Age | Commit message (Collapse) | Author |
|
Currently, the notsc kernel parameter disables the use of the TSC by
sched_clock(). However, this parameter does not prevent the kernel from
accessing tsc in other places.
The only rationale to boot with notsc is to avoid timing discrepancies on
multi-socket systems where TSC are not properly synchronized, and thus
exclude TSC from being used for time keeping. But that prevents using TSC
as sched_clock() as well, which is not necessary as the core sched_clock()
implementation can handle non synchronized TSC based sched clocks just
fine.
However, there is another method to solve the above problem: booting with
tsc=unstable parameter. This parameter allows sched_clock() to use TSC and
just excludes it from timekeeping.
So there is no real reason to keep notsc, but for compatibility reasons the
parameter has to stay. Make it behave like 'tsc=unstable' instead.
[ tglx: Massaged changelog ]
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180719205545.16512-12-pasha.tatashin@oracle.com
|
|
Make it use the setup_* variants and have it be called only on the BSP and
drop the call in generic_identify() - X86_FEATURE_NOPL will be replicated
to the APs through the forced caps. Helps to keep the mess at a manageable
level.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180719205545.16512-11-pasha.tatashin@oracle.com
|
|
Static branching is useful to runtime patch branches that are used in hot
path, but are infrequently changed.
The x86 clock framework is one example that uses static branches to setup
the best clock during boot and never changes it again.
It is desired to enable the TSC based sched clock early to allow fine
grained boot time analysis early on. That requires the static branching
functionality to be functional early as well.
Static branching requires patching nop instructions, thus,
arch_init_ideal_nops() must be called prior to jump_label_init().
Do all the necessary steps to call arch_init_ideal_nops() right after
early_cpu_init(), which also allows to insert a call to jump_label_init()
right after that. jump_label_init() will be called again from the generic
init code, but the code is protected against reinitialization already.
[ tglx: Massaged changelog ]
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180719205545.16512-10-pasha.tatashin@oracle.com
|
|
It supposed to be safe to modify static branches after jump_label_init().
But, because static key modifying code eventually calls text_poke() it can
end up accessing a struct page which has not been initialized yet.
Here is how to quickly reproduce the problem. Insert code like this
into init/main.c:
| +static DEFINE_STATIC_KEY_FALSE(__test);
| asmlinkage __visible void __init start_kernel(void)
| {
| char *command_line;
|@@ -587,6 +609,10 @@ asmlinkage __visible void __init start_kernel(void)
| vfs_caches_init_early();
| sort_main_extable();
| trap_init();
|+ {
|+ static_branch_enable(&__test);
|+ WARN_ON(!static_branch_likely(&__test));
|+ }
| mm_init();
The following warnings show-up:
WARNING: CPU: 0 PID: 0 at arch/x86/kernel/alternative.c:701 text_poke+0x20d/0x230
RIP: 0010:text_poke+0x20d/0x230
Call Trace:
? text_poke_bp+0x50/0xda
? arch_jump_label_transform+0x89/0xe0
? __jump_label_update+0x78/0xb0
? static_key_enable_cpuslocked+0x4d/0x80
? static_key_enable+0x11/0x20
? start_kernel+0x23e/0x4c8
? secondary_startup_64+0xa5/0xb0
---[ end trace abdc99c031b8a90a ]---
If the code above is moved after mm_init(), no warning is shown, as struct
pages are initialized during handover from memblock.
Use text_poke_early() in static branching until early boot IRQs are enabled
and from there switch to text_poke. Also, ensure text_poke() is never
invoked when unitialized memory access may happen by using adding a
!after_bootmem assertion.
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180719205545.16512-9-pasha.tatashin@oracle.com
|
|
The previous removal of the memblock dependency from kvmclock introduced a
static data array sized 64bytes * CONFIG_NR_CPUS. That's wasteful on large
systems when kvmclock is not used.
Replace it with:
- A static page sized array of pvclock data. It's page sized because the
pvclock data of the boot cpu is mapped into the VDSO so otherwise random
other data would be exposed to the vDSO
- A PER_CPU variable of pvclock data pointers. This is used to access the
pcvlock data storage on each CPU.
The setup is done in two stages:
- Early boot stores the pointer to the static page for the boot CPU in
the per cpu data.
- In the preparatory stage of CPU hotplug assign either an element of
the static array (when the CPU number is in that range) or allocate
memory and initialize the per cpu pointer.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Link: https://lkml.kernel.org/r/20180719205545.16512-8-pasha.tatashin@oracle.com
|
|
There is no point to have this in the kvm code itself and call it from
there. This can be called from an initcall and the parameter is cleared
when the hypervisor is not KVM.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Link: https://lkml.kernel.org/r/20180719205545.16512-7-pasha.tatashin@oracle.com
|
|
The kvmclock parameter is init data and the other variables are not
modified after init.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Link: https://lkml.kernel.org/r/20180719205545.16512-6-pasha.tatashin@oracle.com
|
|
- Cleanup the mrs write for wall clock. The type casts to (int) are sloppy
because the wrmsr parameters are u32 and aside of that wrmsrl() already
provides the high/low split for free.
