Age | Commit message (Collapse) | Author |
|
Recently, the to_pci_sysdata() helper was added inside the CONFIG_PCI
guard, but it is used inside a CONFIG_NUMA guard, which does not require
CONFIG_PCI. This breaks builds on !CONFIG_PCI machines. Make
to_pci_sysdata() available in all configurations.
Fixes: aad6aa0cd674 ("x86/PCI: Add to_pci_sysdata() helper")
Link: https://lore.kernel.org/r/20200203215306.172000-1-Jason@zx2c4.com
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Randy Dunlap <rdunlap@infradead.org> # build-tested
|
|
Pull Microblaze update from Michal Simek:
- enable CMA
- add support for MB v11
- defconfig updates
- minor fixes
* tag 'microblaze-v5.6-rc1' of git://git.monstr.eu/linux-2.6-microblaze:
microblaze: Add ID for Microblaze v11
microblaze: Prevent the overflow of the start
microblaze: Wire CMA allocator
asm-generic: Make dma-contiguous.h a mandatory include/asm header
microblaze: Sync defconfig with latest Kconfig layout
microblaze: defconfig: Disable EXT2 driver and Enable EXT3 & EXT4 drivers
microblaze: Align comments with register usage
|
|
dma-continuguous.h is generic for all architectures except arm32 which has
its own version.
Similar change was done for msi.h by commit a1b39bae16a6
("asm-generic: Make msi.h a mandatory include/asm header")
Suggested-by: Christoph Hellwig <hch@infradead.org>
Link: https://lore.kernel.org/linux-arm-kernel/20200117080446.GA8980@lst.de/T/#m92bb56b04161057635d4142e1b3b9b6b0a70122e
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Paul Walmsley <paul.walmsley@sifive.com> # for arch/riscv
|
|
The most notable change is DEFINE_SHOW_ATTRIBUTE macro split in
seq_file.h.
Conversion rule is:
llseek => proc_lseek
unlocked_ioctl => proc_ioctl
xxx => proc_xxx
delete ".owner = THIS_MODULE" line
[akpm@linux-foundation.org: fix drivers/isdn/capi/kcapi_proc.c]
[sfr@canb.auug.org.au: fix kernel/sched/psi.c]
Link: http://lkml.kernel.org/r/20200122180545.36222f50@canb.auug.org.au
Link: http://lkml.kernel.org/r/20191225172546.GB13378@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Towards a more consistent naming scheme.
[akpm@linux-foundation.org: fix sparc64 Kconfig]
Link: http://lkml.kernel.org/r/20200116064531.483522-7-aneesh.kumar@linux.ibm.com
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
struct mm_struct is quite large (~1664 bytes) and so allocating on the
stack may cause problems as the kernel stack size is small.
Since ptdump_walk_pgd_level_core() was only allocating the structure so
that it could modify the pgd argument we can instead introduce a pgd
override in struct mm_walk and pass this down the call stack to where it
is needed.
Since the correct mm_struct is now being passed down, it is now also
unnecessary to take the mmap_sem semaphore because ptdump_walk_pgd() will
now take the semaphore on the real mm.
[steven.price@arm.com: restore missed arm64 changes]
Link: http://lkml.kernel.org/r/20200108145710.34314-1-steven.price@arm.com
Link: http://lkml.kernel.org/r/20200108145710.34314-1-steven.price@arm.com
Signed-off-by: Steven Price <steven.price@arm.com>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zong Li <zong.li@sifive.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Rather than having to increment the 'depth' number by 1 in ptdump_hole(),
let's change the meaning of 'level' in note_page() since that makes the
code simplier.
Note that for x86, the level numbers were previously increased by 1 in
commit 45dcd2091363 ("x86/mm/dump_pagetables: Fix printout of p4d level")
and the comment "Bit 7 has a different meaning" was not updated, so this
change also makes the code match the comment again.
Link: http://lkml.kernel.org/r/20191218162402.45610-24-steven.price@arm.com
Signed-off-by: Steven Price <steven.price@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zong Li <zong.li@sifive.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Make use of the new functionality in walk_page_range to remove the arch
page walking code and use the generic code to walk the page tables.
The effective permissions are passed down the chain using new fields in
struct pg_state.
The KASAN optimisation is implemented by setting action=CONTINUE in the
callbacks to skip an entire tree of entries.
Link: http://lkml.kernel.org/r/20191218162402.45610-21-steven.price@arm.com
Signed-off-by: Steven Price <steven.price@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zong Li <zong.li@sifive.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
To enable x86 to use the generic walk_page_range() function, the callers
of ptdump_walk_pgd_level_debugfs() need to pass in the mm_struct.
This means that ptdump_walk_pgd_level_core() is now always passed a valid
pgd, so drop the support for pgd==NULL.
Link: http://lkml.kernel.org/r/20191218162402.45610-19-steven.price@arm.com
Signed-off-by: Steven Price <steven.price@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zong Li <zong.li@sifive.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
To enable x86 to use the generic walk_page_range() function, the callers
of ptdump_walk_pgd_level() need to pass an mm_struct rather than the raw
pgd_t pointer. Luckily since commit 7e904a91bf60 ("efi: Use efi_mm in x86
as well as ARM") we now have an mm_struct for EFI on x86.
Link: http://lkml.kernel.org/r/20191218162402.45610-18-steven.price@arm.com
Signed-off-by: Steven Price <steven.price@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zong Li <zong.li@sifive.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
mm/dump_pagetables.c passes both struct seq_file and struct pg_state down
the chain of walk_*_level() functions to be passed to note_page().
Instead place the struct seq_file in struct pg_state and access it from
struct pg_state (which is private to this file) in note_page().
Link: http://lkml.kernel.org/r/20191218162402.45610-17-steven.price@arm.com
Signed-off-by: Steven Price <steven.price@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zong Li <zong.li@sifive.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
walk_page_range() is going to be allowed to walk page tables other than
those of user space. For this it needs to know when it has reached a
'leaf' entry in the page tables. This information is provided by the
p?d_leaf() functions/macros.
For x86 we already have p?d_large() functions, so simply add macros to
provide the generic p?d_leaf() names for the generic code.
Link: http://lkml.kernel.org/r/20191218162402.45610-11-steven.price@arm.com
Signed-off-by: Steven Price <steven.price@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zong Li <zong.li@sifive.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In old days, the "host-progs" syntax was used for specifying host
programs. It was renamed to the current "hostprogs-y" in 2004.
It is typically useful in scripts/Makefile because it allows Kbuild to
selectively compile host programs based on the kernel configuration.
This commit renames like follows:
always -> always-y
hostprogs-y -> hostprogs
So, scripts/Makefile will look like this:
always-$(CONFIG_BUILD_BIN2C) += ...
always-$(CONFIG_KALLSYMS) += ...
...
hostprogs := $(always-y) $(always-m)
I think this makes more sense because a host program is always a host
program, irrespective of the kernel configuration. We want to specify
which ones to compile by CONFIG options, so always-y will be handier.
The "always", "hostprogs-y", "hostprogs-m" will be kept for backward
compatibility for a while.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
|
|
In efi_clean_memmap(), we do a pass over the EFI memory map to remove
bogus entries that may be returned on certain systems.
This recent commit:
1db91035d01aa8bf ("efi: Add tracking for dynamically allocated memmaps")
refactored this code to pass the input to efi_memmap_install() via a
temporary struct on the stack, which is populated using an initializer
which inadvertently defines the value of its size field in terms of its
desc_size field, which value cannot be relied upon yet in the initializer
itself.
Fix this by using efi.memmap.desc_size instead, which is where we get
the value for desc_size from in the first place.
Reported-by: Jörg Otte <jrg.otte@gmail.com>
Tested-by: Jörg Otte <jrg.otte@gmail.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: jrg.otte@gmail.com
Cc: torvalds@linux-foundation.org
Cc: mingo@kernel.org
Link: https://lore.kernel.org/r/20200201233304.18322-1-ardb@kernel.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random
Pull random changes from Ted Ts'o:
"Change /dev/random so that it uses the CRNG and only blocking if the
CRNG hasn't initialized, instead of the old blocking pool. Also clean
up archrandom.h, and some other miscellaneous cleanups"
* tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random: (24 commits)
s390x: Mark archrandom.h functions __must_check
powerpc: Mark archrandom.h functions __must_check
powerpc: Use bool in archrandom.h
x86: Mark archrandom.h functions __must_check
linux/random.h: Mark CONFIG_ARCH_RANDOM functions __must_check
linux/random.h: Use false with bool
linux/random.h: Remove arch_has_random, arch_has_random_seed
s390: Remove arch_has_random, arch_has_random_seed
powerpc: Remove arch_has_random, arch_has_random_seed
x86: Remove arch_has_random, arch_has_random_seed
random: remove some dead code of poolinfo
random: fix typo in add_timer_randomness()
random: Add and use pr_fmt()
random: convert to ENTROPY_BITS for better code readability
random: remove unnecessary unlikely()
random: remove kernel.random.read_wakeup_threshold
random: delete code to pull data into pools
random: remove the blocking pool
random: make /dev/random be almost like /dev/urandom
random: ignore GRND_RANDOM in getentropy(2)
...
|
|
For hibernation the hypercall page must be disabled before the hibernation
image is created so that subsequent hypercall operations fail safely. On
resume the hypercall page has to be restored and reenabled to ensure proper
operation of the resumed kernel.
Implement the necessary suspend/resume callbacks.
[ tglx: Decrypted changelog ]
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/1578350559-130275-1-git-send-email-decui@microsoft.com
|
|
Evan tracked down a subtle race between the update of the MSI message and
the device raising an interrupt internally on PCI devices which do not
support MSI masking. The update of the MSI message is non-atomic and
consists of either 2 or 3 sequential 32bit wide writes to the PCI config
space.
- Write address low 32bits
- Write address high 32bits (If supported by device)
- Write data
When an interrupt is migrated then both address and data might change, so
the kernel attempts to mask the MSI interrupt first. But for MSI masking is
optional, so there exist devices which do not provide it. That means that
if the device raises an interrupt internally between the writes then a MSI
message is sent built from half updated state.
On x86 this can lead to spurious interrupts on the wrong interrupt
vector when the affinity setting changes both address and data. As a
consequence the device interrupt can be lost causing the device to
become stuck or malfunctioning.
Evan tried to handle that by disabling MSI accross an MSI message
update. That's not feasible because disabling MSI has issues on its own:
If MSI is disabled the PCI device is routing an interrupt to the legacy
INTx mechanism. The INTx delivery can be disabled, but the disablement is
not working on all devices.
Some devices lose interrupts when both MSI and INTx delivery are disabled.
Another way to solve this would be to enforce the allocation of the same
vector on all CPUs in the system for this kind of screwed devices. That
could be done, but it would bring back the vector space exhaustion problems
which got solved a few years ago.
Fortunately the high address (if supported by the device) is only relevant
when X2APIC is enabled which implies interrupt remapping. In the interrupt
remapping case the affinity setting is happening at the interrupt remapping
unit and the PCI MSI message is programmed only once when the PCI device is
initialized.
That makes it possible to solve it with a two step update:
1) Target the MSI msg to the new vector on the current target CPU
2) Target the MSI msg to the new vector on the new target CPU
In both cases writing the MSI message is only changing a single 32bit word
which prevents the issue of inconsistency.
After writing the final destination it is necessary to check whether the
device issued an interrupt while the intermediate state #1 (new vector,
current CPU) was in effect.
This is possible because the affinity change is always happening on the
current target CPU. The code runs with interrupts disabled, so the
interrupt can be detected by checking the IRR of the local APIC. If the
vector is pending in the IRR then the interrupt is retriggered on the new
target CPU by sending an IPI for the associated vector on the target CPU.
This can cause spurious interrupts on both the local and the new target
CPU.
1) If the new vector is not in use on the local CPU and the device
affected by the affinity change raised an interrupt during the
transitional state (step #1 above) then interrupt entry code will
ignore that spurious interrupt. The vector is marked so that the
'No irq handler for vector' warning is supressed once.
2) If the new vector is in use already on the local CPU then the IRR check
might see an pending interrupt from the device which is using this
vector. The IPI to the new target CPU will then invoke the handler of
the device, which got the affinity change, even if that device did not
issue an interrupt
3) If the new vector is in use already on the local CPU and the device
affected by the affinity change raised an interrupt during the
transitional state (step #1 above) then the handler of the device which
uses that vector on the local CPU will be invoked.
expose issues in device driver interrupt handlers which are not prepared to
handle a spurious interrupt correctly. This not a regression, it's just
exposing something which was already broken as spurious interrupts can
happen for a lot of reasons and all driver handlers need to be able to deal
with them.
