirks.c:242:23: got void *[assigned] tablep
>> arch/x86/platform/efi/quirks.c:245:23: sparse: incorrect type in >> argument 1 (different address spaces)
arch/x86/platform/efi/quirks.c:245:23: expected void [noderef] <asn:2>*addr
arch/x86/platform/efi/quirks.c:245:23: got struct efi_setup_data *[assigned] data
Dave Young had made previous attempts to convert the early_iounmap()
calls to early_memunmap() but ran into merge conflicts with commit
9e5c33d7aeee ("mm: create generic early_ioremap() support").
Now that we've got that commit in place we can switch to using
early_memunmap() since we're already using early_memremap() in
efi_reuse_config().
Cc: Dave Young <dyoung@redhat.com>
Cc: Saurabh Tangri <saurabh.tangri@intel.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
Currently, it's difficult to find all the workarounds that are
applied when running on EFI, because they're littered throughout
various code paths. This change moves all of them into a separate
file with the hope that it will be come the single location for all
our well documented quirks.
Signed-off-by: Saurabh Tangri <saurabh.tangri@intel.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
Recent Intel CPUs have 10 variable range MTRRs. Since operating systems
sometime make assumptions on CPUs while they ignore capability MSRs, it is
better for KVM to be consistent with recent CPUs. Reporting more MTRRs than
actually supported has no functional implications.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
X86_FEATURE_FXSAVE_LEAK, X86_FEATURE_11AP and
X86_FEATURE_CLFLUSH_MONITOR are not really features but synthetic bits
we use for applying different bug workarounds. Call them what they
really are, and make sure they get the proper cross-CPU behavior (OR
rather than AND).
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1403042783-23278-1-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Linux 3.16-rc1
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Add a missing inline annotation on a static function, in order to shut
up a bunch of warnings like:
In file included from arch/x86/crypto/camellia_aesni_avx_glue.c:23:0:
./arch/x86/include/asm/xsave.h:73:12: warning: ‘xsave_state_booting’ defined but not used [-Wunused-function]
static int xsave_state_booting(struct xsave_struct *fx, u64 mask)
^
In file included from arch/x86/crypto/camellia_aesni_avx2_glue.c:23:0:
./arch/x86/include/asm/xsave.h:73:12: warning: ‘xsave_state_booting’ defined but not used [-Wunused-function]
static int xsave_state_booting(struct xsave_struct *fx, u64 mask)
^
...
Cc: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1403000468-30094-1-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Paul reported that X86_OOSTORE is dead, yay! Update a comment and
remove a newly added reference.
Reported-by: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Waiman Long <Waiman.Long@hp.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20140611090509.GC3588@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
We did not do that when interruptibility was added to the emulator,
because at the time pop to segment was not implemented. Now it is,
add it.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In 64-bit mode, when the destination is a register, the assignment is done
according to the operand size. Otherwise (memory operand or no 64-bit mode), a
16-bit assignment is performed.
Currently, 16-bit assignment is always done to the destination.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
cmpxchg16b is currently unimplemented in the emulator. The least we can do is
return error upon the emulation of this instruction.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The rdpmc emulation checks that the counter (ECX) is not higher than 2, without
taking into considerations bits 30:31 role (e.g., bit 30 marks whether the
counter is fixed). The fix uses the pmu information for checking the validity
of the pmu counter.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
If the operand-size prefix (0x66) is used in 64-bit mode, the emulator would
assume the destination operand is 64-bit, when it should be 32-bit.
Reminder: movnti does not support 16-bit operands and its default operand size
is 32-bit.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The current implementation of cmpxchg does not update the flags correctly,
since the accumulator should be compared with the destination and not the other
way around. The current implementation does not update the flags correctly.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The SGDT and SIDT instructions are not privilaged, i.e. they can be executed
with CPL>0.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|