summaryrefslogtreecommitdiff
path: root/arch/x86
AgeCommit message (Collapse)Author
2020-11-17x86/dumpstack: Make show_trace_log_lvl() staticHui Su
show_trace_log_lvl() is not used by other compilation units so make it static and remove the declaration from the header file. Signed-off-by: Hui Su <sh_def@163.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20201113133943.GA136221@rlk
2020-11-17efi: x86/xen: switch to efi_get_secureboot_mode helperArd Biesheuvel
Now that we have a static inline helper to discover the platform's secure boot mode that can be shared between the EFI stub and the kernel proper, switch to it, and drop some comments about keeping them in sync manually. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-11-17x86/sgx: Add SGX page allocator functionsJarkko Sakkinen
Add functions for runtime allocation and free. This allocator and its algorithms are as simple as it gets. They do a linear search across all EPC sections and find the first free page. They are not NUMA-aware and only hand out individual pages. The SGX hardware does not support large pages, so something more complicated like a buddy allocator is unwarranted. The free function (sgx_free_epc_page()) implicitly calls ENCLS[EREMOVE], which returns the page to the uninitialized state. This ensures that the page is ready for use at the next allocation. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-10-jarkko@kernel.org
2020-11-17x86/cpu/intel: Add a nosgx kernel parameterJarkko Sakkinen
Add a kernel parameter to disable SGX kernel support and document it. [ bp: Massage. ] Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Acked-by: Jethro Beekman <jethro@fortanix.com> Tested-by: Sean Christopherson <sean.j.christopherson@intel.com> Link: https://lkml.kernel.org/r/20201112220135.165028-9-jarkko@kernel.org
2020-11-17x86/cpu/intel: Detect SGX supportSean Christopherson
Kernel support for SGX is ultimately decided by the state of the launch control bits in the feature control MSR (MSR_IA32_FEAT_CTL). If the hardware supports SGX, but neglects to support flexible launch control, the kernel will not enable SGX. Enable SGX at feature control MSR initialization and update the associated X86_FEATURE flags accordingly. Disable X86_FEATURE_SGX (and all derivatives) if the kernel is not able to establish itself as the authority over SGX Launch Control. All checks are performed for each logical CPU (not just boot CPU) in order to verify that MSR_IA32_FEATURE_CONTROL is correctly configured on all CPUs. All SGX code in this series expects the same configuration from all CPUs. This differs from VMX where X86_FEATURE_VMX is intentionally cleared only for the current CPU so that KVM can provide additional information if KVM fails to load like which CPU doesn't support VMX. There’s not much the kernel or an administrator can do to fix the situation, so SGX neglects to convey additional details about these kinds of failures if they occur. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-8-jarkko@kernel.org
2020-11-17x86/mm: Signal SIGSEGV with PF_SGXSean Christopherson
The x86 architecture has a set of page fault error codes. These indicate things like whether the fault occurred from a write, or whether it originated in userspace. The SGX hardware architecture has its own per-page memory management metadata (EPCM) [*] and hardware which is separate from the normal x86 MMU. The architecture has a new page fault error code: PF_SGX. This new error code bit is set whenever a page fault occurs as the result of the SGX MMU. These faults occur for a variety of reasons. For instance, an access attempt to enclave memory from outside the enclave causes a PF_SGX fault. PF_SGX would also be set for permission conflicts, such as if a write to an enclave page occurs and the page is marked read-write in the x86 page tables but is read-only in the EPCM. These faults do not always indicate errors, though. SGX pages are encrypted with a key that is destroyed at hardware reset, including suspend. Throwing a SIGSEGV allows user space software to react and recover when these events occur. Include PF_SGX in the PF error codes list and throw SIGSEGV when it is encountered. [*] Intel SDM: 36.5.1 Enclave Page Cache Map (EPCM) [ bp: Add bit 15 to the comment above enum x86_pf_error_code too. ] Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-7-jarkko@kernel.org
2020-11-17x86/sgx: Initialize metadata for Enclave Page Cache (EPC) sectionsSean Christopherson