Reported-by: Evan Green <evgreen@chromium.org>
Debugged-by: Evan Green <evgreen@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Evan Green <evgreen@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87imkr4s7n.fsf@nanos.tec.linutronix.de
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull PCI updates from Bjorn Helgaas:
"Resource management:
- Improve resource assignment for hot-added nested bridges, e.g.,
Thunderbolt (Nicholas Johnson)
Power management:
- Optionally print config space of devices before suspend (Chen Yu)
- Increase D3 delay for AMD Ryzen5/7 XHCI controllers (Daniel Drake)
Virtualization:
- Generalize DMA alias quirks (James Sewart)
- Add DMA alias quirk for PLX PEX NTB (James Sewart)
- Fix IOV memory leak (Navid Emamdoost)
AER:
- Log which device prevents error recovery (Yicong Yang)
Peer-to-peer DMA:
- Whitelist Intel SkyLake-E (Armen Baloyan)
Broadcom iProc host bridge driver:
- Apply PAXC quirk whether driver is built-in or module (Wei Liu)
Broadcom STB host bridge driver:
- Add Broadcom STB PCIe host controller driver (Jim Quinlan)
Intel Gateway SoC host bridge driver:
- Add driver for Intel Gateway SoC (Dilip Kota)
Intel VMD host bridge driver:
- Add support for DMA aliases on other buses (Jon Derrick)
- Remove dma_map_ops overrides (Jon Derrick)
- Remove now-unused X86_DEV_DMA_OPS (Christoph Hellwig)
NVIDIA Tegra host bridge driver:
- Fix Tegra30 afi_pex2_ctrl register offset (Marcel Ziswiler)
Panasonic UniPhier host bridge driver:
- Remove module code since driver can't be built as a module
(Masahiro Yamada)
Qualcomm host bridge driver:
- Add support for SDM845 PCIe controller (Bjorn Andersson)
TI Keystone host bridge driver:
- Fix "num-viewport" DT property error handling (Kishon Vijay Abraham I)
- Fix link training retries initiation (Yurii Monakov)
- Fix outbound region mapping (Yurii Monakov)
Misc:
- Add Switchtec Gen4 support (Kelvin Cao)
- Add Switchtec Intercomm Notify and Upstream Error Containment
support (Logan Gunthorpe)
- Use dma_set_mask_and_coherent() since Switchtec supports 64-bit
addressing (Wesley Sheng)"
* tag 'pci-v5.6-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (60 commits)
PCI: Allow adjust_bridge_window() to shrink resource if necessary
PCI: Set resource size directly in adjust_bridge_window()
PCI: Rename extend_bridge_window() to adjust_bridge_window()
PCI: Rename extend_bridge_window() parameter
PCI: Consider alignment of hot-added bridges when assigning resources
PCI: Remove local variable usage in pci_bus_distribute_available_resources()
PCI: Pass size + alignment to pci_bus_distribute_available_resources()
PCI: Rename variables
PCI: vmd: Add two VMD Device IDs
PCI: Remove unnecessary braces
PCI: brcmstb: Add MSI support
PCI: brcmstb: Add Broadcom STB PCIe host controller driver
x86/PCI: Remove X86_DEV_DMA_OPS
PCI: vmd: Remove dma_map_ops overrides
iommu/vt-d: Remove VMD child device sanity check
iommu/vt-d: Use pci_real_dma_dev() for mapping
PCI: Introduce pci_real_dma_dev()
x86/PCI: Expose VMD's pci_dev in struct pci_sysdata
x86/PCI: Add to_pci_sysdata() helper
PCI/AER: Initialize aer_fifo
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
"Misc fixes:
- three fixes and a cleanup for the resctrl code
- a HyperV fix
- a fix to /proc/kcore contents in live debugging sessions
- a fix for the x86 decoder opcode map"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/decoder: Add TEST opcode to Group3-2
x86/resctrl: Clean up unused function parameter in mkdir path
x86/resctrl: Fix a deadlock due to inaccurate reference
x86/resctrl: Fix use-after-free due to inaccurate refcount of rdtgroup
x86/resctrl: Fix use-after-free when deleting resource groups
x86/hyper-v: Add "polling" bit to hv_synic_sint
x86/crash: Define arch_crash_save_vmcoreinfo() if CONFIG_CRASH_CORE=y
|
|
Break an infinite loop when early parsing of the SRAT table is caused
by a subtable with zero length. Known to affect the ASUS WS X299 SAGE
motherboard with firmware version 1201 which has a large block of
zeros in its SRAT table. The kernel could boot successfully on this
board/firmware prior to the introduction of early parsing this table or
after a BIOS update.
[ bp: Fixup whitespace damage and commit message. Make it return 0 to
denote that there are no immovable regions because who knows what
else is broken in this BIOS. ]
Fixes: 02a3e3cdb7f1 ("x86/boot: Parse SRAT table and count immovable memory regions")
Signed-off-by: Steven Clarkson <sc@lambdal.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: linux-acpi@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206343
Link: https://lkml.kernel.org/r/CAHKq8taGzj0u1E_i=poHUam60Bko5BpiJ9jn0fAupFUYexvdUQ@mail.gmail.com
|
|
Pull KVM updates from Paolo Bonzini:
"This is the first batch of KVM changes.
ARM:
- cleanups and corner case fixes.
PPC:
- Bugfixes
x86:
- Support for mapping DAX areas with large nested page table entries.
- Cleanups and bugfixes here too. A particularly important one is a
fix for FPU load when the thread has TIF_NEED_FPU_LOAD. There is
also a race condition which could be used in guest userspace to
exploit the guest kernel, for which the embargo expired today.
- Fast path for IPI delivery vmexits, shaving about 200 clock cycles
from IPI latency.
- Protect against "Spectre-v1/L1TF" (bring data in the cache via
speculative out of bound accesses, use L1TF on the sibling
hyperthread to read it), which unfortunately is an even bigger
whack-a-mole game than SpectreV1.
Sean continues his mission to rewrite KVM. In addition to a sizable
number of x86 patches, this time he contributed a pretty large
refactoring of vCPU creation that affects all architectures but should
not have any visible effect.
s390 will come next week together with some more x86 patches"
* tag 'kvm-5.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
x86/KVM: Clean up host's steal time structure
x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is not missed
x86/kvm: Cache gfn to pfn translation
x86/kvm: Introduce kvm_(un)map_gfn()
x86/kvm: Be careful not to clear KVM_VCPU_FLUSH_TLB bit
KVM: PPC: Book3S PR: Fix -Werror=return-type build failure
KVM: PPC: Book3S HV: Release lock on page-out failure path
KVM: arm64: Treat emulated TVAL TimerValue as a signed 32-bit integer
KVM: arm64: pmu: Only handle supported event counters
KVM: arm64: pmu: Fix chained SW_INCR counters
KVM: arm64: pmu: Don't mark a counter as chained if the odd one is disabled
KVM: arm64: pmu: Don't increment SW_INCR if PMCR.E is unset
KVM: x86: Use a typedef for fastop functions
KVM: X86: Add 'else' to unify fastop and execute call path
KVM: x86: inline memslot_valid_for_gpte
KVM: x86/mmu: Use huge pages for DAX-backed files
KVM: x86/mmu: Remove lpage_is_disallowed() check from set_spte()
KVM: x86/mmu: Fold max_mapping_level() into kvm_mmu_hugepage_adjust()
KVM: x86/mmu: Zap any compound page when collapsing sptes
KVM: x86/mmu: Remove obsolete gfn restoration in FNAME(fetch)
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/daveh/x86-mpx
Pull x86 MPX removal from Dave Hansen:
"MPX requires recompiling applications, which requires compiler
support. Unfortunately, GCC 9.1 is expected to be be released without
support for MPX. This means that there was only a relatively small
window where folks could have ever used MPX. It failed to gain wide
adoption in the industry, and Linux was the only mainstream OS to ever
support it widely.
Support for the feature may also disappear on future processors.
This set completes the process that we started during the 5.4 merge
window when the MPX prctl()s were removed. XSAVE support is left in
place, which allows MPX-using KVM guests to continue to function"
* tag 'mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/daveh/x86-mpx:
x86/mpx: remove MPX from arch/x86
mm: remove arch_bprm_mm_init() hook
x86/mpx: remove bounds exception code
x86/mpx: remove build infrastructure
x86/alternatives: add missing insn.h include
|
|
From Boris Ostrovsky:
The KVM hypervisor may provide a guest with ability to defer remote TLB
flush when the remote VCPU is not running. When this feature is used,
the TLB flush will happen only when the remote VPCU is scheduled to run
again. This will avoid unnecessary (and expensive) IPIs.
Under certain circumstances, when a guest initiates such deferred action,
the hypervisor may miss the request. It is also possible that the guest
may mistakenly assume that it has already marked remote VCPU as needing
a flush when in fact that request had already been processed by the
hypervisor. In both cases this will result in an invalid translation
being present in a vCPU, potentially allowing accesses to memory locations
in that guest's address space that should not be accessible.
Note that only intra-guest memory is vulnerable.
The five patches address both of these problems:
1. The first patch makes sure the hypervisor doesn't accidentally clear
a guest's remote flush request
2. The rest of the patches prevent the race between hypervisor
acknowledging a remote flush request and guest issuing a new one.
Conflicts:
arch/x86/kvm/x86.c [move from kvm_arch_vcpu_free to kvm_arch_vcpu_destroy]
|
|
Now that we are mapping kvm_steal_time from the guest directly we
don't need keep a copy of it in kvm_vcpu_arch.st. The same is true
for the stime field.
This is part of CVE-2019-3016.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
There is a potential race in record_steal_time() between setting
host-local vcpu->arch.st.steal.preempted to zero (i.e. clearing
KVM_VCPU_PREEMPTED) and propagating this value to the guest with
kvm_write_guest_cached(). Between those two events the guest may
still see KVM_VCPU_PREEMPTED in its copy of kvm_steal_time, set
KVM_VCPU_FLUSH_TLB and assume that hypervisor will do the right
thing. Which it won't.
Instad of copying, we should map kvm_steal_time and that will
guarantee atomicity of accesses to @preempted.
This is part of CVE-2019-3016.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
__kvm_map_gfn()'s call to gfn_to_pfn_memslot() is
* relatively expensive
* in certain cases (such as when done from atomic context) cannot be called
Stashing gfn-to-pfn mapping should help with both cases.
This is part of CVE-2019-3016.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
kvm_steal_time_set_preempted() may accidentally clear KVM_VCPU_FLUSH_TLB
bit if it is called more than once while VCPU is preempted.
This is part of CVE-2019-3016.
(This bug was also independently discovered by Jim Mattson
<jmattson@google.com>)
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull drm updates from Davbe Airlie:
"This is the main pull request for graphics for 5.6. Usual selection of
changes all over.
I've got one outstanding vmwgfx pull that touches mm so kept it
separate until after all of this lands. I'll try and get it to you
soon after this, but it might be early next week (nothing wrong with
code, just my schedule is messy)
This also hits a lot of fbdev drivers with some cleanups.
