Age | Commit message (Collapse) | Author |
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
In Family 17h, some L3 Cache Performance events require the ThreadMask
and SliceMask to be set. For other events, these fields do not affect
the count either way.
Set ThreadMask and SliceMask to 0xFF and 0xF respectively.
Signed-off-by: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H . Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Suravee <Suravee.Suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/Message-ID:
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The counters on M3UPI Link 0 and Link 3 don't count properly, and writing
0 to these counters may causes system crash on some machines.
The PCI BDF addresses of the M3UPI in the current code are incorrect.
The correct addresses should be:
D18:F1 0x204D
D18:F2 0x204E
D18:F5 0x204D
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: cd34cd97b7b4 ("perf/x86/intel/uncore: Add Skylake server uncore support")
Link: http://lkml.kernel.org/r/1537538826-55489-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
physical package ID 0
Physical package id 0 doesn't always exist, we should use
boot_cpu_data.phys_proc_id here.
Signed-off-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20180910144750.6782-1-msys.mizuma@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The syscall fallbacks in the vDSO have incorrect asm constraints.
They are not marked as writing to their outputs -- instead, they are
marked as clobbering "memory", which is useless. In particular, gcc
is smart enough to know that the timespec parameter hasn't escaped,
so a memory clobber doesn't clobber it. And passing a pointer as an
asm *input* does not tell gcc that the pointed-to value is changed.
Add in the fact that the asm instructions weren't volatile, and gcc
was free to omit them entirely unless their sole output (the return
value) is used. Which it is (phew!), but that stops happening with
some upcoming patches.
As a trivial example, the following code:
void test_fallback(struct timespec *ts)
{
vdso_fallback_gettime(CLOCK_MONOTONIC, ts);
}
compiles to:
00000000000000c0 <test_fallback>:
c0: c3 retq
To add insult to injury, the RCX and R11 clobbers on 64-bit
builds were missing.
The "memory" clobber is also unnecessary -- no ordering with respect to
other memory operations is needed, but that's going to be fixed in a
separate not-for-stable patch.
Fixes: 2aae950b21e4 ("x86_64: Add vDSO for x86-64 with gettimeofday/clock_gettime/getcpu")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/2c0231690551989d2fafa60ed0e7b5cc8b403908.1538422295.git.luto@kernel.org
|
|
Merge -rc6 in, for two reasons:
1) Resolve a trivial conflict in the blk-mq-tag.c documentation
2) A few important regression fixes went into upstream directly, so
they aren't in the 4.20 branch.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
* tag 'v4.19-rc6': (780 commits)
Linux 4.19-rc6
MAINTAINERS: fix reference to moved drivers/{misc => auxdisplay}/panel.c
cpufreq: qcom-kryo: Fix section annotations
perf/core: Add sanity check to deal with pinned event failure
xen/blkfront: correct purging of persistent grants
Revert "xen/blkfront: When purging persistent grants, keep them in the buffer"
selftests/powerpc: Fix Makefiles for headers_install change
blk-mq: I/O and timer unplugs are inverted in blktrace
dax: Fix deadlock in dax_lock_mapping_entry()
x86/boot: Fix kexec booting failure in the SEV bit detection code
bcache: add separate workqueue for journal_write to avoid deadlock
drm/amd/display: Fix Edid emulation for linux
drm/amd/display: Fix Vega10 lightup on S3 resume
drm/amdgpu: Fix vce work queue was not cancelled when suspend
Revert "drm/panel: Add device_link from panel device to DRM device"
xen/blkfront: When purging persistent grants, keep them in the buffer
clocksource/drivers/timer-atmel-pit: Properly handle error cases
block: fix deadline elevator drain for zoned block devices
ACPI / hotplug / PCI: Don't scan for non-hotplug bridges if slot is not bridge
drm/syncobj: Don't leak fences when WAIT_FOR_SUBMIT is set
...
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
One defense against L1TF in KVM is to always set the upper five bits
of the *legal* physical address in the SPTEs for non-present and
reserved SPTEs, e.g. MMIO SPTEs. In the MMIO case, the GFN of the
MMIO SPTE may overlap with the upper five bits that are being usurped
to defend against L1TF. To preserve the GFN, the bits of the GFN that
overlap with the repurposed bits are shifted left into the reserved
bits, i.e. the GFN in the SPTE will be split into high and low parts.