Although carved out of normal DRAM, enclave memory is marked in the system memory map as reserved and is not managed by the core mm. There may be several regions spread across the system. Each contiguous region is called an Enclave Page Cache (EPC) section. EPC sections are enumerated via CPUID Enclave pages can only be accessed when they are mapped as part of an enclave, by a hardware thread running inside the enclave. Parse CPUID data, create metadata for EPC pages and populate a simple EPC page allocator. Although much smaller, ‘struct sgx_epc_page’ metadata is the SGX analog of the core mm ‘struct page’. Similar to how the core mm’s page->flags encode zone and NUMA information, embed the EPC section index to the first eight bits of sgx_epc_page->desc. This allows a quick reverse lookup from EPC page to EPC section. Existing client hardware supports only a single section, while upcoming server hardware will support at most eight sections. Thus, eight bits should be enough for long term needs. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Co-developed-by: Serge Ayoun <serge.ayoun@intel.com> Signed-off-by: Serge Ayoun <serge.ayoun@intel.com> Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-6-jarkko@kernel.org
2020-11-17x86/{cpufeatures,msr}: Add Intel SGX Launch Control hardware bitsSean Christopherson
The SGX Launch Control hardware helps restrict which enclaves the hardware will run. Launch control is intended to restrict what software can run with enclave protections, which helps protect the overall system from bad enclaves. For the kernel's purposes, there are effectively two modes in which the launch control hardware can operate: rigid and flexible. In its rigid mode, an entity other than the kernel has ultimate authority over which enclaves can be run (firmware, Intel, etc...). In its flexible mode, the kernel has ultimate authority over which enclaves can run. Enable X86_FEATURE_SGX_LC to enumerate when the CPU supports SGX Launch Control in general. Add MSR_IA32_SGXLEPUBKEYHASH{0, 1, 2, 3}, which when combined contain a SHA256 hash of a 3072-bit RSA public key. The hardware allows SGX enclaves signed with this public key to initialize and run [*]. Enclaves not signed with this key can not initialize and run. Add FEAT_CTL_SGX_LC_ENABLED, which informs whether the SGXLEPUBKEYHASH MSRs can be written by the kernel. If the MSRs do not exist or are read-only, the launch control hardware is operating in rigid mode. Linux does not and will not support creating enclaves when hardware is configured in rigid mode because it takes away the authority for launch decisions from the kernel. Note, this does not preclude KVM from virtualizing/exposing SGX to a KVM guest when launch control hardware is operating in rigid mode. [*] Intel SDM: 38.1.4 Intel SGX Launch Control Configuration Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-5-jarkko@kernel.org
2020-11-17x86/cpufeatures: Add Intel SGX hardware bitsSean Christopherson
Populate X86_FEATURE_SGX feature from CPUID and tie it to the Kconfig option with disabled-features.h. IA32_FEATURE_CONTROL.SGX_ENABLE must be examined in addition to the CPUID bits to enable full SGX support. The BIOS must both set this bit and lock IA32_FEATURE_CONTROL for SGX to be supported (Intel SDM section 36.7.1). The setting or clearing of this bit has no impact on the CPUID bits above, which is why it needs to be detected separately. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-4-jarkko@kernel.org
2020-11-17x86/sgx: Add wrappers for ENCLS functionsJarkko Sakkinen
ENCLS is the userspace instruction which wraps virtually all unprivileged SGX functionality for managing enclaves. It is essentially the ioctl() of instructions with each function implementing different SGX-related functionality. Add macros to wrap the ENCLS functionality. There are two main groups, one for functions which do not return error codes and a “ret_” set for those that do. ENCLS functions are documented in Intel SDM section 36.6. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-3-jarkko@kernel.org
2020-11-17x86/sgx: Add SGX architectural data structuresJarkko Sakkinen
Define the SGX architectural data structures used by various SGX functions. This is not an exhaustive representation of all SGX data structures but only those needed by the kernel. The goal is to sequester hardware structures in "sgx/arch.h" and keep them separate from kernel-internal or uapi structures. The data structures are described in Intel SDM section 37.6. Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-2-jarkko@kernel.org
2020-11-17perf/x86: fix sysfs type mismatchesSami Tolvanen
This change switches rapl to use PMU_FORMAT_ATTR, and fixes two other macros to use device_attribute instead of kobj_attribute to avoid callback type mismatches that trip indirect call checking with Clang's Control-Flow Integrity (CFI). Reported-by: Sedat Dilek <sedat.dilek@gmail.com> Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20201113183126.1239404-1-samitolvanen@google.com
2020-11-17x86/microcode/intel: Check patch signature before saving microcode for early ↵Chen Yu