Other notables:
- vulkan timeline semaphore support added to syncobjs
- nouveau turing secureboot/graphics support
- Displayport MST display stream compression support
Detailed summary:
uapi:
- dma-buf heaps added (and fixed)
- command line add support for panel oreientation
- command line allow overriding penguin count
drm:
- mipi dsi definition updates
- lockdep annotations for dma_resv
- remove dma-buf kmap/kunmap support
- constify fb_ops in all fbdev drivers
- MST fix for daisy chained hotplug-
- CTA-861-G modes with VIC >= 193 added
- fix drm_panel_of_backlight export
- LVDS decoder support
- more device based logging support
- scanline alighment for dumb buffers
- MST DSC helpers
scheduler:
- documentation fixes
- job distribution improvements
panel:
- Logic PD type 28 panel support
- Jimax8729d MIPI-DSI
- igenic JZ4770
- generic DSI devicetree bindings
- sony acx424AKP panel
- Leadtek LTK500HD1829
- xinpeng XPP055C272
- AUO B116XAK01
- GiantPlus GPM940B0
- BOE NV140FHM-N49
- Satoz SAT050AT40H12R2
- Sharp LS020B1DD01D panels.
ttm:
- use blocking WW lock
i915:
- hw/uapi state separation
- Lock annotation improvements
- selftest improvements
- ICL/TGL DSI VDSC support
- VBT parsing improvments
- Display refactoring
- DSI updates + fixes
- HDCP 2.2 for CFL
- CML PCI ID fixes
- GLK+ fbc fix
- PSR fixes
- GEN/GT refactor improvments
- DP MST fixes
- switch context id alloc to xarray
- workaround updates
- LMEM debugfs support
- tiled monitor fixes
- ICL+ clock gating programming removed
- DP MST disable sequence fixed
- LMEM discontiguous object maps
- prefaulting for discontiguous objects
- use LMEM for dumb buffers if possible
- add LMEM mmap support
amdgpu:
- enable sync object timelines for vulkan
- MST atomic routines
- enable MST DSC support
- add DMCUB display microengine support
- DC OEM i2c support
- Renoir DC fixes
- Initial HDCP 2.x support
- BACO support for Arcturus
- Use BACO for runtime PM power save
- gfxoff on navi10
- gfx10 golden updates and fixes
- DCN support on POWER
- GFXOFF for raven1 refresh
- MM engine idle handlers cleanup
- 10bpc EDP panel fixes
- renoir watermark fixes
- SR-IOV fixes
- Arcturus VCN fixes
- GDDR6 training fixes
- freesync fixes
- Pollock support
amdkfd:
- unify more codepath with amdgpu
- use KIQ to setup HIQ rather than MMIO
radeon:
- fix vma fault handler race
- PPC DMA fix
- register check fixes for r100/r200
nouveau:
- mmap_sem vs dma_resv fix
- rewrite the ACR secure boot code for Turing
- TU10x graphics engine support (TU11x pending)
- Page kind mapping for turing
- 10-bit LUT support
- GP10B Tegra fixes
- HD audio regression fix
hisilicon/hibmc:
- use generic fbdev code and helpers
rockchip:
- dsi/px30 support
virtio:
- fb damage support
- static some functions
vc4:
- use dma_resv lock wrappers
msm:
- use dma_resv lock wrappers
- sc7180 display + DSI support
- a618 support
- UBWC support improvements
vmwgfx:
- updates + new logging uapi
exynos:
- enable/disable callback cleanups
etnaviv:
- use dma_resv lock wrappers
atmel-hlcdc:
- clock fixes
mediatek:
- cmdq support
- non-smooth cursor fixes
- ctm property support
sun4i:
- suspend support
- A64 mipi dsi support
rcar-du:
- Color management module support
- LVDS encoder dual-link support
- R8A77980 support
analogic:
- add support for an6345
ast:
- atomic modeset support
- primary plane garbage fix
arcgpu:
- fixes for fourcc handling
tegra:
- minor fixes and improvments
mcde:
- vblank support
meson:
- OSD1 plane AFBC commit
gma500:
- add pageflip support
- reomve global drm_dev
komeda:
- tweak debugfs output
- d32 support
- runtime PM suppotr
udl:
- use generic shmem helpers
- cleanup and fixes"
* tag 'drm-next-2020-01-30' of git://anongit.freedesktop.org/drm/drm: (1998 commits)
drm/nouveau/fb/gp102-: allow module to load even when scrubber binary is missing
drm/nouveau/acr: return error when registering LSF if ACR not supported
drm/nouveau/disp/gv100-: not all channel types support reporting error codes
drm/nouveau/disp/nv50-: prevent oops when no channel method map provided
drm/nouveau: support synchronous pushbuf submission
drm/nouveau: signal pending fences when channel has been killed
drm/nouveau: reject attempts to submit to dead channels
drm/nouveau: zero vma pointer even if we only unreference it rather than free
drm/nouveau: Add HD-audio component notifier support
drm/nouveau: fix build error without CONFIG_IOMMU_API
drm/nouveau/kms/nv04: remove set but not used variable 'width'
drm/nouveau/kms/nv50: remove set but not unused variable 'nv_connector'
drm/nouveau/mmu: fix comptag memory leak
drm/nouveau/gr/gp10b: Use gp100_grctx and gp100_gr_zbc
drm/nouveau/pmu/gm20b,gp10b: Fix Falcon bootstrapping
drm/exynos: Rename Exynos to lowercase
drm/exynos: change callback names
drm/mst: Don't do atomic checks over disabled managers
drm/amdgpu: add the lost mutex_init back
drm/amd/display: skip opp blank or unblank if test pattern enabled
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull thread management updates from Christian Brauner:
"Sargun Dhillon over the last cycle has worked on the pidfd_getfd()
syscall.
This syscall allows for the retrieval of file descriptors of a process
based on its pidfd. A task needs to have ptrace_may_access()
permissions with PTRACE_MODE_ATTACH_REALCREDS (suggested by Oleg and
Andy) on the target.
One of the main use-cases is in combination with seccomp's user
notification feature. As a reminder, seccomp's user notification
feature was made available in v5.0. It allows a task to retrieve a
file descriptor for its seccomp filter. The file descriptor is usually
handed of to a more privileged supervising process. The supervisor can
then listen for syscall events caught by the seccomp filter of the
supervisee and perform actions in lieu of the supervisee, usually
emulating syscalls. pidfd_getfd() is needed to expand its uses.
There are currently two major users that wait on pidfd_getfd() and one
future user:
- Netflix, Sargun said, is working on a service mesh where users
should be able to connect to a dns-based VIP. When a user connects
to e.g. 1.2.3.4:80 that runs e.g. service "foo" they will be
redirected to an envoy process. This service mesh uses seccomp user
notifications and pidfd to intercept all connect calls and instead
of connecting them to 1.2.3.4:80 connects them to e.g.
127.0.0.1:8080.
- LXD uses the seccomp notifier heavily to intercept and emulate
mknod() and mount() syscalls for unprivileged containers/processes.
With pidfd_getfd() more uses-cases e.g. bridging socket connections
will be possible.
- The patchset has also seen some interest from the browser corner.
Right now, Firefox is using a SECCOMP_RET_TRAP sandbox managed by a
broker process. In the future glibc will start blocking all signals
during dlopen() rendering this type of sandbox impossible. Hence,
in the future Firefox will switch to a seccomp-user-nofication
based sandbox which also makes use of file descriptor retrieval.
The thread for this can be found at
https://sourceware.org/ml/libc-alpha/2019-12/msg00079.html
With pidfd_getfd() it is e.g. possible to bridge socket connections
for the supervisee (binding to a privileged port) and taking actions
on file descriptors on behalf of the supervisee in general.
Sargun's first version was using an ioctl on pidfds but various people
pushed for it to be a proper syscall which he duely implemented as
well over various review cycles. Selftests are of course included.
I've also added instructions how to deal with merge conflicts below.
There's also a small fix coming from the kernel mentee project to
correctly annotate struct sighand_struct with __rcu to fix various
sparse warnings. We've received a few more such fixes and even though
they are mostly trivial I've decided to postpone them until after -rc1
since they came in rather late and I don't want to risk introducing
build warnings.
Finally, there's a new prctl() command PR_{G,S}ET_IO_FLUSHER which is
needed to avoid allocation recursions triggerable by storage drivers
that have userspace parts that run in the IO path (e.g. dm-multipath,
iscsi, etc). These allocation recursions deadlock the device.
The new prctl() allows such privileged userspace components to avoid
allocation recursions by setting the PF_MEMALLOC_NOIO and
PF_LESS_THROTTLE flags. The patch carries the necessary acks from the
relevant maintainers and is routed here as part of prctl()
thread-management."
* tag 'threads-v5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
prctl: PR_{G,S}ET_IO_FLUSHER to support controlling memory reclaim
sched.h: Annotate sighand_struct with __rcu
test: Add test for pidfd getfd
arch: wire up pidfd_getfd syscall
pid: Implement pidfd_getfd syscall
vfs, fdtable: Add fget_task helper
|
|
Pull SCSI updates from James Bottomley:
"This series is slightly unusual because it includes Arnd's compat
ioctl tree here:
1c46a2cf2dbd Merge tag 'block-ioctl-cleanup-5.6' into 5.6/scsi-queue
Excluding Arnd's changes, this is mostly an update of the usual
drivers: megaraid_sas, mpt3sas, qla2xxx, ufs, lpfc, hisi_sas.
There are a couple of core and base updates around error propagation
and atomicity in the attribute container base we use for the SCSI
transport classes.
The rest is minor changes and updates"
* tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (149 commits)
scsi: hisi_sas: Rename hisi_sas_cq.pci_irq_mask
scsi: hisi_sas: Add prints for v3 hw interrupt converge and automatic affinity
scsi: hisi_sas: Modify the file permissions of trigger_dump to write only
scsi: hisi_sas: Replace magic number when handle channel interrupt
scsi: hisi_sas: replace spin_lock_irqsave/spin_unlock_restore with spin_lock/spin_unlock
scsi: hisi_sas: use threaded irq to process CQ interrupts
scsi: ufs: Use UFS device indicated maximum LU number
scsi: ufs: Add max_lu_supported in struct ufs_dev_info
scsi: ufs: Delete is_init_prefetch from struct ufs_hba
scsi: ufs: Inline two functions into their callers
scsi: ufs: Move ufshcd_get_max_pwr_mode() to ufshcd_device_params_init()
scsi: ufs: Split ufshcd_probe_hba() based on its called flow
scsi: ufs: Delete struct ufs_dev_desc
scsi: ufs: Fix ufshcd_probe_hba() reture value in case ufshcd_scsi_add_wlus() fails
scsi: ufs-mediatek: enable low-power mode for hibern8 state
scsi: ufs: export some functions for vendor usage
scsi: ufs-mediatek: add dbg_register_dump implementation
scsi: qla2xxx: Fix a NULL pointer dereference in an error path
scsi: qla1280: Make checking for 64bit support consistent
scsi: megaraid_sas: Update driver version to 07.713.01.00-rc1
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull openat2 support from Al Viro:
"This is the openat2() series from Aleksa Sarai.
I'm afraid that the rest of namei stuff will have to wait - it got
zero review the last time I'd posted #work.namei, and there had been a
leak in the posted series I'd caught only last weekend. I was going to
repost it on Monday, but the window opened and the odds of getting any
review during that... Oh, well.
Anyway, openat2 part should be ready; that _did_ get sane amount of
review and public testing, so here it comes"
From Aleksa's description of the series:
"For a very long time, extending openat(2) with new features has been
incredibly frustrating. This stems from the fact that openat(2) is
possibly the most famous counter-example to the mantra "don't silently
accept garbage from userspace" -- it doesn't check whether unknown
flags are present[1].
This means that (generally) the addition of new flags to openat(2) has
been fraught with backwards-compatibility issues (O_TMPFILE has to be
defined as __O_TMPFILE|O_DIRECTORY|[O_RDWR or O_WRONLY] to ensure old
kernels gave errors, since it's insecure to silently ignore the
flag[2]). All new security-related flags therefore have a tough road
to being added to openat(2).
Furthermore, the need for some sort of control over VFS's path
resolution (to avoid malicious paths resulting in inadvertent
breakouts) has been a very long-standing desire of many userspace
applications.
This patchset is a revival of Al Viro's old AT_NO_JUMPS[3] patchset
(which was a variant of David Drysdale's O_BENEATH patchset[4] which
was a spin-off of the Capsicum project[5]) with a few additions and
changes made based on the previous discussion within [6] as well as
others I felt were useful.
In line with the conclusions of the original discussion of
AT_NO_JUMPS, the flag has been split up into separate flags. However,
instead of being an openat(2) flag it is provided through a new
syscall openat2(2) which provides several other improvements to the
openat(2) interface (see the patch description for more details). The
following new LOOKUP_* flags are added:
LOOKUP_NO_XDEV:
Blocks all mountpoint crossings (upwards, downwards, or through
absolute links). Absolute pathnames alone in openat(2) do not
trigger this. Magic-link traversal which implies a vfsmount jump is
also blocked (though magic-link jumps on the same vfsmount are
permitted).
LOOKUP_NO_MAGICLINKS:
Blocks resolution through /proc/$pid/fd-style links. This is done
by blocking the usage of nd_jump_link() during resolution in a
filesystem. The term "magic-links" is used to match with the only
reference to these links in Documentation/, but I'm happy to change
the name.