When retrieving the GFN from the MMIO SPTE, e.g. to check for an MMIO
access, get_mmio_spte_gfn() unshifts the affected bits and restores
the original GFN for comparison. Unfortunately, get_mmio_spte_gfn()
neglects to mask off the reserved bits in the SPTE that were used to
store the upper chunk of the GFN. As a result, KVM fails to detect
MMIO accesses whose GPA overlaps the repurprosed bits, which in turn
causes guest panics and hangs.
Fix the bug by generating a mask that covers the lower chunk of the
GFN, i.e. the bits that aren't shifted by the L1TF mitigation. The
alternative approach would be to explicitly zero the five reserved
bits that are used to store the upper chunk of the GFN, but that
requires additional run-time computation and makes an already-ugly
bit of code even more inscrutable.
I considered adding a WARN_ON_ONCE(low_phys_bits-1 <= PAGE_SHIFT) to
warn if GENMASK_ULL() generated a nonsensical value, but that seemed
silly since that would mean a system that supports VMX has less than
18 bits of physical address space...
Reported-by: Sakari Ailus <sakari.ailus@iki.fi>
Fixes: d9b47449c1a1 ("kvm: x86: Set highest physical address bits in non-present/reserved SPTEs")
Cc: Junaid Shahid <junaids@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Reviewed-by: Junaid Shahid <junaids@google.com>
Tested-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
L2 IA32_BNDCFGS should be updated with vmcs12->guest_bndcfgs only
when VM_ENTRY_LOAD_BNDCFGS is specified in vmcs12->vm_entry_controls.
Otherwise, L2 IA32_BNDCFGS should be set to vmcs01->guest_bndcfgs which
is L1 IA32_BNDCFGS.
Reviewed-by: Nikita Leshchenko <nikita.leshchenko@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Commit a87036add092 ("KVM: x86: disable MPX if host did not enable
MPX XSAVE features") introduced kvm_mpx_supported() to return true
iff MPX is enabled in the host.
However, that commit seems to have missed replacing some calls to
kvm_x86_ops->mpx_supported() to kvm_mpx_supported().
Complete original commit by replacing remaining calls to
kvm_mpx_supported().
Fixes: a87036add092 ("KVM: x86: disable MPX if host did not enable
MPX XSAVE features")
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Before this commit, KVM exposes MPX VMX controls to L1 guest only based
on if KVM and host processor supports MPX virtualization.
However, these controls should be exposed to guest only in case guest
vCPU supports MPX.
Without this change, a L1 guest running with kernel which don't have
commit 691bd4340bef ("kvm: vmx: allow host to access guest
MSR_IA32_BNDCFGS") asserts in QEMU on the following:
qemu-kvm: error: failed to set MSR 0xd90 to 0x0
qemu-kvm: .../qemu-2.10.0/target/i386/kvm.c:1801 kvm_put_msrs:
Assertion 'ret == cpu->kvm_msr_buf->nmsrs failed'
This is because L1 KVM kvm_init_msr_list() will see that
vmx_mpx_supported() (As it only checks MPX VMX controls support) and
therefore KVM_GET_MSR_INDEX_LIST IOCTL will include MSR_IA32_BNDCFGS.
However, later when L1 will attempt to set this MSR via KVM_SET_MSRS
IOCTL, it will fail because !guest_cpuid_has_mpx(vcpu).
Therefore, fix the issue by exposing MPX VMX controls to L1 guest only
when vCPU supports MPX.
Fixes: 36be0b9deb23 ("KVM: x86: Add nested virtualization support for MPX")
Reported-by: Eyal Moscovici <eyal.moscovici@oracle.com>
Reviewed-by: Nikita Leshchenko <nikita.leshchenko@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
CONFIG_AS_CRC32 is not used anywhere. Its last user was removed by
0cb6c969ed9d ("net, lib: kill arch_fast_hash library bits")
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1538389443-28514-1-git-send-email-yamada.masahiro@socionext.com
|
|
Replace open-coded use of the SETcc instruction with CC_SET()/CC_OUT()
in __cmpxchg_double().
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/CAFULd4YdvwwhXWHqqPsGk5+TLG71ozgSscTZNsqmrm+Jzg941w@mail.gmail.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Thomas writes:
"A single fix for the AMD memory encryption boot code so it does not
read random garbage instead of the cached encryption bit when a kexec
kernel is allocated above the 32bit address limit."