loading Currently, scan_microcode() leverages microcode_matches() to check if the microcode matches the CPU by comparing the family and model. However, the processor stepping and flags of the microcode signature should also be considered when saving a microcode patch for early update. Use find_matching_signature() in scan_microcode() and get rid of the now-unused microcode_matches() which is a good cleanup in itself. Complete the verification of the patch being saved for early loading in save_microcode_patch() directly. This needs to be done there too because save_mc_for_early() will call save_microcode_patch() too. The second reason why this needs to be done is because the loader still tries to support, at least hypothetically, mixed-steppings systems and thus adds all patches to the cache that belong to the same CPU model albeit with different steppings. For example: microcode: CPU: sig=0x906ec, pf=0x2, rev=0xd6 microcode: mc_saved[0]: sig=0x906e9, pf=0x2a, rev=0xd6, total size=0x19400, date = 2020-04-23 microcode: mc_saved[1]: sig=0x906ea, pf=0x22, rev=0xd6, total size=0x19000, date = 2020-04-27 microcode: mc_saved[2]: sig=0x906eb, pf=0x2, rev=0xd6, total size=0x19400, date = 2020-04-23 microcode: mc_saved[3]: sig=0x906ec, pf=0x22, rev=0xd6, total size=0x19000, date = 2020-04-27 microcode: mc_saved[4]: sig=0x906ed, pf=0x22, rev=0xd6, total size=0x19400, date = 2020-04-23 The patch which is being saved for early loading, however, can only be the one which fits the CPU this runs on so do the signature verification before saving. [ bp: Do signature verification in save_microcode_patch() and rewrite commit message. ] Fixes: ec400ddeff20 ("x86/microcode_intel_early.c: Early update ucode on Intel's CPU") Signed-off-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: stable@vger.kernel.org Link: https://bugzilla.kernel.org/show_bug.cgi?id=208535 Link: https://lkml.kernel.org/r/20201113015923.13960-1-yu.c.chen@intel.com
2020-11-17KVM: SVM: fix error return code in svm_create_vcpu()Chen Zhou
Fix to return a negative error code from the error handling case instead of 0 in function svm_create_vcpu(), as done elsewhere in this function. Fixes: f4c847a95654 ("KVM: SVM: refactor msr permission bitmap allocation") Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Chen Zhou <chenzhou10@huawei.com> Message-Id: <20201117025426.167824-1-chenzhou10@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-16x86: Reclaim unused x86 TI flagsGabriel Krisman Bertazi
Reclaim TI flags that were migrated to syscall_work flags. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Andy Lutomirski <luto@kernel.org> Link: https://lore.kernel.org/r/20201116174206.2639648-11-krisman@collabora.com
2020-11-16x86: Expose syscall_work field in thread_infoGabriel Krisman Bertazi
This field will be used by SYSCALL_WORK flags, migrated from TI flags. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Andy Lutomirski <luto@kernel.org> Link: https://lore.kernel.org/r/20201116174206.2639648-2-krisman@collabora.com
2020-11-16Merge branch 'x86/entry' into core/entryThomas Gleixner
Prepare for the merging of the syscall_work series which conflicts with the TIF bits overhaul in X86.
2020-11-16KVM: SVM: Fix offset computation bug in __sev_dbg_decrypt().Ashish Kalra
Fix offset computation in __sev_dbg_decrypt() to include the source paddr before it is rounded down to be aligned to 16 bytes as required by SEV API. This fixes incorrect guest memory dumps observed when using qemu monitor. Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Message-Id: <20201110224205.29444-1-Ashish.Kalra@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-16KVM: SVM: check CR4 changes against vcpu->archPaolo Bonzini
Similarly to what vmx/vmx.c does, use vcpu->arch.cr4 to check if CR4 bits PGE, PKE and OSXSAVE have changed. When switching between VMCB01 and VMCB02, CPUID has to be adjusted every time if CR4.PKE or CR4.OSXSAVE change; without this patch, instead, CR4 would be checked against the previous value for L2 on vmentry, and against the previous value for L1 on vmexit, and CPUID would not be updated. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-16KVM: SVM: Move asid to vcpu_svmCathy Avery
KVM does not have separate ASIDs for L1 and L2; either the nested hypervisor and nested guests share a single ASID, or on older processor the ASID is used only to implement TLB flushing. Either way, ASIDs are handled at the VM level. In preparation for having different VMCBs passed to VMLOAD/VMRUN/VMSAVE for L1 and L2, store the current ASID to struct vcpu_svm and only move it to the VMCB in svm_vcpu_run. This way, TLB flushes can be applied no matter which VMCB will be active during the next svm_vcpu_run. Signed-off-by: Cathy Avery <cavery@redhat.com> Message-Id: <20201011184818.3609-2-cavery@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-16x86/kvm: remove unused macro HV_CLOCK_SIZEAlex Shi