It should be noted that this is different to the scope of
~LOOKUP_FOLLOW in that it applies to all path components. However,
you can do openat2(NO_FOLLOW|NO_MAGICLINKS) on a magic-link and it
will *not* fail (assuming that no parent component was a
magic-link), and you will have an fd for the magic-link.
In order to correctly detect magic-links, the introduction of a new
LOOKUP_MAGICLINK_JUMPED state flag was required.
LOOKUP_BENEATH:
Disallows escapes to outside the starting dirfd's
tree, using techniques such as ".." or absolute links. Absolute
paths in openat(2) are also disallowed.
Conceptually this flag is to ensure you "stay below" a certain
point in the filesystem tree -- but this requires some additional
to protect against various races that would allow escape using
"..".
Currently LOOKUP_BENEATH implies LOOKUP_NO_MAGICLINKS, because it
can trivially beam you around the filesystem (breaking the
protection). In future, there might be similar safety checks done
as in LOOKUP_IN_ROOT, but that requires more discussion.
In addition, two new flags are added that expand on the above ideas:
LOOKUP_NO_SYMLINKS:
Does what it says on the tin. No symlink resolution is allowed at
all, including magic-links. Just as with LOOKUP_NO_MAGICLINKS this
can still be used with NOFOLLOW to open an fd for the symlink as
long as no parent path had a symlink component.
LOOKUP_IN_ROOT:
This is an extension of LOOKUP_BENEATH that, rather than blocking
attempts to move past the root, forces all such movements to be
scoped to the starting point. This provides chroot(2)-like
protection but without the cost of a chroot(2) for each filesystem
operation, as well as being safe against race attacks that
chroot(2) is not.
If a race is detected (as with LOOKUP_BENEATH) then an error is
generated, and similar to LOOKUP_BENEATH it is not permitted to
cross magic-links with LOOKUP_IN_ROOT.
The primary need for this is from container runtimes, which
currently need to do symlink scoping in userspace[7] when opening
paths in a potentially malicious container.
There is a long list of CVEs that could have bene mitigated by
having RESOLVE_THIS_ROOT (such as CVE-2017-1002101,
CVE-2017-1002102, CVE-2018-15664, and CVE-2019-5736, just to name a
few).
In order to make all of the above more usable, I'm working on
libpathrs[8] which is a C-friendly library for safe path resolution.
It features a userspace-emulated backend if the kernel doesn't support
openat2(2). Hopefully we can get userspace to switch to using it, and
thus get openat2(2) support for free once it's ready.
Future work would include implementing things like
RESOLVE_NO_AUTOMOUNT and possibly a RESOLVE_NO_REMOTE (to allow
programs to be sure they don't hit DoSes though stale NFS handles)"
* 'work.openat2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
Documentation: path-lookup: include new LOOKUP flags
selftests: add openat2(2) selftests
open: introduce openat2(2) syscall
namei: LOOKUP_{IN_ROOT,BENEATH}: permit limited ".." resolution
namei: LOOKUP_IN_ROOT: chroot-like scoped resolution
namei: LOOKUP_BENEATH: O_BENEATH-like scoped resolution
namei: LOOKUP_NO_XDEV: block mountpoint crossing
namei: LOOKUP_NO_MAGICLINKS: block magic-link resolution
namei: LOOKUP_NO_SYMLINKS: block symlink resolution
namei: allow set_root() to produce errors
namei: allow nd_jump_link() to produce errors
nsfs: clean-up ns_get_path() signature to return int
namei: only return -ECHILD from follow_dotdot_rcu()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty/serial driver updates from Greg KH:
"Here are the big set of tty and serial driver updates for 5.6-rc1
Included in here are:
- dummy_con cleanups (touches lots of arch code)
- sysrq logic cleanups (touches lots of serial drivers)
- samsung driver fixes (wasn't really being built)
- conmakeshash move to tty subdir out of scripts
- lots of small tty/serial driver updates
All of these have been in linux-next for a while with no reported
issues"
* tag 'tty-5.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (140 commits)
tty: n_hdlc: Use flexible-array member and struct_size() helper
tty: baudrate: SPARC supports few more baud rates
tty: baudrate: Synchronise baud_table[] and baud_bits[]
tty: serial: meson_uart: Add support for kernel debugger
serial: imx: fix a race condition in receive path
serial: 8250_bcm2835aux: Document struct bcm2835aux_data
serial: 8250_bcm2835aux: Use generic remapping code
serial: 8250_bcm2835aux: Allocate uart_8250_port on stack
serial: 8250_bcm2835aux: Suppress register_port error on -EPROBE_DEFER
serial: 8250_bcm2835aux: Suppress clk_get error on -EPROBE_DEFER
serial: 8250_bcm2835aux: Fix line mismatch on driver unbind
serial_core: Remove unused member in uart_port
vt: Correct comment documenting do_take_over_console()
vt: Delete comment referencing non-existent unbind_con_driver()
arch/xtensa/setup: Drop dummy_con initialization
arch/x86/setup: Drop dummy_con initialization
arch/unicore32/setup: Drop dummy_con initialization
arch/sparc/setup: Drop dummy_con initialization
arch/sh/setup: Drop dummy_con initialization
arch/s390/setup: Drop dummy_con initialization
...
|
|
Tony reported a boot regression caused by the recent workaround for systems
which have a disabled (clock gate off) PIT.
On his machine the kernel fails to initialize the PIT because
apic_needs_pit() does not take into account whether the local APIC
interrupt delivery mode will actually allow to setup and use the local
APIC timer. This should be easy to reproduce with acpi=off on the
command line which also disables HPET.
Due to the way the PIT/HPET and APIC setup ordering works (APIC setup can
require working PIT/HPET) the information is not available at the point
where apic_needs_pit() makes this decision.
To address this, split out the interrupt mode selection from
apic_intr_mode_init(), invoke the selection before making the decision
whether PIT is required or not, and add the missing checks into
apic_needs_pit().
Fixes: c8c4076723da ("x86/timer: Skip PIT initialization on modern chipsets")
Reported-by: Anthony Buckley <tony.buckley000@gmail.com>
Tested-by: Anthony Buckley <tony.buckley000@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Daniel Drake <drake@endlessm.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206125
Link: https://lore.kernel.org/r/87sgk6tmk2.fsf@nanos.tec.linutronix.de
|
|
Pull networking updates from David Miller:
1) Add WireGuard
2) Add HE and TWT support to ath11k driver, from John Crispin.
3) Add ESP in TCP encapsulation support, from Sabrina Dubroca.
4) Add variable window congestion control to TIPC, from Jon Maloy.
5) Add BCM84881 PHY driver, from Russell King.
6) Start adding netlink support for ethtool operations, from Michal
Kubecek.
7) Add XDP drop and TX action support to ena driver, from Sameeh
Jubran.
8) Add new ipv4 route notifications so that mlxsw driver does not have
to handle identical routes itself. From Ido Schimmel.
9) Add BPF dynamic program extensions, from Alexei Starovoitov.
10) Support RX and TX timestamping in igc, from Vinicius Costa Gomes.
11) Add support for macsec HW offloading, from Antoine Tenart.
12) Add initial support for MPTCP protocol, from Christoph Paasch,
Matthieu Baerts, Florian Westphal, Peter Krystad, and many others.
13) Add Octeontx2 PF support, from Sunil Goutham, Geetha sowjanya, Linu
Cherian, and others.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1469 commits)
net: phy: add default ARCH_BCM_IPROC for MDIO_BCM_IPROC
udp: segment looped gso packets correctly
netem: change mailing list
qed: FW 8.42.2.0 debug features
qed: rt init valid initialization changed
qed: Debug feature: ilt and mdump
qed: FW 8.42.2.0 Add fw overlay feature
qed: FW 8.42.2.0 HSI changes
qed: FW 8.42.2.0 iscsi/fcoe changes
qed: Add abstraction for different hsi values per chip
qed: FW 8.42.2.0 Additional ll2 type
qed: Use dmae to write to widebus registers in fw_funcs
qed: FW 8.42.2.0 Parser offsets modified
qed: FW 8.42.2.0 Queue Manager changes
qed: FW 8.42.2.0 Expose new registers and change windows
qed: FW 8.42.2.0 Internal ram offsets modifications
MAINTAINERS: Add entry for Marvell OcteonTX2 Physical Function driver
Documentation: net: octeontx2: Add RVU HW and drivers overview
octeontx2-pf: ethtool RSS config support
octeontx2-pf: Add basic ethtool support
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"API:
- Removed CRYPTO_TFM_RES flags
- Extended spawn grabbing to all algorithm types
- Moved hash descsize verification into API code
Algorithms:
- Fixed recursive pcrypt dead-lock
- Added new 32 and 64-bit generic versions of poly1305
- Added cryptogams implementation of x86/poly1305
Drivers:
- Added support for i.MX8M Mini in caam
- Added support for i.MX8M Nano in caam
- Added support for i.MX8M Plus in caam
- Added support for A33 variant of SS in sun4i-ss
- Added TEE support for Raven Ridge in ccp
- Added in-kernel API to submit TEE commands in ccp
- Added AMD-TEE driver
- Added support for BCM2711 in iproc-rng200
- Added support for AES256-GCM based ciphers for chtls
- Added aead support on SEC2 in hisilicon"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (244 commits)
crypto: arm/chacha - fix build failured when kernel mode NEON is disabled
crypto: caam - add support for i.MX8M Plus
crypto: x86/poly1305 - emit does base conversion itself
crypto: hisilicon - fix spelling mistake "disgest" -> "digest"
crypto: chacha20poly1305 - add back missing test vectors and test chunking
crypto: x86/poly1305 - fix .gitignore typo
tee: fix memory allocation failure checks on drv_data and amdtee
crypto: ccree - erase unneeded inline funcs
crypto: ccree - make cc_pm_put_suspend() void
crypto: ccree - split overloaded usage of irq field
crypto: ccree - fix PM race condition
crypto: ccree - fix FDE descriptor sequence
crypto: ccree - cc_do_send_request() is void func
crypto: ccree - fix pm wrongful error reporting
crypto: ccree - turn errors to debug msgs
crypto: ccree - fix AEAD decrypt auth fail
crypto: ccree - fix typo in comment
crypto: ccree - fix typos in error msgs
crypto: atmel-{aes,sha,tdes} - Retire crypto_platform_data
crypto: x86/sha - Eliminate casts on asm implementations
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mtrr updates from Ingo Molnar:
"Two changes: restrict /proc/mtrr to CAP_SYS_ADMIN, plus a cleanup"
* 'x86-mtrr-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mtrr: Require CAP_SYS_ADMIN for all access
x86/mtrr: Get rid of mtrr_seq_show() forward declaration
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 FPU updates from Ingo Molnar:
"Three changes: fix a race that can result in FPU corruption, plus two
cleanups"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Deactivate FPU state after failure during state load
x86/fpu/xstate: Make xfeature_is_supervisor()/xfeature_is_user() return bool
x86/fpu/xstate: Fix small issues
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu-features updates from Ingo Molnar:
"The biggest change in this cycle was a large series from Sean
Christopherson to clean up the handling of VMX features. This both
fixes bugs/inconsistencies and makes the code more coherent and
future-proof.
There are also two cleanups and a minor TSX syslog messages
enhancement"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/cpu: Remove redundant cpu_detect_cache_sizes() call
x86/cpu: Print "VMX disabled" error message iff KVM is enabled
KVM: VMX: Allow KVM_INTEL when building for Centaur and/or Zhaoxin CPUs
perf/x86: Provide stubs of KVM helpers for non-Intel CPUs
KVM: VMX: Use VMX_FEATURE_* flags to define VMCS control bits
KVM: VMX: Check for full VMX support when verifying CPU compatibility
KVM: VMX: Use VMX feature flag to query BIOS enabling
KVM: VMX: Drop initialization of IA32_FEAT_CTL MSR
x86/cpufeatures: Add flag to track whether MSR IA32_FEAT_CTL is configured
x86/cpu: Set synthetic VMX cpufeatures during init_ia32_feat_ctl()
x86/cpu: Print VMX flags in /proc/cpuinfo using VMX_FEATURES_*
x86/cpu: Detect VMX features on Intel, Centaur and Zhaoxin CPUs
x86/vmx: Introduce VMX_FEATURES_*
x86/cpu: Clear VMX feature flag if VMX is not fully enabled
x86/zhaoxin: Use common IA32_FEAT_CTL MSR initialization
x86/centaur: Use common IA32_FEAT_CTL MSR initialization
x86/mce: WARN once if IA32_FEAT_CTL MSR is left unlocked
x86/intel: Initialize IA32_FEAT_CTL MSR at boot
tools/x86: Sync msr-index.h from kernel sources
selftests, kvm: Replace manual MSR defs with common msr-index.h
...
|
|
invariance
On some platforms such as the Dell XPS 13 laptop the firmware disables turbo
when the machine is disconnected from AC, and viceversa it enables it again
when it's reconnected. In these cases a _PPC ACPI notification is issued.
