Age | Commit message (Collapse) | Author |
|
The commit 578e1c4db2213 ("kvm: x86: Avoid taking MMU lock
in kvm_mmu_sync_roots if no sync is needed") added smp_wmb() in
mmu_try_to_unsync_pages(), but the corresponding smp_load_acquire() isn't
used on the load of SPTE.W. smp_load_acquire() orders _subsequent_
loads after sp->is_unsync; it does not order _earlier_ loads before
the load of sp->is_unsync.
This has no functional change; smp_rmb() is a NOP on x86, and no
compiler barrier is required because there is a VMEXIT between the
load of SPTE.W and kvm_mmu_snc_roots.
Cc: Junaid Shahid <junaids@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211019110154.4091-4-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The commit 21823fbda5522 ("KVM: x86: Invalidate all PGDs for the
current PCID on MOV CR3 w/ flush") invalidates all PGDs for the specific
PCID and in the case of PCID is disabled, it includes all PGDs in the
prev_roots and the commit made prev_roots totally unused in this case.
Not using prev_roots fixes a problem when CR4.PCIDE is changed 0 -> 1
before the said commit:
(CR4.PCIDE=0, CR4.PGE=1; CR3=cr3_a; the page for the guest
RIP is global; cr3_b is cached in prev_roots)
modify page tables under cr3_b
the shadow root of cr3_b is unsync in kvm
INVPCID single context
the guest expects the TLB is clean for PCID=0
change CR4.PCIDE 0 -> 1
switch to cr3_b with PCID=0,NOFLUSH=1
No sync in kvm, cr3_b is still unsync in kvm
jump to the page that was modified in step 1
shadow page tables point to the wrong page
It is a very unlikely case, but it shows that stale prev_roots can be
a problem after CR4.PCIDE changes from 0 to 1. However, to fix this
case, the commit disabled caching CR3 in prev_roots altogether when PCID
is disabled. Not all CPUs have PCID; especially the PCID support
for AMD CPUs is kind of recent. To restore the prev_roots optimization
for CR4.PCIDE=0, flush the whole MMU (including all prev_roots) when
CR4.PCIDE changes.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211019110154.4091-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The KVM doesn't know whether any TLB for a specific pcid is cached in
the CPU when tdp is enabled. So it is better to flush all the guest
TLB when invalidating any single PCID context.
The case is very rare or even impossible since KVM generally doesn't
intercept CR3 write or INVPCID instructions when tdp is enabled, so the
fix is mostly for the sake of overall robustness.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211019110154.4091-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
X86_CR4_PGE doesn't participate in kvm_mmu_role, so the mmu context
doesn't need to be reset. It is only required to flush all the guest
tlb.
It is also inconsistent that X86_CR4_PGE is in KVM_MMU_CR4_ROLE_BITS
while kvm_mmu_role doesn't use X86_CR4_PGE. So X86_CR4_PGE is also
removed from KVM_MMU_CR4_ROLE_BITS.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210919024246.89230-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
X86_CR4_PCIDE doesn't participate in kvm_mmu_role, so the mmu context
doesn't need to be reset. It is only required to flush all the guest
tlb.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210919024246.89230-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
SDM mentioned that, RDPMC:
IF (((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0)) and (ECX indicates a supported counter))
THEN
EAX := counter[31:0];
EDX := ZeroExtend(counter[MSCB:32]);
ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0);
FI;
Let's add a comment why CR0.PE isn't tested since it's impossible for CPL to be >0 if
CR0.PE=0.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1634724836-73721-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Paul pointed out the error messages when KVM fails to load are unhelpful
in understanding exactly what went wrong if userspace probes the "wrong"
module.
Add a mandatory kvm_x86_ops field to track vendor module names, kvm_intel
and kvm_amd, and use the name for relevant error message when KVM fails
to load so that the user knows which module failed to load.
Opportunistically tweak the "disabled by bios" error message to clarify
that _support_ was disabled, not that the module itself was magically
disabled by BIOS.
Suggested-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211018183929.897461-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently, the NX huge page recovery thread wakes up every minute and
zaps 1/nx_huge_pages_recovery_ratio of the total number of split NX
huge pages at a time. This is intended to ensure that only a
relatively small number of pages get zapped at a time. But for very
large VMs (or more specifically, VMs with a large number of
executable pages), a period of 1 minute could still result in this
number being too high (unless the ratio is changed significantly,
but that can result in split pages lingering on for too long).