This macro is useless, and could cause gcc warning: arch/x86/kernel/kvmclock.c:47:0: warning: macro "HV_CLOCK_SIZE" is not used [-Wunused-macros] Let's remove it. Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Wanpeng Li <wanpengli@tencent.com> Cc: Jim Mattson <jmattson@google.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: x86@kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: kvm@vger.kernel.org Cc: linux-kernel@vger.kernel.org Message-Id: <1604651963-10067-1-git-send-email-alex.shi@linux.alibaba.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-16x86/msr: Do not allow writes to MSR_IA32_ENERGY_PERF_BIASBorislav Petkov
Now that all in-kernel-tree users are converted to using the sysfs file, remove the MSR from the "allowlist". Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Shuah Khan <skhan@linuxfoundation.org> Link: https://lkml.kernel.org/r/20201029190259.3476-5-bp@alien8.de
2020-11-16x86/mce: Use "safe" MSR functions when enabling additional error loggingTony Luck
Booting as a guest under KVM results in error messages about unchecked MSR access: unchecked MSR access error: RDMSR from 0x17f at rIP: 0xffffffff84483f16 (mce_intel_feature_init+0x156/0x270) because KVM doesn't provide emulation for random model specific registers. Switch to using rdmsrl_safe()/wrmsrl_safe() to avoid the message. Fixes: 68299a42f842 ("x86/mce: Enable additional error logging on certain Intel CPUs") Reported-by: Qian Cai <cai@redhat.com> Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20201111003954.GA11878@agluck-desk2.amr.corp.intel.com
2020-11-15Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm fixes from Paolo Bonzini: "Fixes for ARM and x86, the latter especially for old processors without two-dimensional paging (EPT/NPT)" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: kvm: mmu: fix is_tdp_mmu_check when the TDP MMU is not in use KVM: SVM: Update cr3_lm_rsvd_bits for AMD SEV guests KVM: x86: Introduce cr3_lm_rsvd_bits in kvm_vcpu_arch KVM: x86: clflushopt should be treated as a no-op by emulation KVM: arm64: Handle SCXTNUM_ELx traps KVM: arm64: Unify trap handlers injecting an UNDEF KVM: arm64: Allow setting of ID_AA64PFR0_EL1.CSV2 from userspace
2020-11-15Merge tag 'x86-urgent-2020-11-15' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Thomas Gleixner: "A small set of fixes for x86: - Cure the fallout from the MSI irqdomain overhaul which missed that the Intel IOMMU does not register virtual function devices and therefore never reaches the point where the MSI interrupt domain is assigned. This made the VF devices use the non-remapped MSI domain which is trapped by the IOMMU/remap unit - Remove an extra space in the SGI_UV architecture type procfs output for UV5 - Remove a unused function which was missed when removing the UV BAU TLB shootdown handler" * tag 'x86-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: iommu/vt-d: Cure VF irqdomain hickup x86/platform/uv: Fix copied UV5 output archtype x86/platform/uv: Drop last traces of uv_flush_tlb_others
2020-11-15Merge tag 'perf-urgent-2020-11-15' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf fixes from Thomas Gleixner: "A set of fixes for perf: - A set of commits which reduce the stack usage of various perf event handling functions which allocated large data structs on stack causing stack overflows in the worst case - Use the proper mechanism for detecting soft interrupts in the recursion protection - Make the resursion protection simpler and more robust - Simplify the scheduling of event groups to make the code more robust and prepare for fixing the issues vs. scheduling of exclusive event groups - Prevent event multiplexing and rotation for exclusive event groups - Correct the perf event attribute exclusive semantics to take pinned events, e.g. the PMU watchdog, into account - Make the anythread filtering conditional for Intel's generic PMU counters as it is not longer guaranteed to be supported on newer CPUs. Check the corresponding CPUID leaf to make sure - Fixup a duplicate initialization in an array which was probably caused by the usual 'copy & paste - forgot to edit' mishap" * tag 'perf-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/x86/intel/uncore: Fix Add BW copypasta perf/x86/intel: Make anythread filter support conditional perf: Tweak perf_event_attr::exclusive semantics perf: Fix event multiplexing for exclusive groups perf: Simplify group_sched_in() perf: Simplify group_sched_out() perf/x86: Make dummy_iregs static perf/arch: Remove perf_sample_data::regs_user_copy perf: Optimize get_recursion_context() perf: Fix get_recursion_context() perf/x86: Reduce stack usage for x86_pmu::drain_pebs() perf: Reduce stack usage of perf_output_begin()
2020-11-15kvm: x86: Sink cpuid update into vendor-specific set_cr4 functionsJim Mattson