The scheduler needs to know freq_max for frequency-invariant calculations.
To account for turbo availability to come and go, record freq_max at boot as
if turbo was available and store it in a helper variable. Use a setter
function to swap between freq_base and freq_max every time turbo goes off or on.
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200122151617.531-7-ggherdovich@suse.cz
|
|
The scheduler needs the ratio freq_curr/freq_max for frequency-invariant
accounting. On all ATOM CPUs prior to Goldmont, set freq_max to the 1-core
turbo ratio.
We intended to perform tests validating that this patch doesn't regress in
terms of energy efficiency, given that this is the primary concern on Atom
processors. Alas, we found out that turbostat doesn't support reading RAPL
interfaces on our test machine (Airmont), and we don't have external equipment
to measure power consumption; all we have is the performance results of the
benchmarks we ran.
Test machine:
Platform : Dell Wyse 3040 Thin Client[1]
CPU Model : Intel Atom x5-Z8350 (aka Cherry Trail, aka Airmont)
Fam/Mod/Ste : 6:76:4
Topology : 1 socket, 4 cores / 4 threads
Memory : 2G
Storage : onboard flash, XFS filesystem
[1] https://www.dell.com/en-us/work/shop/wyse-endpoints-and-software/wyse-3040-thin-client/spd/wyse-3040-thin-client
Base frequency and available turbo levels (MHz):
Min Operating Freq 266 |***
Low Freq Mode 800 |********
Base Freq 2400 |************************
4 Cores 2800 |****************************
3 Cores 2800 |****************************
2 Cores 3200 |********************************
1 Core 3200 |********************************
Tested kernels:
Baseline : v5.4-rc1, intel_pstate passive, schedutil
Comparison #1 : v5.4-rc1, intel_pstate active , powersave
Comparison #2 : v5.4-rc1, this patch, intel_pstate passive, schedutil
tbench, hackbench and kernbench performed the same under all three kernels;
dbench ran faster with intel_pstate/powersave and the git unit tests were a
lot faster with intel_pstate/powersave and invariant schedutil wrt the
baseline. Not that any of this is terrbily interesting anyway, one doesn't buy
an Atom system to go fast. Power consumption regressions aren't expected but
we lack the equipment to make that measurement. Turbostat seems to think that
reading RAPL on this machine isn't a good idea and we're trusting that
decision.
comparison ratio of performance with baseline; 1.00 means neutral,
lower is better:
I_PSTATE FREQ-INV
----------------------------------------
dbench 0.90 ~
kernbench 0.98 0.97
gitsource 0.63 0.43
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200122151617.531-6-ggherdovich@suse.cz
|
|
The scheduler needs the ratio freq_curr/freq_max for frequency-invariant
accounting. On GOLDMONT (aka Apollo Lake), GOLDMONT_D (aka Denverton) and
GOLDMONT_PLUS CPUs (aka Gemini Lake) set freq_max to the highest frequency
reported by the CPU.
The encoding of turbo ratios for GOLDMONT* is identical to the one for
SKYLAKE_X, but we treat the Atom case apart because we want to set freq_max to
a higher value, thus the ratio freq_curr/freq_max to be lower, leading to more
conservative frequency selections (favoring power efficiency).
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200122151617.531-5-ggherdovich@suse.cz
|
|
The scheduler needs the ratio freq_curr/freq_max for frequency-invariant
accounting. On Xeon Phi CPUs set freq_max to the second-highest frequency
reported by the CPU.
Xeon Phi CPUs such as Knights Landing and Knights Mill typically have either
one or two turbo frequencies; in the former case that's 100 MHz above the base
frequency, in the latter case the two levels are 100 MHz and 200 MHz above
base frequency.
We set freq_max to the second-highest frequency reported by the CPU. This
could be the base frequency (if only one turbo level is available) or the first
turbo level (if two levels are available). The rationale is to compromise
between power efficiency or performance -- going straight to max turbo would
favor efficiency and blindly using base freq would favor performance.
For reference, this is how MSR_TURBO_RATIO_LIMIT must be parsed on a Xeon Phi
to get the available frequencies (taken from a comment in turbostat's sources):
[0] -- Reserved
[7:1] -- Base value of number of active cores of bucket 1.
[15:8] -- Base value of freq ratio of bucket 1.
[20:16] -- +ve delta of number of active cores of bucket 2.
i.e. active cores of bucket 2 =
active cores of bucket 1 + delta
[23:21] -- Negative delta of freq ratio of bucket 2.
i.e. freq ratio of bucket 2 =
freq ratio of bucket 1 - delta
[28:24]-- +ve delta of number of active cores of bucket 3.
[31:29]-- -ve delta of freq ratio of bucket 3.
[36:32]-- +ve delta of number of active cores of bucket 4.
[39:37]-- -ve delta of freq ratio of bucket 4.
[44:40]-- +ve delta of number of active cores of bucket 5.
[47:45]-- -ve delta of freq ratio of bucket 5.
[52:48]-- +ve delta of number of active cores of bucket 6.
[55:53]-- -ve delta of freq ratio of bucket 6.
[60:56]-- +ve delta of number of active cores of bucket 7.
[63:61]-- -ve delta of freq ratio of bucket 7.
1. PERFORMANCE EVALUATION: TBENCH +5%
2. NEUTRAL BENCHMARKS (ALL OTHERS)
3. TEST SETUP
1. PERFORMANCE EVALUATION: TBENCH +5%
-------------------------------------
A performance evaluation was conducted on a Knights Mill machine (see "Test
Setup" below), were the frequency-invariance patch (on schedutil) is compared
to both non-invariant schedutil and active intel_pstate with powersave: all
three tested kernels behave the same performance-wise and with regard to power
consumption (performance per watt). The only notable difference is tbench:
comparison ratio of performance with baseline; 1.00 means neutral,
higher is better:
I_PSTATE FREQ-INV
----------------------------------------
tbench 1.04 1.05
performance-per-watt ratios with baseline; 1.00 means neutral, higher is better:
I_PSTATE FREQ-INV
----------------------------------------
tbench 1.03 1.04
which essentially means that frequency-invariant schedutil is 5% better than
baseline, the same as intel_pstate+powersave.
As the results above are averaged over the varying parameter, here the detailed
table.
Varying parameter : number of clients
Unit : MB/sec (higher is better)
5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 freq-inv
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean 1 49.06 +- 2.12% ( ) 51.66 +- 1.52% ( 5.30%) 52.87 +- 0.88% ( 7.76%)
Hmean 2 93.82 +- 0.45% ( ) 103.24 +- 0.70% ( 10.05%) 105.90 +- 0.70% ( 12.88%)
Hmean 4 192.46 +- 1.15% ( ) 215.95 +- 0.60% ( 12.21%) 215.78 +- 1.43% ( 12.12%)
Hmean 8 406.74 +- 2.58% ( ) 438.58 +- 0.36% ( 7.83%) 437.61 +- 0.97% ( 7.59%)
Hmean 16 857.70 +- 1.22% ( ) 890.26 +- 0.72% ( 3.80%) 889.11 +- 0.73% ( 3.66%)
Hmean 32 1760.10 +- 0.92% ( ) 1791.70 +- 0.44% ( 1.79%) 1787.95 +- 0.44% ( 1.58%)
Hmean 64 3183.50 +- 0.34% ( ) 3183.19 +- 0.36% ( -0.01%) 3187.53 +- 0.36% ( 0.13%)
Hmean 128 4830.96 +- 0.31% ( ) 4846.53 +- 0.30% ( 0.32%) 4855.86 +- 0.30% ( 0.52%)
Hmean 256 5467.98 +- 0.38% ( ) 5793.80 +- 0.28% ( 5.96%) 5821.94 +- 0.17% ( 6.47%)
Hmean 512 5398.10 +- 0.06% ( ) 5745.56 +- 0.08% ( 6.44%) 5503.68 +- 0.07% ( 1.96%)
Hmean 1024 5290.43 +- 0.63% ( ) 5221.07 +- 0.47% ( -1.31%) 5277.22 +- 0.80% ( -0.25%)
Hmean 1088 5139.71 +- 0.57% ( ) 5236.02 +- 0.71% ( 1.87%) 5190.57 +- 0.41% ( 0.99%)
2. NEUTRAL BENCHMARKS (ALL OTHERS)
----------------------------------
* pgbench (both read/write and read-only)
* NASA Parallel Benchmarks (NPB), MPI or OpenMP for message-passing
* hackbench
* netperf
* dbench
* kernbench
* gitsource (git unit test suite)
3. TEST SETUP
-------------
Test machine:
CPU Model : Intel Xeon Phi CPU 7255 @ 1.10GHz (a.k.a. Knights Mill)
Fam/Mod/Ste : 6:133:0
Topology : 1 socket, 68 cores / 272 threads
Memory : 96G
Storage : rotary, XFS filesystem
Max EFFICiency, BASE frequency and available turbo levels (MHz):
EFFIC 1000 |**********
BASE 1100 |***********
68C 1100 |***********
30C 1200 |************
Tested kernels:
Baseline : v5.2, intel_pstate passive, schedutil
Comparison #1 : v5.2, intel_pstate active , powersave
Comparison #2 : v5.2, this patch, intel_pstate passive, schedutil
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200122151617.531-4-ggherdovich@suse.cz
|
|
The scheduler needs the ratio freq_curr/freq_max for frequency-invariant
accounting. On SKYLAKE_X CPUs set freq_max to the highest frequency that can
be sustained by a group of at least 4 cores.
From the changelog of commit 31e07522be56 ("tools/power turbostat: fix
decoding for GLM, DNV, SKX turbo-ratio limits"):
> Newer processors do not hard-code the the number of cpus in each bin
> to {1, 2, 3, 4, 5, 6, 7, 8} Rather, they can specify any number
> of CPUS in each of the 8 bins:
>
> eg.
>
> ...
> 37 * 100.0 = 3600.0 MHz max turbo 4 active cores
> 38 * 100.0 = 3700.0 MHz max turbo 3 active cores
> 39 * 100.0 = 3800.0 MHz max turbo 2 active cores
> 39 * 100.0 = 3900.0 MHz max turbo 1 active cores
>
> could now look something like this:
>
> ...
> 37 * 100.0 = 3600.0 MHz max turbo 16 active cores
> 38 * 100.0 = 3700.0 MHz max turbo 8 active cores
> 39 * 100.0 = 3800.0 MHz max turbo 4 active cores
> 39 * 100.0 = 3900.0 MHz max turbo 2 active cores
This encoding of turbo levels applies to both SKYLAKE_X and GOLDMONT/GOLDMONT_D,
but we treat these two classes in separate commits because their freq_max
values need to be different. For SKX we prefer a lower freq_max in the ratio
freq_curr/freq_max, allowing load and utilization to overshoot and the
schedutil governor to be more performance-oriented. Models from the Atom
series (such as GOLDMONT*) are handled in a forthcoming commit as they have to
favor power-efficiency over performance.
Results from a performance evaluation follow.