- Remove the pointless get_cpu()/put_cpu() dance from various
functions. Either they are called during early init where CPU is
guaranteed to be 0 or they are already called from non preemptible
context where smp_processor_id() can be used safely
- Simplify the convoluted check for kvmclock in the init function.
- Mark the parameter parsing function __init. No point in keeping it
around.
- Convert to pr_info()
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Link: https://lkml.kernel.org/r/20180719205545.16512-5-pasha.tatashin@oracle.com
|
|
The return value is pointless because the wrmsr cannot fail if
KVM_FEATURE_CLOCKSOURCE or KVM_FEATURE_CLOCKSOURCE2 are set.
kvm_register_clock() is only called locally so wants to be static.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Link: https://lkml.kernel.org/r/20180719205545.16512-4-pasha.tatashin@oracle.com
|
|
There is no requirement for wall_clock data to be page aligned or page
sized.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Link: https://lkml.kernel.org/r/20180719205545.16512-3-pasha.tatashin@oracle.com
|
|
KVM clock is initialized later compared to other hypervisor clocks because
it has a dependency on the memblock allocator.
Bring it in line with other hypervisors by using memory from the BSS
instead of allocating it.
The benefits:
- Remove ifdef from common code
- Earlier availability of the clock
- Remove dependency on memblock, and reduce code
The downside:
- Static allocation of the per cpu data structures sized NR_CPUS * 64byte
Will be addressed in follow up patches.
[ tglx: Split out from larger series ]
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Link: https://lkml.kernel.org/r/20180719205545.16512-2-pasha.tatashin@oracle.com
|
|
Pick up upstream changes to avoid conflicts
|
|
If concurrent printk() messages are emitted, then pr_cont() is making it
extremly hard to decode which part of the output belongs to what. See the
convoluted example at:
https://syzkaller.appspot.com/text?tag=CrashReport&x=139d342c400000
Avoid this by using a proper prefix for each line and by using %ph format
in show_opcodes() which emits the 'Code:' line in one go.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: joe@perches.com
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@suse.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/1532009278-5953-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
|
|
The slow path in vmx_l1d_flush() reads from vmx_l1d_flush_pages in order
to evict the L1d cache.
However, these pages are never cleared and, in theory, their data could be
leaked.
More importantly, KSM could merge a nested hypervisor's vmx_l1d_flush_pages
to fewer than 1 << L1D_CACHE_ORDER host physical pages and this would break
the L1d flushing algorithm: L1D on x86_64 is tagged by physical addresses.
Fix this by initializing the individual vmx_l1d_flush_pages with a
different pattern each.
Rename the "empty_zp" asm constraint identifier in vmx_l1d_flush() to
"flush_pages" to reflect this change.
Fixes: a47dd5f06714 ("x86/KVM/VMX: Add L1D flush algorithm")
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
SPECTRE_V2_IBRS in enum spectre_v2_mitigation is never used. Remove it.
Signed-off-by: Jiang Biao <jiang.biao2@zte.com.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: hpa@zytor.com
Cc: dwmw2@amazon.co.uk
Cc: konrad.wilk@oracle.com
Cc: bp@suse.de
Cc: zhong.weidong@zte.com.cn
Link: https://lkml.kernel.org/r/1531872194-39207-1-git-send-email-jiang.biao2@zte.com.cn
|
|
This is already exported by the top-level Makefile.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
|
|
Pull kvm fixes from Paolo Bonzini:
"Miscellaneous bugfixes, plus a small patchlet related to Spectre v2"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvmclock: fix TSC calibration for nested guests
KVM: VMX: Mark VMXArea with revision_id of physical CPU even when eVMCS enabled
KVM: irqfd: fix race between EPOLLHUP and irq_bypass_register_consumer
KVM/Eventfd: Avoid crash when assign and deassign specific eventfd in parallel.
x86/kvmclock: set pvti_cpu0_va after enabling kvmclock
x86/kvm/Kconfig: Ensure CRYPTO_DEV_CCP_DD state at minimum matches KVM_AMD
kvm: nVMX: Restore exit qual for VM-entry failure due to MSR loading
x86/kvm/vmx: don't read current->thread.{fs,gs}base of legacy tasks
KVM: VMX: support MSR_IA32_ARCH_CAPABILITIES as a feature MSR
|
|
Inside a nested guest, access to hardware can be slow enough that
tsc_read_refs always return ULLONG_MAX, causing tsc_refine_calibration_work
to be called periodically and the nested guest to spend a lot of time
reading the ACPI timer.