On emulated VM-entry and VM-exit, update the CPUID bits that reflect CR4.OSXSAVE and CR4.PKE. This fixes a bug where the CPUID bits could continue to reflect L2 CR4 values after emulated VM-exit to L1. It also fixes a related bug where the CPUID bits could continue to reflect L1 CR4 values after emulated VM-entry to L2. The latter bug is mainly relevant to SVM, wherein CPUID is not a required intercept. However, it could also be relevant to VMX, because the code to conditionally update these CPUID bits assumes that the guest CPUID and the guest CR4 are always in sync. Fixes: 8eb3f87d903168 ("KVM: nVMX: fix guest CR4 loading when emulating L2 to L1 exit") Fixes: 2acf923e38fb6a ("KVM: VMX: Enable XSAVE/XRSTOR for guest") Fixes: b9baba86148904 ("KVM, pkeys: expose CPUID/CR4 to guest") Reported-by: Abhiroop Dabral <adabral@paloaltonetworks.com> Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Ricardo Koller <ricarkol@google.com> Reviewed-by: Peter Shier <pshier@google.com> Cc: Haozhong Zhang <haozhong.zhang@intel.com> Cc: Dexuan Cui <dexuan.cui@intel.com> Cc: Huaitong Han <huaitong.han@intel.com> Message-Id: <20201029170648.483210-1-jmattson@google.com>
2020-11-15KVM: Don't allocate dirty bitmap if dirty ring is enabledPeter Xu
Because kvm dirty rings and kvm dirty log is used in an exclusive way, Let's avoid creating the dirty_bitmap when kvm dirty ring is enabled. At the meantime, since the dirty_bitmap will be conditionally created now, we can't use it as a sign of "whether this memory slot enabled dirty tracking". Change users like that to check against the kvm memory slot flags. Note that there still can be chances where the kvm memory slot got its dirty_bitmap allocated, _if_ the memory slots are created before enabling of the dirty rings and at the same time with the dirty tracking capability enabled, they'll still with the dirty_bitmap. However it should not hurt much (e.g., the bitmaps will always be freed if they are there), and the real users normally won't trigger this because dirty bit tracking flag should in most cases only be applied to kvm slots only before migration starts, that should be far latter than kvm initializes (VM starts). Signed-off-by: Peter Xu <peterx@redhat.com> Message-Id: <20201001012226.5868-1-peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15KVM: X86: Implement ring-based dirty memory trackingPeter Xu
This patch is heavily based on previous work from Lei Cao <lei.cao@stratus.com> and Paolo Bonzini <pbonzini@redhat.com>. [1] KVM currently uses large bitmaps to track dirty memory. These bitmaps are copied to userspace when userspace queries KVM for its dirty page information. The use of bitmaps is mostly sufficient for live migration, as large parts of memory are be dirtied from one log-dirty pass to another. However, in a checkpointing system, the number of dirty pages is small and in fact it is often bounded---the VM is paused when it has dirtied a pre-defined number of pages. Traversing a large, sparsely populated bitmap to find set bits is time-consuming, as is copying the bitmap to user-space. A similar issue will be there for live migration when the guest memory is huge while the page dirty procedure is trivial. In that case for each dirty sync we need to pull the whole dirty bitmap to userspace and analyse every bit even if it's mostly zeros. The preferred data structure for above scenarios is a dense list of guest frame numbers (GFN). This patch series stores the dirty list in kernel memory that can be memory mapped into userspace to allow speedy harvesting. This patch enables dirty ring for X86 only. However it should be easily extended to other archs as well. [1] https://patchwork.kernel.org/patch/10471409/ Signed-off-by: Lei Cao <lei.cao@stratus.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Message-Id: <20201001012222.5767-1-peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15KVM: X86: Don't track dirty for KVM_SET_[TSS_ADDR|IDENTITY_MAP_ADDR]Peter Xu
Originally, we have three code paths that can dirty a page without vcpu context for X86: - init_rmode_identity_map - init_rmode_tss - kvmgt_rw_gpa init_rmode_identity_map and init_rmode_tss will be setup on destination VM no matter what (and the guest cannot even see them), so it does not make sense to track them at all. To do this, allow __x86_set_memory_region() to return the userspace address that just allocated to the caller. Then in both of the functions we directly write to the userspace address instead of calling kvm_write_*() APIs. Another trivial change is that we don't need to explicitly clear the identity page table root in init_rmode_identity_map() because no matter what we'll write to the whole page with 4M huge page entries. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Peter Xu <peterx@redhat.com> Message-Id: <20201001012044.5151-4-peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15KVM: x86: hyper-v: allow KVM_GET_SUPPORTED_HV_CPUID as a system ioctlVitaly Kuznetsov