1. TEST SETUP
2. NEUTRAL BENCHMARKS
3. NON-NEUTRAL BENCHMARKS
4. DETAILED TABLES
1. TEST SETUP
-------------
Test machine:
CPU Model : Intel Xeon Platinum 8260L CPU @ 2.40GHz (a.k.a. Cascade Lake)
Fam/Mod/Ste : 6:85:6
Topology : 2 sockets, 24 cores / 48 threads each socket
Memory : 192G
Storage : SSD, XFS filesystem
Max EFFICiency, BASE frequency and available turbo levels (MHz):
EFFIC 1000 |**********
BASE 2400 |************************
24C 3100 |*******************************
20C 3300 |*********************************
16C 3600 |************************************
12C 3600 |************************************
8C 3600 |************************************
4C 3700 |*************************************
2C 3900 |***************************************
Tested kernels:
Baseline : v5.2, intel_pstate passive, schedutil
Comparison #1 : v5.2, intel_pstate active , powersave+HWP
Comparison #2 : v5.2, this patch, intel_pstate passive, schedutil
2. NEUTRAL BENCHMARKS
---------------------
* pgbench read/write
* NASA Parallel Benchmarks (NPB), MPI or OpenMP for message-passing
* hackbench
* netperf
3. NON-NEUTRAL BENCHMARKS
-------------------------
comparison ratio with baseline; 1.00 means neutral, higher is better:
I_PSTATE FREQ-INV
----------------------------------------
pgbench read-only 1.10 ~
tbench 1.82 1.14
comparison ratio with baseline; 1.00 means neutral, lower is better:
I_PSTATE FREQ-INV
----------------------------------------
dbench ~ 0.97
kernbench 0.88 0.78
gitsource[*] ~ 0.46
[*] "gitsource" consists in running git's unit tests
tilde (~) means 1.00, ie result identical to baseline
Performance per watt:
performance-per-watt ratios with baseline; 1.00 means neutral, higher is better:
I_PSTATE FREQ-INV
----------------------------------------
dbench 0.92 0.91
tbench 1.26 1.04
kernbench 0.95 0.96
gitsource 1.03 1.30
Similarly to earlier Xeons, measurable performance gains over non-invariant
schedutil are observed on dbench, tbench, kernel compilation and running the
git unit tests suite. Looking at the detailed tables show that the patch
scores the largest difference when the machine is lightly loaded. Power
efficiency suffers lightly on kernbench and a bit more on dbench, but largely
improves on gitsource (which also runs considerably faster). For reference, we
also report results using active intel_pstate with powersave and HWP; the
largest gap between non-invariant schedutil and intel_pstate+powersave is
still tbench, which runs 82% better and with 26% improved efficiency on the
latter configuration -- this divide isn't closed yet by frequency-invariant
schedutil.
4. DETAILED TABLES
------------------
Benchmark : tbench4 (i.e. dbench4 over the network, actually loopback)
Varying parameter : number of clients
Unit : MB/sec (higher is better)
5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate/HWP 5.2.0 freq-inv
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean 1 183.56 +- 0.21% ( ) 516.12 +- 0.57% ( 181.18%) 185.59 +- 0.59% ( 1.11%)
Hmean 2 365.75 +- 0.25% ( ) 1015.14 +- 0.33% ( 177.55%) 402.59 +- 4.48% ( 10.07%)
Hmean 4 720.99 +- 0.44% ( ) 1951.75 +- 0.28% ( 170.70%) 738.39 +- 1.72% ( 2.41%)
Hmean 8 1449.93 +- 0.34% ( ) 3830.56 +- 0.24% ( 164.19%) 1750.36 +- 4.65% ( 20.72%)
Hmean 16 2874.26 +- 0.57% ( ) 7381.62 +- 0.53% ( 156.82%) 4348.35 +- 2.22% ( 51.29%)
Hmean 32 6116.17 +- 5.10% ( ) 13013.05 +- 0.08% ( 112.76%) 8980.35 +- 0.66% ( 46.83%)
Hmean 64 14485.04 +- 3.46% ( ) 17835.12 +- 0.35% ( 23.13%) 16540.73 +- 0.51% ( 14.19%)
Hmean 128 30779.16 +- 3.20% ( ) 32796.94 +- 2.13% ( 6.56%) 31512.58 +- 0.20% ( 2.38%)
Hmean 256 34664.66 +- 0.81% ( ) 34604.67 +- 0.46% ( -0.17%) 34943.70 +- 0.25% ( 0.80%)
Hmean 384 33957.51 +- 0.11% ( ) 34091.50 +- 0.14% ( 0.39%) 33921.41 +- 0.09% ( -0.11%)
Benchmark : kernbench (kernel compilation)
Varying parameter : number of jobs
Unit : seconds (lower is better)
5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate/HWP 5.2.0 freq-inv
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 2 332.94 +- 0.40% ( ) 260.16 +- 0.45% ( 21.86%) 233.56 +- 0.21% ( 29.85%)
Amean 4 173.04 +- 0.43% ( ) 138.76 +- 0.03% ( 19.81%) 123.59 +- 0.11% ( 28.58%)
Amean 8 89.65 +- 0.20% ( ) 73.54 +- 0.09% ( 17.97%) 65.69 +- 0.10% ( 26.72%)
Amean 16 48.08 +- 1.41% ( ) 41.64 +- 1.61% ( 13.40%) 36.00 +- 1.80% ( 25.11%)
Amean 32 28.78 +- 0.72% ( ) 26.61 +- 1.99% ( 7.55%) 23.19 +- 1.68% ( 19.43%)
Amean 64 20.46 +- 1.85% ( ) 19.76 +- 0.35% ( 3.42%) 17.38 +- 0.92% ( 15.06%)
Amean 128 18.69 +- 1.70% ( ) 17.59 +- 1.04% ( 5.90%) 15.73 +- 1.40% ( 15.85%)
Amean 192 18.82 +- 1.01% ( ) 17.76 +- 0.77% ( 5.67%) 15.57 +- 1.80% ( 17.28%)
Benchmark : gitsource (time to run the git unit test suite)
Varying parameter : none
Unit : seconds (lower is better)
5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate/HWP 5.2.0 freq-inv
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 792.49 +- 0.20% ( ) 779.35 +- 0.24% ( 1.66%) 427.14 +- 0.16% ( 46.10%)
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200122151617.531-3-ggherdovich@suse.cz
|
|
Implement arch_scale_freq_capacity() for 'modern' x86. This function
is used by the scheduler to correctly account usage in the face of
DVFS.
The present patch addresses Intel processors specifically and has positive
performance and performance-per-watt implications for the schedutil cpufreq
governor, bringing it closer to, if not on-par with, the powersave governor
from the intel_pstate driver/framework.
Large performance gains are obtained when the machine is lightly loaded and
no regression are observed at saturation. The benchmarks with the largest
gains are kernel compilation, tbench (the networking version of dbench) and
shell-intensive workloads.
1. FREQUENCY INVARIANCE: MOTIVATION
* Without it, a task looks larger if the CPU runs slower
2. PECULIARITIES OF X86
* freq invariance accounting requires knowing the ratio freq_curr/freq_max
2.1 CURRENT FREQUENCY
* Use delta_APERF / delta_MPERF * freq_base (a.k.a "BusyMHz")
2.2 MAX FREQUENCY
* It varies with time (turbo). As an approximation, we set it to a
constant, i.e. 4-cores turbo frequency.
3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR
* The invariant schedutil's formula has no feedback loop and reacts faster
to utilization changes
4. KNOWN LIMITATIONS
* In some cases tasks can't reach max util despite how hard they try
5. PERFORMANCE TESTING
5.1 MACHINES
* Skylake, Broadwell, Haswell
5.2 SETUP
* baseline Linux v5.2 w/ non-invariant schedutil. Tested freq_max = 1-2-3-4-8-12
active cores turbo w/ invariant schedutil, and intel_pstate/powersave
5.3 BENCHMARK RESULTS
5.3.1 NEUTRAL BENCHMARKS
* NAS Parallel Benchmark (HPC), hackbench
5.3.2 NON-NEUTRAL BENCHMARKS
* tbench (10-30% better), kernbench (10-15% better),
shell-intensive-scripts (30-50% better)
* no regressions
5.3.3 SELECTION OF DETAILED RESULTS
5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT
* dbench (5% worse on one machine), kernbench (3% worse),
tbench (5-10% better), shell-intensive-scripts (10-40% better)
6. MICROARCH'ES ADDRESSED HERE
* Xeon Core before Scalable Performance processors line (Xeon Gold/Platinum
etc have different MSRs semantic for querying turbo levels)
7. REFERENCES
* MMTests performance testing framework, github.com/gormanm/mmtests
+-------------------------------------------------------------------------+
| 1. FREQUENCY INVARIANCE: MOTIVATION
+-------------------------------------------------------------------------+
For example; suppose a CPU has two frequencies: 500 and 1000 Mhz. When
running a task that would consume 1/3rd of a CPU at 1000 MHz, it would
appear to consume 2/3rd (or 66.6%) when running at 500 MHz, giving the
false impression this CPU is almost at capacity, even though it can go
faster [*]. In a nutshell, without frequency scale-invariance tasks look
larger just because the CPU is running slower.
[*] (footnote: this assumes a linear frequency/performance relation; which
everybody knows to be false, but given realities its the best approximation
we can make.)
+-------------------------------------------------------------------------+
| 2. PECULIARITIES OF X86
+-------------------------------------------------------------------------+
Accounting for frequency changes in PELT signals requires the computation of
the ratio freq_curr / freq_max. On x86 neither of those terms is readily
available.
2.1 CURRENT FREQUENCY
====================
Since modern x86 has hardware control over the actual frequency we run
at (because amongst other things, Turbo-Mode), we cannot simply use
the frequency as requested through cpufreq.
Instead we use the APERF/MPERF MSRs to compute the effective frequency
over the recent past. Also, because reading MSRs is expensive, don't
do so every time we need the value, but amortize the cost by doing it
every tick.
2.2 MAX FREQUENCY
=================
Obtaining freq_max is also non-trivial because at any time the hardware can
provide a frequency boost to a selected subset of cores if the package has
enough power to spare (eg: Turbo Boost). This means that the maximum frequency
available to a given core changes with time.
The approach taken in this change is to arbitrarily set freq_max to a constant
value at boot. The value chosen is the "4-cores (4C) turbo frequency" on most
microarchitectures, after evaluating the following candidates:
* 1-core (1C) turbo frequency (the fastest turbo state available)
* around base frequency (a.k.a. max P-state)
* something in between, such as 4C turbo
To interpret these options, consider that this is the denominator in
freq_curr/freq_max, and that ratio will be used to scale PELT signals such as
util_avg and load_avg. A large denominator will undershoot (util_avg looks a
bit smaller than it really is), viceversa with a smaller denominator PELT
signals will tend to overshoot. Given that PELT drives frequency selection
in the schedutil governor, we will have:
freq_max set to | effect on DVFS
--------------------+------------------
1C turbo | power efficiency (lower freq choices)
base freq | performance (higher util_avg, higher freq requests)
4C turbo | a bit of both
4C turbo proves to be a good compromise in a number of benchmarks (see below).
+-------------------------------------------------------------------------+
| 3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR
+-------------------------------------------------------------------------+
Once an architecture implements a frequency scale-invariant utilization (the
PELT signal util_avg), schedutil switches its frequency selection formula from
freq_next = 1.25 * freq_curr * util [non-invariant util signal]
to
freq_next = 1.25 * freq_max * util [invariant util signal]
where, in the second formula, freq_max is set to the 1C turbo frequency (max
turbo). The advantage of the second formula, whose usage we unlock with this
patch, is that freq_next doesn't depend on the current frequency in an
iterative fashion, but can jump to any frequency in a single update. This
absence of feedback in the formula makes it quicker to react to utilization
changes and more robust against pathological instabilities.
Compare it to the update formula of intel_pstate/powersave:
freq_next = 1.25 * freq_max * Busy%
where again freq_max is 1C turbo and Busy% is the percentage of time not spent
idling (calculated with delta_MPERF / delta_TSC); essentially the same as
invariant schedutil, and largely responsible for intel_pstate/powersave good
reputation. The non-invariant schedutil formula is derived from the invariant
one by approximating util_inv with util_raw * freq_curr / freq_max, but this
has limitations.
Testing shows improved performances due to better frequency selections when
the machine is lightly loaded, and essentially no change in behaviour at
saturation / overutilization.
+-------------------------------------------------------------------------+
| 4. KNOWN LIMITATIONS
+-------------------------------------------------------------------------+
It's been shown that it is possible to create pathological scenarios where a
CPU-bound task cannot reach max utilization, if the normalizing factor
freq_max is fixed to a constant value (see [Lelli-2018]).
If freq_max is set to 4C turbo as we do here, one needs to peg at least 5
cores in a package doing some busywork, and observe that none of those task
will ever reach max util (1024) because they're all running at less than the
4C turbo frequency.
While this concern still applies, we believe the performance benefit of
frequency scale-invariant PELT signals outweights the cost of this limitation.