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Fix kexec booting failure in the SEV bit detection code
|
|
The success of a cache pseudo-locked region is measured using
performance monitoring events that are programmed directly at the time
the user requests a measurement.
Modifying the performance event registers directly is not appropriate
since it circumvents the in-kernel perf infrastructure that exists to
manage these resources and provide resource arbitration to the
performance monitoring hardware.
The cache pseudo-locking measurements are modified to use the in-kernel
perf infrastructure. Performance events are created and validated with
the appropriate perf API. The performance counters are still read as
directly as possible to avoid the additional cache hits. This is
done safely by first ensuring with the perf API that the counters have
been programmed correctly and only accessing the counters in an
interrupt disabled section where they are not able to be moved.
As part of the transition to the in-kernel perf infrastructure the L2
and L3 measurements are split into two separate measurements that can
be triggered independently. This separation prevents additional cache
misses incurred during the extra testing code used to decide if a
L2 and/or L3 measurement should be made.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: peterz@infradead.org
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/fc24e728b446404f42c78573c506e98cd0599873.1537468643.git.reinette.chatre@intel.com
|
|
A perf event has many attributes that are maintained in a separate
structure that should be provided when a new perf_event is created.
In preparation for the transition to perf_events the required attribute
structures are created for all the events that may be used in the
measurements. Most attributes for all the events are identical. The
actual configuration, what specifies what needs to be measured, is what
will be different between the events used. This configuration needs to
be done with X86_CONFIG that cannot be used as part of the designated
initializers used here, this will be introduced later.
Although they do look identical at this time the attribute structures
needs to be maintained separately since a perf_event will maintain a
pointer to its unique attributes.
In support of patch testing the new structs are given the unused attribute
until their use in later patches.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1822f6164e221a497648d108913d056ab675d5d0.1537377064.git.reinette.chatre@intel.com
|
|
Local register variables were used in an effort to improve the
accuracy of the measurement of cache residency of a pseudo-locked
region. This was done to ensure that only the cache residency of
the memory is measured and not the cache residency of the variables
used to perform the measurement.
While local register variables do accomplish the goal they do require
significant care since different architectures have different registers
available. Local register variables also cannot be used with valuable
developer tools like KASAN.
Significant testing has shown that similar accuracy in measurement
results can be obtained by replacing local register variables with
regular local variables.
Make use of local variables in the critical code but do so with
READ_ONCE() to prevent the compiler from merging or refetching reads.
Ensure these variables are initialized before the measurement starts,
and ensure it is only the local variables that are accessed during
the measurement.
With the removal of the local register variables and using READ_ONCE()
there is no longer a motivation for using a direct wrmsr call (that
avoids the additional tracing code that may clobber the local register
variables).
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/f430f57347414e0691765d92b144758ab93d8407.1537377064.git.reinette.chatre@intel.com
|
|
perf_event_read_local() is the safest way to obtain measurements
associated with performance events. In some cases the overhead
introduced by perf_event_read_local() affects the measurements and the
use of rdpmcl() is needed. rdpmcl() requires the index
of the performance counter used so a helper is introduced to determine
the index used by a provided performance event.
The index used by a performance event may change when interrupts are
enabled. A check is added to ensure that the index is only accessed
with interrupts disabled. Even with this check the use of this counter
needs to be done with care to ensure it is queried and used within the
same disabled interrupts section.
This change introduces a new checkpatch warning:
CHECK: extern prototypes should be avoided in .h files
+extern int x86_perf_rdpmc_index(struct perf_event *event);
This warning was discussed and designated as a false positive in
http://lkml.kernel.org/r/20180919091759.GZ24124@hirez.programming.kicks-ass.net
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/b277ffa78a51254f5414f7b1bc1923826874566e.1537377064.git.reinette.chatre@intel.com
|
|
Use the for_each_of_cpu_node iterator to iterate over cpu nodes. This
has the side effect of defaulting to iterating using "cpu" node names in
preference to the deprecated (for FDT) device_type == "cpu".
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rob Herring <robh@kernel.org>
|
|
In the quest to remove all stack VLA usage from the kernel[1], this
replaces struct crypto_skcipher and SKCIPHER_REQUEST_ON_STACK() usage
with struct crypto_sync_skcipher and SYNC_SKCIPHER_REQUEST_ON_STACK(),
which uses a fixed stack size.