KVM_GET_SUPPORTED_HV_CPUID is a vCPU ioctl but its output is now independent from vCPU and in some cases VMMs may want to use it as a system ioctl instead. In particular, QEMU doesn CPU feature expansion before any vCPU gets created so KVM_GET_SUPPORTED_HV_CPUID can't be used. Convert KVM_GET_SUPPORTED_HV_CPUID to 'dual' system/vCPU ioctl with the same meaning. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20200929150944.1235688-2-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15KVM: x86: emulate wait-for-SIPI and SIPI-VMExitYadong Qi
Background: We have a lightweight HV, it needs INIT-VMExit and SIPI-VMExit to wake-up APs for guests since it do not monitor the Local APIC. But currently virtual wait-for-SIPI(WFS) state is not supported in nVMX, so when running on top of KVM, the L1 HV cannot receive the INIT-VMExit and SIPI-VMExit which cause the L2 guest cannot wake up the APs. According to Intel SDM Chapter 25.2 Other Causes of VM Exits, SIPIs cause VM exits when a logical processor is in wait-for-SIPI state. In this patch: 1. introduce SIPI exit reason, 2. introduce wait-for-SIPI state for nVMX, 3. advertise wait-for-SIPI support to guest. When L1 hypervisor is not monitoring Local APIC, L0 need to emulate INIT-VMExit and SIPI-VMExit to L1 to emulate INIT-SIPI-SIPI for L2. L2 LAPIC write would be traped by L0 Hypervisor(KVM), L0 should emulate the INIT/SIPI vmexit to L1 hypervisor to set proper state for L2's vcpu state. Handle procdure: Source vCPU: L2 write LAPIC.ICR(INIT). L0 trap LAPIC.ICR write(INIT): inject a latched INIT event to target vCPU. Target vCPU: L0 emulate an INIT VMExit to L1 if is guest mode. L1 set guest VMCS, guest_activity_state=WAIT_SIPI, vmresume. L0 set vcpu.mp_state to INIT_RECEIVED if (vmcs12.guest_activity_state == WAIT_SIPI). Source vCPU: L2 write LAPIC.ICR(SIPI). L0 trap LAPIC.ICR write(INIT): inject a latched SIPI event to traget vCPU. Target vCPU: L0 emulate an SIPI VMExit to L1 if (vcpu.mp_state == INIT_RECEIVED). L1 set CS:IP, guest_activity_state=ACTIVE, vmresume. L0 resume to L2. L2 start-up. Signed-off-by: Yadong Qi <yadong.qi@intel.com> Message-Id: <20200922052343.84388-1-yadong.qi@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20201106065122.403183-1-yadong.qi@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15KVM: x86: fix apic_accept_events vs check_nested_eventsPaolo Bonzini
vmx_apic_init_signal_blocked is buggy in that it returns true even in VMX non-root mode. In non-root mode, however, INITs are not latched, they just cause a vmexit. Previously, KVM was waiting for them to be processed when kvm_apic_accept_events and in the meanwhile it ate the SIPIs that the processor received. However, in order to implement the wait-for-SIPI activity state, KVM will have to process KVM_APIC_SIPI in vmx_check_nested_events, and it will not be possible anymore to disregard SIPIs in non-root mode as the code is currently doing. By calling kvm_x86_ops.nested_ops->check_events, we can force a vmexit (with the side-effect of latching INITs) before incorrectly injecting an INIT or SIPI in a guest, and therefore vmx_apic_init_signal_blocked can do the right thing. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15KVM: x86: Return bool instead of int for CR4 and SREGS validity checksSean Christopherson
Rework the common CR4 and SREGS checks to return a bool instead of an int, i.e. true/false instead of 0/-EINVAL, and add "is" to the name to clarify the polarity of the return value (which is effectively inverted by this change). No functional changed intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20201007014417.29276-6-sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15KVM: x86: Move vendor CR4 validity check to dedicated kvm_x86_ops hookSean Christopherson
Split out VMX's checks on CR4.VMXE to a dedicated hook, .is_valid_cr4(), and invoke the new hook from kvm_valid_cr4(). This fixes an issue where KVM_SET_SREGS would return success while failing to actually set CR4. Fixing the issue by explicitly checking kvm_x86_ops.set_cr4()'s return in __set_sregs() is not a viable option as KVM has already stuffed a variety of vCPU state. Note, kvm_valid_cr4() and is_valid_cr4() have different return types and inverted semantics. This will be remedied in a future patch. Fixes: 5e1746d6205d ("KVM: nVMX: Allow setting the VMXE bit in CR4") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20201007014417.29276-5-sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15KVM: SVM: Drop VMXE check from svm_set_cr4()Sean Christopherson
Drop svm_set_cr4()'s explicit check CR4.VMXE now that common x86 handles the check by incorporating VMXE into the CR4 reserved bits, via kvm_cpu_caps. SVM obviously does not set X86_FEATURE_VMX. No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20201007014417.29276-4-sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15KVM: VMX: Drop explicit 'nested' check from vmx_set_cr4()Sean Christopherson