[Lelli-2018]
https://lore.kernel.org/lkml/20180517150418.GF22493@localhost.localdomain/
+-------------------------------------------------------------------------+
| 5. PERFORMANCE TESTING
+-------------------------------------------------------------------------+
5.1 MACHINES
============
We tested the patch on three machines, with Skylake, Broadwell and Haswell
CPUs. The details are below, together with the available turbo ratios as
reported by the appropriate MSRs.
* 8x-SKYLAKE-UMA:
Single socket E3-1240 v5, Skylake 4 cores/8 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 800 |********
BASE 3500 |***********************************
4C 3700 |*************************************
3C 3800 |**************************************
2C 3900 |***************************************
1C 3900 |***************************************
* 80x-BROADWELL-NUMA:
Two sockets E5-2698 v4, 2x Broadwell 20 cores/40 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 1200 |************
BASE 2200 |**********************
8C 2900 |*****************************
7C 3000 |******************************
6C 3100 |*******************************
5C 3200 |********************************
4C 3300 |*********************************
3C 3400 |**********************************
2C 3600 |************************************
1C 3600 |************************************
* 48x-HASWELL-NUMA
Two sockets E5-2670 v3, 2x Haswell 12 cores/24 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 1200 |************
BASE 2300 |***********************
12C 2600 |**************************
11C 2600 |**************************
10C 2600 |**************************
9C 2600 |**************************
8C 2600 |**************************
7C 2600 |**************************
6C 2600 |**************************
5C 2700 |***************************
4C 2800 |****************************
3C 2900 |*****************************
2C 3100 |*******************************
1C 3100 |*******************************
5.2 SETUP
=========
* The baseline is Linux v5.2 with schedutil (non-invariant) and the intel_pstate
driver in passive mode.
* The rationale for choosing the various freq_max values to test have been to
try all the 1-2-3-4C turbo levels (note that 1C and 2C turbo are identical
on all machines), plus one more value closer to base_freq but still in the
turbo range (8C turbo for both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA).
* In addition we've run all tests with intel_pstate/powersave for comparison.
* The filesystem is always XFS, the userspace is openSUSE Leap 15.1.
* 8x-SKYLAKE-UMA is capable of HWP (Hardware-Managed P-States), so the runs
with active intel_pstate on this machine use that.
This gives, in terms of combinations tested on each machine:
* 8x-SKYLAKE-UMA
* Baseline: Linux v5.2, non-invariant schedutil, intel_pstate passive
* intel_pstate active + powersave + HWP
* invariant schedutil, freq_max = 1C turbo
* invariant schedutil, freq_max = 3C turbo
* invariant schedutil, freq_max = 4C turbo
* both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA
* [same as 8x-SKYLAKE-UMA, but no HWP capable]
* invariant schedutil, freq_max = 8C turbo
(which on 48x-HASWELL-NUMA is the same as 12C turbo, or "all cores turbo")
5.3 BENCHMARK RESULTS
=====================
5.3.1 NEUTRAL BENCHMARKS
------------------------
Tests that didn't show any measurable difference in performance on any of the
test machines between non-invariant schedutil and our patch are:
* NAS Parallel Benchmarks (NPB) using either MPI or openMP for IPC, any
computational kernel
* flexible I/O (FIO)
* hackbench (using threads or processes, and using pipes or sockets)
5.3.2 NON-NEUTRAL BENCHMARKS
----------------------------
What follow are summary tables where each benchmark result is given a score.
* A tilde (~) means a neutral result, i.e. no difference from baseline.
* Scores are computed with the ratio result_new / result_baseline, so a tilde
means a score of 1.00.
* The results in the score ratio are the geometric means of results running
the benchmark with different parameters (eg: for kernbench: using 1, 2, 4,
... number of processes; for pgbench: varying the number of clients, and so
on).
* The first three tables show higher-is-better kind of tests (i.e. measured in
operations/second), the subsequent three show lower-is-better kind of tests
(i.e. the workload is fixed and we measure elapsed time, think kernbench).
* "gitsource" is a name we made up for the test consisting in running the
entire unit tests suite of the Git SCM and measuring how long it takes. We
take it as a typical example of shell-intensive serialized workload.
* In the "I_PSTATE" column we have the results for intel_pstate/powersave. Other
columns show invariant schedutil for different values of freq_max. 4C turbo
is circled as it's the value we've chosen for the final implementation.
80x-BROADWELL-NUMA (comparison ratio; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 1.14 ~ ~ | 1.11 | 1.14
pgbench-rw ~ ~ ~ | ~ | ~
netperf-udp 1.06 ~ 1.06 | 1.05 | 1.07
netperf-tcp ~ 1.03 ~ | 1.01 | 1.02
tbench4 1.57 1.18 1.22 | 1.30 | 1.56
+------+
8x-SKYLAKE-UMA (comparison ratio; higher is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro ~ ~ ~ | ~ |
pgbench-rw ~ ~ ~ | ~ |
netperf-udp ~ ~ ~ | ~ |
netperf-tcp ~ ~ ~ | ~ |
tbench4 1.30 1.14 1.14 | 1.16 |
+------+
48x-HASWELL-NUMA (comparison ratio; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 1.15 ~ ~ | 1.06 | 1.16
pgbench-rw ~ ~ ~ | ~ | ~
netperf-udp 1.05 0.97 1.04 | 1.04 | 1.02
netperf-tcp 0.96 1.01 1.01 | 1.01 | 1.01
tbench4 1.50 1.05 1.13 | 1.13 | 1.25
+------+
In the table above we see that active intel_pstate is slightly better than our
4C-turbo patch (both in reference to the baseline non-invariant schedutil) on
read-only pgbench and much better on tbench. Both cases are notable in which
it shows that lowering our freq_max (to 8C-turbo and 12C-turbo on
80x-BROADWELL-NUMA and 48x-HASWELL-NUMA respectively) helps invariant
schedutil to get closer.
If we ignore active intel_pstate and focus on the comparison with baseline
alone, there are several instances of double-digit performance improvement.
80x-BROADWELL-NUMA (comparison ratio; lower is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
dbench4 1.23 0.95 0.95 | 0.95 | 0.95
kernbench 0.93 0.83 0.83 | 0.83 | 0.82
gitsource 0.98 0.49 0.49 | 0.49 | 0.48
+------+
8x-SKYLAKE-UMA (comparison ratio; lower is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
dbench4 ~ ~ ~ | ~ |
kernbench ~ ~ ~ | ~ |
gitsource 0.92 0.55 0.55 | 0.55 |
+------+
48x-HASWELL-NUMA (comparison ratio; lower is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
dbench4 ~ ~ ~ | ~ | ~
kernbench 0.94 0.90 0.89 | 0.90 | 0.90
gitsource 0.97 0.69 0.69 | 0.69 | 0.69
+------+
dbench is not very remarkable here, unless we notice how poorly active
intel_pstate is performing on 80x-BROADWELL-NUMA: 23% regression versus
non-invariant schedutil. We repeated that run getting consistent results. Out
of scope for the patch at hand, but deserving future investigation. Other than
that, we previously ran this campaign with Linux v5.0 and saw the patch doing
better on dbench a the time. We haven't checked closely and can only speculate
at this point.
On the NUMA boxes kernbench gets 10-15% improvements on average; we'll see in
the detailed tables that the gains concentrate on low process counts (lightly
loaded machines).
The test we call "gitsource" (running the git unit test suite, a long-running
single-threaded shell script) appears rather spectacular in this table (gains
of 30-50% depending on the machine). It is to be noted, however, that
gitsource has no adjustable parameters (such as the number of jobs in
kernbench, which we average over in order to get a single-number summary
score) and is exactly the kind of low-parallelism workload that benefits the
most from this patch. When looking at the detailed tables of kernbench or
tbench4, at low process or client counts one can see similar numbers.
5.3.3 SELECTION OF DETAILED RESULTS
-----------------------------------
Machine : 48x-HASWELL-NUMA
Benchmark : tbench4 (i.e. dbench4 over the network, actually loopback)
Varying parameter : number of clients
Unit : MB/sec (higher is better)
5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean 1 126.73 +- 0.31% ( ) 315.91 +- 0.66% ( 149.28%) 125.03 +- 0.76% ( -1.34%)
Hmean 2 258.04 +- 0.62% ( ) 614.16 +- 0.51% ( 138.01%) 269.58 +- 1.45% ( 4.47%)
Hmean 4 514.30 +- 0.67% ( ) 1146.58 +- 0.54% ( 122.94%) 533.84 +- 1.99% ( 3.80%)
Hmean 8 1111.38 +- 2.52% ( ) 2159.78 +- 0.38% ( 94.33%) 1359.92 +- 1.56% ( 22.36%)
Hmean 16 2286.47 +- 1.36% ( ) 3338.29 +- 0.21% ( 46.00%) 2720.20 +- 0.52% ( 18.97%)
Hmean 32 4704.84 +- 0.35% ( ) 4759.03 +- 0.43% ( 1.15%) 4774.48 +- 0.30% ( 1.48%)
Hmean 64 7578.04 +- 0.27% ( ) 7533.70 +- 0.43% ( -0.59%) 7462.17 +- 0.65% ( -1.53%)
Hmean 128 6998.52 +- 0.16% ( ) 6987.59 +- 0.12% ( -0.16%) 6909.17 +- 0.14% ( -1.28%)
Hmean 192 6901.35 +- 0.25% ( ) 6913.16 +- 0.10% ( 0.17%) 6855.47 +- 0.21% ( -0.66%)
5.2.0 3C-turbo 5.2.0 4C-turbo 5.2.0 12C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean 1 128.43 +- 0.28% ( 1.34%) 130.64 +- 3.81% ( 3.09%) 153.71 +- 5.89% ( 21.30%)
Hmean 2 311.70 +- 6.15% ( 20.79%) 281.66 +- 3.40% ( 9.15%) 305.08 +- 5.70% ( 18.23%)
Hmean 4 641.98 +- 2.32% ( 24.83%) 623.88 +- 5.28% ( 21.31%) 906.84 +- 4.65% ( 76.32%)
Hmean 8 1633.31 +- 1.56% ( 46.96%) 1714.16 +- 0.93% ( 54.24%) 2095.74 +- 0.47% ( 88.57%)
Hmean 16 3047.24 +- 0.42% ( 33.27%) 3155.02 +- 0.30% ( 37.99%) 3634.58 +- 0.15% ( 58.96%)
Hmean 32 4734.31 +- 0.60% ( 0.63%) 4804.38 +- 0.23% ( 2.12%) 4674.62 +- 0.27% ( -0.64%)
Hmean 64 7699.74 +- 0.35% ( 1.61%) 7499.72 +- 0.34% ( -1.03%) 7659.03 +- 0.25% ( 1.07%)
Hmean 128 6935.18 +- 0.15% ( -0.91%) 6942.54 +- 0.10% ( -0.80%) 7004.85 +- 0.12% ( 0.09%)
Hmean 192 6901.62 +- 0.12% ( 0.00%) 6856.93 +- 0.10% ( -0.64%) 6978.74 +- 0.10% ( 1.12%)
This is one of the cases where the patch still can't surpass active
intel_pstate, not even when freq_max is as low as 12C-turbo. Otherwise, gains are
visible up to 16 clients and the saturated scenario is the same as baseline.
The scores in the summary table from the previous sections are ratios of
geometric means of the results over different clients, as seen in this table.