This change makes the period configurable instead of fixing it at
1 minute. Users of large VMs can then adjust the period and/or the
ratio to reduce the number of pages zapped at one time while still
maintaining the same overall duration for cycling through the
entire list. By default, KVM derives a period from the ratio such
that a page will remain on the list for 1 hour on average.
Signed-off-by: Junaid Shahid <junaids@google.com>
Message-Id: <20211020010627.305925-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
SDM section 18.2.3 mentioned that:
"IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of
any general-purpose or fixed-function counters via a single WRMSR."
It is R/W mentioned by SDM, we read this msr on bare-metal during perf testing,
the value is always 0 for ICX/SKX boxes on hands. Let's fill get_msr
MSR_CORE_PERF_GLOBAL_OVF_CTRL w/ 0 as hardware behavior and drop
global_ovf_ctrl variable.
Tested-by: Like Xu <likexu@tencent.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1634631160-67276-2-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
slot_handle_leaf is a misnomer because it only operates on 4K SPTEs
whereas "leaf" is used to describe any valid terminal SPTE (4K or
large page). Rename slot_handle_leaf to slot_handle_level_4k to
avoid confusion.
Making this change makes it more obvious there is a benign discrepency
between the legacy MMU and the TDP MMU when it comes to dirty logging.
The legacy MMU only iterates through 4K SPTEs when zapping for
collapsing and when clearing D-bits. The TDP MMU, on the other hand,
iterates through SPTEs on all levels.
The TDP MMU behavior of zapping SPTEs at all levels is technically
overkill for its current dirty logging implementation, which always
demotes to 4k SPTES, but both the TDP MMU and legacy MMU zap if and only
if the SPTE can be replaced by a larger page, i.e. will not spuriously
zap 2m (or larger) SPTEs. Opportunistically add comments to explain this
discrepency in the code.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20211019162223.3935109-1-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Per Intel SDM, RTIT_CTL_BRANCH_EN bit has no dependency on any CPUID
leaf 0x14.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-5-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
To better self explain the meaning of this field and match the
PT_CAP_num_address_ranges constatn.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-4-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The number of valid PT ADDR MSRs for the guest is precomputed in
vmx->pt_desc.addr_range. Use it instead of calculating again.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-3-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
A minor optimization to WRMSR MSR_IA32_RTIT_CTL when necessary.
Opportunistically refine the comment to call out that KVM requires
VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-2-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
"prefetch", "prefault" and "speculative" are used throughout KVM to mean
the same thing. Use a single name, standardizing on "prefetch" which
is already used by various functions such as direct_pte_prefetch,
FNAME(prefetch_gpte), FNAME(pte_prefetch), etc.
Suggested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Unify the flags for rmaps and page tracking data, using a
single flag in struct kvm_arch and a single loop to go
over all the address spaces and memslots. This avoids
code duplication between alloc_all_memslots_rmaps and
kvm_page_track_enable_mmu_write_tracking.
Signed-off-by: David Stevens <stevensd@chromium.org>
[This patch is the delta between David's v2 and v3, with conflicts
fixed and my own commit message. - Paolo]
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Now that everything is mopped up, move all the helpers and prototypes into
the core header. They are not required by the outside.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.514095101@linutronix.de
|
|
xfeatures_mask_fpstate() is no longer valid when dynamically enabled
features come into play.
Rework restore_regs_from_fpstate() so it takes a constant mask which will
then be applied against the maximum feature set so that the restore
operation brings all features which are not in the xsave buffer xfeature
bitmap into init state.
This ensures that if the previous task used a dynamically enabled feature
that the task which restores has all unused components properly initialized.
Cleanup the last user of xfeatures_mask_fpstate() as well and remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.461348278@linutronix.de
|
|
Use the new fpu_user_cfg to retrieve the information instead of
xfeatures_mask_uabi() which will be no longer correct when dynamically
enabled features become available.
Using fpu_user_cfg is appropriate when setting XCOMP_BV in the
init_fpstate since it has space allocated for "max_features". But,
normal fpstates might only have space for default xfeatures. Since
XRSTOR* derives the format of the XSAVE buffer from XCOMP_BV, this can
lead to XRSTOR reading out of bounds.
So when copying actively used fpstate, simply read the XCOMP_BV features
bits directly out of the fpstate instead.