Drop vmx_set_cr4()'s explicit check on the 'nested' module param now that common x86 handles the check by incorporating VMXE into the CR4 reserved bits, via kvm_cpu_caps. X86_FEATURE_VMX is set in kvm_cpu_caps (by vmx_set_cpu_caps()), if and only if 'nested' is true. No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20201007014417.29276-3-sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15KVM: VMX: Drop guest CPUID check for VMXE in vmx_set_cr4()Sean Christopherson
Drop vmx_set_cr4()'s somewhat hidden guest_cpuid_has() check on VMXE now that common x86 handles the check by incorporating VMXE into the CR4 reserved bits, i.e. in cr4_guest_rsvd_bits. This fixes a bug where KVM incorrectly rejects KVM_SET_SREGS with CR4.VMXE=1 if it's executed before KVM_SET_CPUID{,2}. Fixes: 5e1746d6205d ("KVM: nVMX: Allow setting the VMXE bit in CR4") Reported-by: Stas Sergeev <stsp@users.sourceforge.net> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20201007014417.29276-2-sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15kvm: mmu: fix is_tdp_mmu_check when the TDP MMU is not in usePaolo Bonzini
In some cases where shadow paging is in use, the root page will be either mmu->pae_root or vcpu->arch.mmu->lm_root. Then it will not have an associated struct kvm_mmu_page, because it is allocated with alloc_page instead of kvm_mmu_alloc_page. Just return false quickly from is_tdp_mmu_root if the TDP MMU is not in use, which also includes the case where shadow paging is enabled. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-13livepatch: Use the default ftrace_ops instead of REGS when ARGS is availableSteven Rostedt (VMware)
When CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS is available, the ftrace call will be able to set the ip of the calling function. This will improve the performance of live kernel patching where it does not need all the regs to be stored just to change the instruction pointer. If all archs that support live kernel patching also support HAVE_DYNAMIC_FTRACE_WITH_ARGS, then the architecture specific function klp_arch_set_pc() could be made generic. It is possible that an arch can support HAVE_DYNAMIC_FTRACE_WITH_ARGS but not HAVE_DYNAMIC_FTRACE_WITH_REGS and then have access to live patching. Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Jiri Kosina <jikos@kernel.org> Cc: live-patching@vger.kernel.org Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-11-13ftrace/x86: Allow for arguments to be passed in to ftrace_regs by defaultSteven Rostedt (VMware)
Currently, the only way to get access to the registers of a function via a ftrace callback is to set the "FL_SAVE_REGS" bit in the ftrace_ops. But as this saves all regs as if a breakpoint were to trigger (for use with kprobes), it is expensive. The regs are already saved on the stack for the default ftrace callbacks, as that is required otherwise a function being traced will get the wrong arguments and possibly crash. And on x86, the arguments are already stored where they would be on a pt_regs structure to use that code for both the regs version of a callback, it makes sense to pass that information always to all functions. If an architecture does this (as x86_64 now does), it is to set HAVE_DYNAMIC_FTRACE_WITH_ARGS, and this will let the generic code that it could have access to arguments without having to set the flags. This also includes having the stack pointer being saved, which could be used for accessing arguments on the stack, as well as having the function graph tracer not require its own trampoline! Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-11-13ftrace: Have the callbacks receive a struct ftrace_regs instead of pt_regsSteven Rostedt (VMware)
In preparation to have arguments of a function passed to callbacks attached to functions as default, change the default callback prototype to receive a struct ftrace_regs as the forth parameter instead of a pt_regs. For callbacks that set the FL_SAVE_REGS flag in their ftrace_ops flags, they will now need to get the pt_regs via a ftrace_get_regs() helper call. If this is called by a callback that their ftrace_ops did not have a FL_SAVE_REGS flag set, it that helper function will return NULL. This will allow the ftrace_regs to hold enough just to get the parameters and stack pointer, but without the worry that callbacks may have a pt_regs that is not completely filled. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-11-13KVM: SVM: Update cr3_lm_rsvd_bits for AMD SEV guestsBabu Moger