[1] https://lkml.kernel.org/r/CA+55aFzCG-zNmZwX4A2FQpadafLfEzK6CC=qPXydAacU1RqZWA@mail.gmail.com
Cc: x86@kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Remove including <linux/version.h>. It's not needed.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <devel@linuxdriverproject.org>
Cc: <kernel-janitors@vger.kernel.org>
Link: https://lkml.kernel.org/r/1537690822-97455-1-git-send-email-yuehaibing@huawei.com
|
|
A Generation-2 Linux VM on Hyper-V doesn't have the legacy PCI bus, and
users always see the scary warning, which is actually harmless.
Suppress it.
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: KY Srinivasan <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: "devel@linuxdriverproject.org" <devel@linuxdriverproject.org>
Cc: Olaf Aepfle <olaf@aepfle.de>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Marcelo Cerri <marcelo.cerri@canonical.com>
Cc: Josh Poulson <jopoulso@microsoft.com>
Link: https://lkml.kernel.org/r/ <KU1P153MB0166D977DC930996C4BF538ABF1D0@KU1P153MB0166.APCP153.PROD.OUTLOOK.COM
|
|
If we IPI for WBINDV, then we might as well kill the entire TLB too.
But if we don't have to invalidate cache, there is no reason not to
use a range TLB flush.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180919085948.195633798@infradead.org
|
|
The start of cpa_flush_range() and cpa_flush_array() is the same, use
a common function.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180919085948.138859183@infradead.org
|
|
Rather than guarding cpa_flush_array() users with a CLFLUSH test, put
it inside.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180919085948.087848187@infradead.org
|
|
Rather than guarding all cpa_flush_range() uses with a CLFLUSH test,
put it inside.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180919085948.036195503@infradead.org
|
|
Both cpa_flush_range() and cpa_flush_array() have a well specified
range, use that to do a range based TLB invalidate.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180919085947.985193217@infradead.org
|
|
CAT has happened, WBINDV is bad (even before CAT blowing away the
entire cache on a multi-core platform wasn't nice), try not to use it
ever.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180919085947.933674526@infradead.org
|
|
There is an atom errata, where we do a local TLB invalidate right
before we return and then do a global TLB invalidate.
Move the global invalidate up a little bit and avoid the local
invalidate entirely.
This does put the global invalidate under pgd_lock, but that shouldn't
matter.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180919085947.882287392@infradead.org
|
|
Instead of open-coding it..
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180919085947.831102058@infradead.org
|
|
The extra loop which tries hard to preserve large pages in case of conflicts
with static protection regions turns out to be not preserving anything, at
least not in the experiments which have been conducted.
There might be corner cases in which the code would be able to preserve a
large page oaccsionally, but it's really not worth the extra code and the
cycles wasted in the common case.
Before:
1G pages checked: 2
1G pages sameprot: 0
1G pages preserved: 0
2M pages checked: 541
2M pages sameprot: 466
2M pages preserved: 47
4K pages checked: 514
4K pages set-checked: 7668
After:
1G pages checked: 2
1G pages sameprot: 0
1G pages preserved: 0
2M pages checked: 538
2M pages sameprot: 466
2M pages preserved: 47
4K pages set-checked: 7668
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180917143546.589642503@linutronix.de
|
|
To avoid excessive 4k wise checks in the common case do a quick check first
whether the requested new page protections conflict with a static
protection area in the large page. If there is no conflict then the
decision whether to preserve or to split the page can be made immediately.
If the requested range covers the full large page, preserve it. Otherwise
split it up. No point in doing a slow crawl in 4k steps.
Before:
1G pages checked: 2
1G pages sameprot: 0
1G pages preserved: 0
2M pages checked: 538
2M pages sameprot: 466
2M pages preserved: 47
4K pages checked: 560642
4K pages set-checked: 7668
After:
1G pages checked: 2
1G pages sameprot: 0
1G pages preserved: 0
2M pages checked: 541
2M pages sameprot: 466
2M pages preserved: 47
4K pages checked: 514
4K pages set-checked: 7668
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180917143546.507259989@linutronix.de
|
|
When the existing mapping is correct and the new requested page protections
are the same as the existing ones, then further checks can be omitted and the
large page can be preserved. The slow path 4k wise check will not come up with
a different result.