This correction courtesy of Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.408879849@linutronix.de
|
|
Currently, Linux probes for X86_BUG_NULL_SEL unconditionally which
makes it unsafe to migrate in a virtualised environment as the
properties across the migration pool might differ.
To be specific, the case which goes wrong is:
1. Zen1 (or earlier) and Zen2 (or later) in a migration pool
2. Linux boots on Zen2, probes and finds the absence of X86_BUG_NULL_SEL
3. Linux is then migrated to Zen1
Linux is now running on a X86_BUG_NULL_SEL-impacted CPU while believing
that the bug is fixed.
The only way to address the problem is to fully trust the "no longer
affected" CPUID bit when virtualised, because in the above case it would
be clear deliberately to indicate the fact "you might migrate to
somewhere which has this behaviour".
Zen3 adds the NullSelectorClearsBase CPUID bit to indicate that loading
a NULL segment selector zeroes the base and limit fields, as well as
just attributes. Zen2 also has this behaviour but doesn't have the NSCB
bit.
[ bp: Minor touchups. ]
Signed-off-by: Jane Malalane <jane.malalane@citrix.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20211021104744.24126-1-jane.malalane@citrix.com
|
|
Move the feature mask storage to the kernel and user config
structs. Default and maximum feature set are the same for now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.352041752@linutronix.de
|
|
Use the new kernel and user space config storage to store and retrieve the
XSTATE buffer sizes. The default and the maximum size are the same for now,
but will change when support for dynamically enabled features is added.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.296830097@linutronix.de
|
|
The size calculations are partially unreadable gunk. Clean them up.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.241223689@linutronix.de
|
|
Clean the function up before making changes.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.184014242@linutronix.de
|
|
Provide a struct to store information about the maximum supported and the
default feature set and buffer sizes for both user and kernel space.
This allows quick retrieval of this information for the upcoming support
for dynamically enabled features.
[ bp: Add vertical spacing between the struct members. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.126107370@linutronix.de
|
|
Flush the destination page before invoking RECEIVE_UPDATE_DATA, as the
PSP encrypts the data with the guest's key when writing to guest memory.
If the target memory was not previously encrypted, the cache may contain
dirty, unecrypted data that will persist on non-coherent systems.
Fixes: 15fb7de1a7f5 ("KVM: SVM: Add KVM_SEV_RECEIVE_UPDATE_DATA command")
Cc: stable@vger.kernel.org
Cc: Peter Gonda <pgonda@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Masahiro Kozuka <masa.koz@kozuka.jp>
[sean: converted bug report to changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210914210951.2994260-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When code running on the VC2 stack causes a nested VC exception, the
handler will not handle it as expected but goes again into the error
path.
The result is that the panic() call happening when the VC exception
was raised in an invalid context is called recursively. Fix this by
checking the interrupted stack too and only call panic if it is not
the VC2 stack.
[ bp: Fixup comment. ]
Fixes: 0786138c78e79 ("x86/sev-es: Add a Runtime #VC Exception Handler")
Reported-by: Xinyang Ge <xing@microsoft.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021080833.30875-3-joro@8bytes.org
|
|
The value of STACK_TYPE_EXCEPTION_LAST points to the last _valid_
exception stack. Reflect that in the check done in the
vc_switch_off_ist() function.
Fixes: a13644f3a53de ("x86/entry/64: Add entry code for #VC handler")
Reported-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021080833.30875-2-joro@8bytes.org
|
|
When updating mmu->pkru_mask, the value can only be added but it isn't
reset in advance. This will make mmu->pkru_mask keep the stale data.
Fix this issue.
Fixes: 2d344105f57c ("KVM, pkeys: introduce pkru_mask to cache conditions")
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20211021071022.1140-1-chenyi.qiang@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
DM&P devices were not being properly identified, which resulted in
unneeded Spectre/Meltdown mitigations being applied.
The manufacturer states that these devices execute always in-order and
don't support either speculative execution or branch prediction, so
they are not vulnerable to this class of attack. [1]
This is something I've personally tested by a simple timing analysis
on my Vortex86MX CPU, and can confirm it is true.
Add identification for some devices that lack the CPUID product name
call, so they appear properly on /proc/cpuinfo.
¹https://www.ssv-embedded.de/doks/infos/DMP_Ann_180108_Meltdown.pdf
[ bp: Massage commit message. ]
Signed-off-by: Marcos Del Sol Vives <marcos@orca.pet>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211017094408.1512158-1-marcos@orca.pet
|
|
For dynamically enabled features it's required to get the features which
are enabled for that context when restoring from sigframe.