Machine : 80x-BROADWELL-NUMA
Benchmark : kernbench (kernel compilation)
Varying parameter : number of jobs
Unit : seconds (lower is better)
5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 2 379.68 +- 0.06% ( ) 330.20 +- 0.43% ( 13.03%) 285.93 +- 0.07% ( 24.69%)
Amean 4 200.15 +- 0.24% ( ) 175.89 +- 0.22% ( 12.12%) 153.78 +- 0.25% ( 23.17%)
Amean 8 106.20 +- 0.31% ( ) 95.54 +- 0.23% ( 10.03%) 86.74 +- 0.10% ( 18.32%)
Amean 16 56.96 +- 1.31% ( ) 53.25 +- 1.22% ( 6.50%) 48.34 +- 1.73% ( 15.13%)
Amean 32 34.80 +- 2.46% ( ) 33.81 +- 0.77% ( 2.83%) 30.28 +- 1.59% ( 12.99%)
Amean 64 26.11 +- 1.63% ( ) 25.04 +- 1.07% ( 4.10%) 22.41 +- 2.37% ( 14.16%)
Amean 128 24.80 +- 1.36% ( ) 23.57 +- 1.23% ( 4.93%) 21.44 +- 1.37% ( 13.55%)
Amean 160 24.85 +- 0.56% ( ) 23.85 +- 1.17% ( 4.06%) 21.25 +- 1.12% ( 14.49%)
5.2.0 3C-turbo 5.2.0 4C-turbo 5.2.0 8C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 2 284.08 +- 0.13% ( 25.18%) 283.96 +- 0.51% ( 25.21%) 285.05 +- 0.21% ( 24.92%)
Amean 4 153.18 +- 0.22% ( 23.47%) 154.70 +- 1.64% ( 22.71%) 153.64 +- 0.30% ( 23.24%)
Amean 8 87.06 +- 0.28% ( 18.02%) 86.77 +- 0.46% ( 18.29%) 86.78 +- 0.22% ( 18.28%)
Amean 16 48.03 +- 0.93% ( 15.68%) 47.75 +- 1.99% ( 16.17%) 47.52 +- 1.61% ( 16.57%)
Amean 32 30.23 +- 1.20% ( 13.14%) 30.08 +- 1.67% ( 13.57%) 30.07 +- 1.67% ( 13.60%)
Amean 64 22.59 +- 2.02% ( 13.50%) 22.63 +- 0.81% ( 13.32%) 22.42 +- 0.76% ( 14.12%)
Amean 128 21.37 +- 0.67% ( 13.82%) 21.31 +- 1.15% ( 14.07%) 21.17 +- 1.93% ( 14.63%)
Amean 160 21.68 +- 0.57% ( 12.76%) 21.18 +- 1.74% ( 14.77%) 21.22 +- 1.00% ( 14.61%)
The patch outperform active intel_pstate (and baseline) by a considerable
margin; the summary table from the previous section says 4C turbo and active
intel_pstate are 0.83 and 0.93 against baseline respectively, so 4C turbo is
0.83/0.93=0.89 against intel_pstate (~10% better on average). There is no
noticeable difference with regard to the value of freq_max.
Machine : 8x-SKYLAKE-UMA
Benchmark : gitsource (time to run the git unit test suite)
Varying parameter : none
Unit : seconds (lower is better)
5.2.0 vanilla 5.2.0 intel_pstate/hwp 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 858.85 +- 1.16% ( ) 791.94 +- 0.21% ( 7.79%) 474.95 ( 44.70%)
5.2.0 3C-turbo 5.2.0 4C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 475.26 +- 0.20% ( 44.66%) 474.34 +- 0.13% ( 44.77%)
In this test, which is of interest as representing shell-intensive
(i.e. fork-intensive) serialized workloads, invariant schedutil outperforms
intel_pstate/powersave by a whopping 40% margin.
5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT
---------------------------------------------
The following table shows average power consumption in watt for each
benchmark. Data comes from turbostat (package average), which in turn is read
from the RAPL interface on CPUs. We know the patch affects CPU frequencies so
it's reasonable to ignore other power consumers (such as memory or I/O). Also,
we don't have a power meter available in the lab so RAPL is the best we have.
turbostat sampled average power every 10 seconds for the entire duration of
each benchmark. We took all those values and averaged them (i.e. with don't
have detail on a per-parameter granularity, only on whole benchmarks).
80x-BROADWELL-NUMA (power consumption, watts)
+--------+
BASELINE I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 130.01 142.77 131.11 132.45 | 134.65 | 136.84
pgbench-rw 68.30 60.83 71.45 71.70 | 71.65 | 72.54
dbench4 90.25 59.06 101.43 99.89 | 101.10 | 102.94
netperf-udp 65.70 69.81 66.02 68.03 | 68.27 | 68.95
netperf-tcp 88.08 87.96 88.97 88.89 | 88.85 | 88.20
tbench4 142.32 176.73 153.02 163.91 | 165.58 | 176.07
kernbench 92.94 101.95 114.91 115.47 | 115.52 | 115.10
gitsource 40.92 41.87 75.14 75.20 | 75.40 | 75.70
+--------+
8x-SKYLAKE-UMA (power consumption, watts)
+--------+
BASELINE I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro 46.49 46.68 46.56 46.59 | 46.52 |
pgbench-rw 29.34 31.38 30.98 31.00 | 31.00 |
dbench4 27.28 27.37 27.49 27.41 | 27.38 |
netperf-udp 22.33 22.41 22.36 22.35 | 22.36 |
netperf-tcp 27.29 27.29 27.30 27.31 | 27.33 |
tbench4 41.13 45.61 43.10 43.33 | 43.56 |
kernbench 42.56 42.63 43.01 43.01 | 43.01 |
gitsource 13.32 13.69 17.33 17.30 | 17.35 |
+--------+
48x-HASWELL-NUMA (power consumption, watts)
+--------+
BASELINE I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 128.84 136.04 129.87 132.43 | 132.30 | 134.86
pgbench-rw 37.68 37.92 37.17 37.74 | 37.73 | 37.31
dbench4 28.56 28.73 28.60 28.73 | 28.70 | 28.79
netperf-udp 56.70 60.44 56.79 57.42 | 57.54 | 57.52
netperf-tcp 75.49 75.27 75.87 76.02 | 76.01 | 75.95
tbench4 115.44 139.51 119.53 123.07 | 123.97 | 130.22
kernbench 83.23 91.55 95.58 95.69 | 95.72 | 96.04
gitsource 36.79 36.99 39.99 40.34 | 40.35 | 40.23
+--------+
A lower power consumption isn't necessarily better, it depends on what is done
with that energy. Here are tables with the ratio of performance-per-watt on
each machine and benchmark. Higher is always better; a tilde (~) means a
neutral ratio (i.e. 1.00).
80x-BROADWELL-NUMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 1.04 1.06 0.94 | 1.07 | 1.08
pgbench-rw 1.10 0.97 0.96 | 0.96 | 0.97
dbench4 1.24 0.94 0.95 | 0.94 | 0.92
netperf-udp ~ 1.02 1.02 | ~ | 1.02
netperf-tcp ~ 1.02 ~ | ~ | 1.02
tbench4 1.26 1.10 1.06 | 1.12 | 1.26
kernbench 0.98 0.97 0.97 | 0.97 | 0.98
gitsource ~ 1.11 1.11 | 1.11 | 1.13
+------+
8x-SKYLAKE-UMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro ~ ~ ~ | ~ |
pgbench-rw 0.95 0.97 0.96 | 0.96 |
dbench4 ~ ~ ~ | ~ |
netperf-udp ~ ~ ~ | ~ |
netperf-tcp ~ ~ ~ | ~ |
tbench4 1.17 1.09 1.08 | 1.10 |
kernbench ~ ~ ~ | ~ |
gitsource 1.06 1.40 1.40 | 1.40 |
+------+
48x-HASWELL-NUMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 1.09 ~ 1.09 | 1.03 | 1.11
pgbench-rw ~ 0.86 ~ | ~ | 0.86
dbench4 ~ 1.02 1.02 | 1.02 | ~
netperf-udp ~ 0.97 1.03 | 1.02 | ~
netperf-tcp 0.96 ~ ~ | ~ | ~
tbench4 1.24 ~ 1.06 | 1.05 | 1.11
kernbench 0.97 0.97 0.98 | 0.97 | 0.96
gitsource 1.03 1.33 1.32 | 1.32 | 1.33
+------+
These results are overall pleasing: in plenty of cases we observe
performance-per-watt improvements. The few regressions (read/write pgbench and
dbench on the Broadwell machine) are of small magnitude. kernbench loses a few
percentage points (it has a 10-15% performance improvement, but apparently the
increase in power consumption is larger than that). tbench4 and gitsource, which
benefit the most from the patch, keep a positive score in this table which is
a welcome surprise; that suggests that in those particular workloads the
non-invariant schedutil (and active intel_pstate, too) makes some rather
suboptimal frequency selections.
+-------------------------------------------------------------------------+
| 6. MICROARCH'ES ADDRESSED HERE
+-------------------------------------------------------------------------+
The patch addresses Xeon Core processors that use MSR_PLATFORM_INFO and
MSR_TURBO_RATIO_LIMIT to advertise their base frequency and turbo frequencies
respectively. This excludes the recent Xeon Scalable Performance processors
line (Xeon Gold, Platinum etc) whose MSRs have to be parsed differently.
Subsequent patches will address:
* Xeon Scalable Performance processors and Atom Goldmont/Goldmont Plus
* Xeon Phi (Knights Landing, Knights Mill)
* Atom Silvermont
+-------------------------------------------------------------------------+
| 7. REFERENCES
+-------------------------------------------------------------------------+
Tests have been run with the help of the MMTests performance testing
framework, see github.com/gormanm/mmtests. The configuration file names for
the benchmark used are:
db-pgbench-timed-ro-small-xfs
db-pgbench-timed-rw-small-xfs
io-dbench4-async-xfs
network-netperf-unbound
network-tbench
scheduler-unbound
workload-kerndevel-xfs
workload-shellscripts-xfs
hpc-nas-c-class-mpi-full-xfs
hpc-nas-c-class-omp-full
All those benchmarks are generally available on the web:
pgbench: https://www.postgresql.org/docs/10/pgbench.html
netperf: https://hewlettpackard.github.io/netperf/
dbench/tbench: https://dbench.samba.org/
gitsource: git unit test suite, github.com/git/git
NAS Parallel Benchmarks: https://www.nas.nasa.gov/publications/npb.html
hackbench: https://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Doug Smythies <dsmythies@telus.net>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200122151617.531-2-ggherdovich@suse.cz
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 updates from Ingo Molnar:
"Misc changes:
- Enhance #GP fault printouts by distinguishing between canonical and
non-canonical address faults, and also add KASAN fault decoding.
- Fix/enhance the x86 NMI handler by putting the duration check into
a direct function call instead of an irq_work which we know to be
broken in some cases.
- Clean up do_general_protection() a bit"
* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/nmi: Remove irq_work from the long duration NMI handler
x86/traps: Cleanup do_general_protection()
x86/kasan: Print original address on #GP
x86/dumpstack: Introduce die_addr() for die() with #GP fault address
x86/traps: Print address on #GP
x86/insn-eval: Add support for 64-bit kernel mode
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups all around the map"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/CPU/AMD: Remove amd_get_topology_early()
x86/tsc: Remove redundant assignment
x86/crash: Use resource_size()
x86/cpu: Add a missing prototype for arch_smt_update()
x86/nospec: Remove unused RSB_FILL_LOOPS
x86/vdso: Provide missing include file
x86/Kconfig: Correct spelling and punctuation
Documentation/x86/boot: Fix typo
x86/boot: Fix a comment's incorrect file reference
x86/process: Remove set but not used variables prev and next
x86/Kconfig: Fix Kconfig indentation
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 resource control updates from Ingo Molnar:
"The main change in this tree is the extension of the resctrl procfs
ABI with a new file that helps tooling to navigate from tasks back to
resctrl groups: /proc/{pid}/cpu_resctrl_groups.
Also fix static key usage for certain feature combinations and
simplify the task exit resctrl case"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Add task resctrl information display
x86/resctrl: Check monitoring static key in the MBM overflow handler
x86/resctrl: Do not reconfigure exiting tasks
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 boot update from Ingo Molnar:
"Two minor changes: fix an atypical binutils combination build bug, and
also fix a VRAM size check for simplefb"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sysfb: Fix check for bad VRAM size
x86/boot: Discard .eh_frame sections
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 asm updates from Ingo Molnar:
"Misc updates:
- Remove last remaining calls to exception_enter/exception_exit() and
simplify the entry code some more.
- Remove force_iret()
- Add support for "Fast Short Rep Mov", which is available starting
with Ice Lake Intel CPUs - and make the x86 assembly version of
memmove() use REP MOV for all sizes when FSRM is available.
- Micro-optimize/simplify the 32-bit boot code a bit.
- Use a more future-proof SYSRET instruction mnemonic"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Simplify calculation of output address
x86/entry/64: Add instruction suffix to SYSRET
x86: Remove force_iret()
x86/cpufeatures: Add support for fast short REP; MOVSB
x86/context-tracking: Remove exception_enter/exit() from KVM_PV_REASON_PAGE_NOT_PRESENT async page fault
x86/context-tracking: Remove exception_enter/exit() from do_page_fault()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 apic fix from Ingo Molnar:
"A single commit that simplifies the code and gets rid of a compiler
warning"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic/uv: Avoid unused variable warning
|