Before:
1G pages checked: 2
1G pages sameprot: 0
1G pages preserved: 0
2M pages checked: 540
2M pages sameprot: 466
2M pages preserved: 47
4K pages checked: 800709
4K pages set-checked: 7668
After:
1G pages checked: 2
1G pages sameprot: 0
1G pages preserved: 0
2M pages checked: 538
2M pages sameprot: 466
2M pages preserved: 47
4K pages checked: 560642
4K pages set-checked: 7668
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180917143546.424477581@linutronix.de
|
|
With the range check it is possible to do a quick verification that the
current mapping is correct vs. the static protection areas.
In case a incorrect mapping is detected a warning is emitted and the large
page is split up. If the large page is a 2M page, then the split code is
forced to check the static protections for the PTE entries to fix up the
incorrectness. For 1G pages this can't be done easily because that would
require to either find the offending 2M areas before the split or
afterwards. For now just warn about that case and revisit it when reported.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180917143546.331408643@linutronix.de
|
|
If the new pgprot has the PRESENT bit cleared, then conflicts vs. RW/NX are
completely irrelevant.
Before:
1G pages checked: 2
1G pages sameprot: 0
1G pages preserved: 0
2M pages checked: 540
2M pages sameprot: 466
2M pages preserved: 47
4K pages checked: 800770
4K pages set-checked: 7668
After:
1G pages checked: 2
1G pages sameprot: 0
1G pages preserved: 0
2M pages checked: 540
2M pages sameprot: 466
2M pages preserved: 47
4K pages checked: 800709
4K pages set-checked: 7668
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180917143546.245849757@linutronix.de
|
|
The large page preservation mechanism is just magic and provides no
information at all. Add optional statistic output in debugfs so the magic can
be evaluated. Defaults is off.
Output:
1G pages checked: 2
1G pages sameprot: 0
1G pages preserved: 0
2M pages checked: 540
2M pages sameprot: 466
2M pages preserved: 47
4K pages checked: 800770
4K pages set-checked: 7668
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180917143546.160867778@linutronix.de
|
|
The whole static protection magic is silently fixing up anything which is
handed in. That's just wrong. The offending call sites need to be fixed.
Add a debug mechanism which emits a warning if a requested mapping needs to be
fixed up. The DETECT debug mechanism is really not meant to be enabled except
for developers, so limit the output hard to the protection fixups.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180917143546.078998733@linutronix.de
|
|
Checking static protections only page by page is slow especially for huge
pages. To allow quick checks over a complete range, add the ability to do
that.
Make the checks inclusive so the ranges can be directly used for debug output
later.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180917143545.995734490@linutronix.de
|
|
static_protections() is pretty unreadable. Split it up into separate checks
for each protection area.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180917143545.913005317@linutronix.de
|
|
Avoid the extra variable and gotos by splitting the function into the
actual algorithm and a callable function which contains the lock
protection.
Rename it to should_split_large_page() while at it so the return values make
actually sense.
Clean up the code flow, comments and general whitespace damage while at it. No
functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180917143545.830507216@linutronix.de
|
|
The sequence of marking text and rodata read-only in 32bit init is:
set_ro(text);
kernel_set_to_readonly = 1;
set_ro(rodata);
When kernel_set_to_readonly is 1 it enables the protection mechanism in CPA
for the read only regions. With the upcoming checks for existing mappings
this consequently triggers the warning about an existing mapping being
incorrect vs. static protections because rodata has not been converted yet.
There is no technical reason to split the two, so just combine the RO
protection to convert text and rodata in one go.
Convert the printks to pr_info while at it.
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Bin Yang <bin.yang@intel.com>
Cc: Mark Gross <mark.gross@intel.com>
Link: https://lkml.kernel.org/r/20180917143545.731701535@linutronix.de
|
|
Commit
1958b5fc4010 ("x86/boot: Add early boot support when running with SEV active")
can occasionally cause system resets when kexec-ing a second kernel even
if SEV is not active.
That's because get_sev_encryption_bit() uses 32-bit rIP-relative
addressing to read the value of enc_bit - a variable which caches a
previously detected encryption bit position - but kexec may allocate
the early boot code to a higher location, beyond the 32-bit addressing
limit.
In this case, garbage will be read and get_sev_encryption_bit() will
return the wrong value, leading to accessing memory with the wrong
encryption setting.
Therefore, remove enc_bit, and thus get rid of the need to do 32-bit
rIP-relative addressing in the first place.