The same applies for all signal frame size calculations.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/87ilxz5iew.ffs@tglx
|
|
Prepare for dynamically enabled states per task. The function needs to
retrieve the features and sizes which are valid in a fpstate
context. Retrieve them from fpstate.
Move the function declarations to the core header as they are not
required anywhere else.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145323.233529986@linutronix.de
|
|
With dynamically enabled features the copy function must know the features
and the size which is valid for the task. Retrieve them from fpstate.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145323.181495492@linutronix.de
|
|
Straight forward conversion. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145323.129699950@linutronix.de
|
|
With dynamically enabled features the sigframe code must know the features
which are enabled for the task. Get them from fpstate.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145323.077781448@linutronix.de
|
|
With variable feature sets XSAVE[S] requires to know the feature set for
which the buffer is valid. Retrieve it from fpstate.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145323.025695590@linutronix.de
|
|
Make use of fpstate::size in various places which require the buffer size
information for sanity checks or memcpy() sizing.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.973518954@linutronix.de
|
|
Add state size and feature mask information to the fpstate container. This
will be used for runtime checks with the upcoming support for dynamically
enabled features and dynamically sized buffers. That avoids conditionals
all over the place as the required information is accessible for both
default and extended buffers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.921388806@linutronix.de
|
|
Since commit c300ab9f08df ("KVM: x86: Replace late check_nested_events() hack with
more precise fix") there is no longer the certainty that check_nested_events()
tries to inject an external interrupt vmexit to L1 on every call to vcpu_enter_guest.
Therefore, even in that case we need to set KVM_REQ_EVENT. This ensures
that inject_pending_event() is called, and from there kvm_check_nested_events().
Fixes: c300ab9f08df ("KVM: x86: Replace late check_nested_events() hack with more precise fix")
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The kvm_x86_sync_pir_to_irr callback can sometimes set KVM_REQ_EVENT.
If that happens exactly at the time that an exit is handled as
EXIT_FASTPATH_REENTER_GUEST, vcpu_enter_guest will go incorrectly
through the loop that calls kvm_x86_run, instead of processing
the request promptly.
Fixes: 379a3c8ee444 ("KVM: VMX: Optimize posted-interrupt delivery for timer fastpath")
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In preparation for dynamically enabled FPU features move the function
out of line as the goal is to expose less and not more information.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.869001791@linutronix.de
|
|
If fork fails early then the copied task struct would carry the fpstate
pointer of the parent task.
Not a problem right now, but later when dynamically allocated buffers
are available, keeping the pointer might result in freeing the
parent's buffer. Set it to NULL which prevents that. If fork reaches
clone_thread(), the pointer will be correctly set to the new task
context.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.817101108@linutronix.de
|
|
We don't need special hook for graph tracer entry point,
but instead we can use graph_ops::func function to install
the return_hooker.
This moves the graph tracing setup _before_ the direct
trampoline prepares the stack, so the return_hooker will
be called when the direct trampoline is finished.
This simplifies the code, because we don't need to take into
account the direct trampoline setup when preparing the graph
tracer hooker and we can allow function graph tracer on entries
registered with direct trampoline.
Link: https://lkml.kernel.org/r/20211008091336.33616-4-jolsa@kernel.org
[fixed compile error reported by kernel test robot <lkp@intel.com>]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
The function graph tracer is going to now depend on
ARCH_SUPPORTS_FTRACE_OPS, as that also means that it can support ftrace
args. Since ARCH_SUPPORTS_FTRACE_OPS depends on DYNAMIC_FTRACE, this
means that the function graph tracer for x86_64 will need to depend on
DYNAMIC_FTRACE.
Link: https://lkml.kernel.org/r/20211020233555.16b0dbf2@rorschach.local.home
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
All users converted. Remove it along with the sanity checks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.765063318@linutronix.de
|
|
Convert math emulation code to the new register storage
mechanism in preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.711347464@linutronix.de
|
|
Convert the rest of the core code to the new register storage mechanism in
preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.659456185@linutronix.de
|
|
Convert signal related code to the new register storage mechanism in
preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.607370221@linutronix.de
|
|
Convert regset related code to the new register storage mechanism in
preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.555239736@linutronix.de
|
|
Convert FPU tracing code to the new register storage mechanism in
preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.503327333@linutronix.de
|