For AMD SEV guests, update the cr3_lm_rsvd_bits to mask the memory encryption bit in reserved bits. Signed-off-by: Babu Moger <babu.moger@amd.com> Message-Id: <160521948301.32054.5783800787423231162.stgit@bmoger-ubuntu> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-13KVM: x86: Introduce cr3_lm_rsvd_bits in kvm_vcpu_archBabu Moger
SEV guests fail to boot on a system that supports the PCID feature. While emulating the RSM instruction, KVM reads the guest CR3 and calls kvm_set_cr3(). If the vCPU is in the long mode, kvm_set_cr3() does a sanity check for the CR3 value. In this case, it validates whether the value has any reserved bits set. The reserved bit range is 63:cpuid_maxphysaddr(). When AMD memory encryption is enabled, the memory encryption bit is set in the CR3 value. The memory encryption bit may fall within the KVM reserved bit range, causing the KVM emulation failure. Introduce a new field cr3_lm_rsvd_bits in kvm_vcpu_arch which will cache the reserved bits in the CR3 value. This will be initialized to rsvd_bits(cpuid_maxphyaddr(vcpu), 63). If the architecture has any special bits(like AMD SEV encryption bit) that needs to be masked from the reserved bits, should be cleared in vendor specific kvm_x86_ops.vcpu_after_set_cpuid handler. Fixes: a780a3ea628268b2 ("KVM: X86: Fix reserved bits check for MOV to CR3") Signed-off-by: Babu Moger <babu.moger@amd.com> Message-Id: <160521947657.32054.3264016688005356563.stgit@bmoger-ubuntu> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-13KVM: x86: clflushopt should be treated as a no-op by emulationDavid Edmondson
The instruction emulator ignores clflush instructions, yet fails to support clflushopt. Treat both similarly. Fixes: 13e457e0eebf ("KVM: x86: Emulator does not decode clflush well") Signed-off-by: David Edmondson <david.edmondson@oracle.com> Message-Id: <20201103120400.240882-1-david.edmondson@oracle.com> Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-13x86/platform/uv: Fix copied UV5 output archtypeMike Travis
A test shows that the output contains a space: # cat /proc/sgi_uv/archtype NSGI4 U/UVX Remove that embedded space by copying the "trimmed" buffer instead of the untrimmed input character list. Use sizeof to remove size dependency on copy out length. Increase output buffer size by one character just in case BIOS sends an 8 character string for archtype. Fixes: 1e61f5a95f19 ("Add and decode Arch Type in UVsystab") Signed-off-by: Mike Travis <mike.travis@hpe.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Steve Wahl <steve.wahl@hpe.com> Link: https://lore.kernel.org/r/20201111010418.82133-1-mike.travis@hpe.com
2020-11-11x86/fpu: Make kernel FPU protection RT friendlyThomas Gleixner
Non RT kernels need to protect FPU against preemption and bottom half processing. This is achieved by disabling bottom halfs via local_bh_disable() which implictly disables preemption. On RT kernels this protection mechanism is not sufficient because local_bh_disable() does not disable preemption. It serializes bottom half related processing via a CPU local lock. As bottom halfs are running always in thread context on RT kernels disabling preemption is the proper choice as it implicitly prevents bottom half processing. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20201027101349.588965083@linutronix.de
2020-11-11x86/fpu: Simplify fpregs_[un]lock()Thomas Gleixner
There is no point in disabling preemption and then disabling bottom halfs. Just disabling bottom halfs is sufficient as it implicitly disables preemption on !RT kernels. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20201027101349.455380473@linutronix.de
2020-11-11x86/platform/uv: Drop last traces of uv_flush_tlb_othersJiri Slaby
Commit 39297dde7390 ("x86/platform/uv: Remove UV BAU TLB Shootdown Handler") removed uv_flush_tlb_others. Its declaration was removed also from asm/uv/uv.h. But only for the CONFIG_X86_UV=y case. The inline definition (!X86_UV case) is still in place. So remove this implementation with everything what was added to support uv_flush_tlb_others: * include of asm/tlbflush.h * forward declarations of struct cpumask, mm_struct, and flush_tlb_info Signed-off-by: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Mike Travis <mike.travis@hpe.com> Acked-by: Steve Wahl <steve.wahl@hpe.com> Link: https://lore.kernel.org/r/20201109093653.2042-1-jslaby@suse.cz
2020-11-10powercap: Add AMD Fam17h RAPL supportVictor Ding
Enable AMD Fam17h RAPL support for the power capping framework. The support is as per AMD Fam17h Model31h (Zen2) and model 00-ffh (Zen1) PPR. Tested by comparing the results of following two sysfs entries and the values directly read from corresponding MSRs via /dev/cpu/[x]/msr: /sys/class/powercap/intel-rapl/intel-rapl:0/energy_uj /sys/class/powercap/intel-rapl/intel-rapl:0/intel-rapl:0:0/energy_uj Signed-off-by: Victor Ding <victording@google.com> Acked-by: Kim Phillips <kim.phillips@amd.com> [ rjw: Changelog edits ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>