[ bp: massage commit message heavily. ]
Fixes: 1958b5fc4010 ("x86/boot: Add early boot support when running with SEV active")
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: linux-kernel@vger.kernel.org
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: brijesh.singh@amd.com
Cc: kexec@lists.infradead.org
Cc: dyoung@redhat.com
Cc: bhe@redhat.com
Cc: ghook@redhat.com
Link: https://lkml.kernel.org/r/20180927123845.32052-1-kasong@redhat.com
|
|
To make Xen work on the Hygon platform, reuse AMD's Xen support code
path for Hygon Dhyana CPU.
There are six core performance events counters per thread, so there are
six MSRs for these counters. Also there are four legacy PMC MSRs, they
are aliases of the counters.
In this version, use the legacy and safe version of MSR access. Tested
successfully with VPMU enabled in Xen on Hygon platform by testing with
perf.
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: jgross@suse.com
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/311bf41f08f24550aa6c5da3f1e03a68d3b89dac.1537533369.git.puwen@hygon.cn
|
|
The Hygon Dhyana CPU has the SVM feature as AMD family 17h does.
So enable the KVM infrastructure support to it.
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: pbonzini@redhat.com
Cc: rkrcmar@redhat.com
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Cc: kvm@vger.kernel.org
Link: https://lkml.kernel.org/r/654dd12876149fba9561698eaf9fc15d030301f8.1537533369.git.puwen@hygon.cn
|
|
The machine check architecture for Hygon Dhyana CPU is similar to the
AMD family 17h one. Add vendor checking for Hygon Dhyana to share the
code path of AMD family 17h.
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: tony.luck@intel.com
Cc: thomas.lendacky@amd.com
Cc: linux-edac@vger.kernel.org
Link: https://lkml.kernel.org/r/87d8a4f16bdea0bfe0c0cf2e4a8d2c2a99b1055c.1537533369.git.puwen@hygon.cn
|
|
The Hygon Dhyana CPU has the same speculative execution as AMD family
17h, so share AMD spectre mitigation code with Hygon Dhyana.
Also Hygon Dhyana is not affected by meltdown, so add exception for it.
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Link: https://lkml.kernel.org/r/0861d39c8a103fc0deca15bafbc85d403666d9ef.1537533369.git.puwen@hygon.cn
|
|
Add Hygon Dhyana support to the APIC subsystem. When running in 32 bit
mode, bigsmp should be enabled if there are more than 8 cores online.
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Link: https://lkml.kernel.org/r/7a557265a8c7c9e842fe60f9d8e064458801aef3.1537533369.git.puwen@hygon.cn
|
|
Hygon's PCI vendor ID is 0x1d94, and there are PCI devices
0x1450/0x1463/0x1464 for the host bridge on the Hygon Dhyana platform.
Add Hygon Dhyana support to the PCI and northbridge subsystems by using
the code path of AMD family 17h.
[ bp: Massage commit message, sort local vars into reverse xmas tree
order and move the amd_northbridges.num check up. ]
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Bjorn Helgaas <bhelgaas@google.com> # pci_ids.h
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Cc: helgaas@kernel.org
Cc: linux-pci@vger.kernel.org
Link: https://lkml.kernel.org/r/5f8877bd413f2ea0833378dd5454df0720e1c0df.1537885177.git.puwen@hygon.cn
|
|
Exit early in functions which are meant to run on AMD only but which get
run on different vendor (VMs, etc).
[ bp: rewrite commit message. ]
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: bhelgaas@google.com
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Cc: helgaas@kernel.org
Link: https://lkml.kernel.org/r/487d8078708baedaf63eb00a82251e228b58f1c2.1537885177.git.puwen@hygon.cn
|
|
The ideal_nops for Hygon Dhyana CPU should be p6_nops.
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Link: https://lkml.kernel.org/r/79e76c3173716984fe5fdd4a8e2c798bf4193205.1537533369.git.puwen@hygon.cn
|
|
The PMU architecture for the Hygon Dhyana CPU is similar to the AMD
Family 17h one. To support it, call amd_pmu_init() to share the AMD PMU
initialization flow, and change the PMU name to "HYGON".
The Hygon Dhyana CPU supports both legacy and extension PMC MSRs (perf
counter registers and event selection registers), so add Hygon Dhyana
support in the similar way as AMD does.
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Link: https://lkml.kernel.org/r/9d93ed54a975f33ef7247e0967960f4ce5d3d990.1537533369.git.puwen@hygon.cn
|