However, if the TSC frequency is available from the pvclock page,
we can just set X86_FEATURE_TSC_KNOWN_FREQ and avoid the recalibration.
'refine' operation.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
[Commit message rewritten. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When eVMCS is enabled, all VMCS allocated to be used by KVM are marked
with revision_id of KVM_EVMCS_VERSION instead of revision_id reported
by MSR_IA32_VMX_BASIC.
However, even though not explictly documented by TLFS, VMXArea passed
as VMXON argument should still be marked with revision_id reported by
physical CPU.
This issue was found by the following setup:
* L0 = KVM which expose eVMCS to it's L1 guest.
* L1 = KVM which consume eVMCS reported by L0.
This setup caused the following to occur:
1) L1 execute hardware_enable().
2) hardware_enable() calls kvm_cpu_vmxon() to execute VMXON.
3) L0 intercept L1 VMXON and execute handle_vmon() which notes
vmxarea->revision_id != VMCS12_REVISION and therefore fails with
nested_vmx_failInvalid() which sets RFLAGS.CF.
4) L1 kvm_cpu_vmxon() don't check RFLAGS.CF for failure and therefore
hardware_enable() continues as usual.
5) L1 hardware_enable() then calls ept_sync_global() which executes
INVEPT.
6) L0 intercept INVEPT and execute handle_invept() which notes
!vmx->nested.vmxon and thus raise a #UD to L1.
7) Raised #UD caused L1 to panic.
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Cc: stable@vger.kernel.org
Fixes: 773e8a0425c923bc02668a2d6534a5ef5a43cc69
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The vDSO needs to have a unique build id in a similar manner
to the kernel and modules. Use the build salt macro.
Acked-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
Commit 8370edea81e3 ("bin2c: move bin2c in scripts/basic") moved bin2c
to the scripts/basic/ directory, incorrectly stating "Kexec wants to
use bin2c and it wants to use it really early in the build process.
See arch/x86/purgatory/ code in later patches."
Commit bdab125c9301 ("Revert "kexec/purgatory: Add clean-up for
purgatory directory"") and commit d6605b6bbee8 ("x86/build: Remove
unnecessary preparation for purgatory") removed the redundant
purgatory build magic entirely.
That means that the move of bin2c was unnecessary in the first place.
fixdep is the only host program that deserves to sit in the
scripts/basic/ directory.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
commit b3b7c4795c ("x86/MCE: Serialize sysfs changes") introduced a min
interval limitation when setting the check interval for polled MCEs.
However, the logic is that 0 disables polling for corrected MCEs, see
Documentation/x86/x86_64/machinecheck. The limitation prevents disabling.
Remove this limitation and allow the value 0 to disable polling again.
Fixes: b3b7c4795c ("x86/MCE: Serialize sysfs changes")
Signed-off-by: Dewet Thibaut <thibaut.dewet@nokia.com>
Signed-off-by: Alexander Sverdlin <alexander.sverdlin@nokia.com>
[ Massage commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20180716084927.24869-1-alexander.sverdlin@nokia.com
|
|
Song Liu noticed switch_mm_irqs_off() taking a lot of CPU time in recent
kernels,using 1.8% of a 48 CPU system during a netperf to localhost run.
Digging into the profile, we noticed that cpumask_clear_cpu and
cpumask_set_cpu together take about half of the CPU time taken by
switch_mm_irqs_off().
However, the CPUs running netperf end up switching back and forth
between netperf and the idle task, which does not require changes
to the mm_cpumask. Furthermore, the init_mm cpumask ends up being
the most heavily contended one in the system.
Simply skipping changes to mm_cpumask(&init_mm) reduces overhead.
Reported-and-tested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: kernel-team@fb.com
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/20180716190337.26133-8-riel@surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Now that CPUs in lazy TLB mode no longer receive TLB shootdown IPIs, except
at page table freeing time, and idle CPUs will no longer get shootdown IPIs
for things like mprotect and madvise, we can always use lazy TLB mode.
Tested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: kernel-team@fb.com
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/20180716190337.26133-7-riel@surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
CPUs in !is_lazy have either received TLB flush IPIs earlier on during
the munmap (when the user memory was unmapped), or have context switched
and reloaded during that stage of the munmap.
Page table free TLB flushes only need to be sent to CPUs in lazy TLB
mode, which TLB contents might not yet be up to date yet.
Tested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: kernel-team@fb.com
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/20180716190337.26133-6-riel@surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Lazy TLB mode can result in an idle CPU being woken up by a TLB flush,
when all it really needs to do is reload %CR3 at the next context switch,
assuming no page table pages got freed.
Memory ordering is used to prevent race conditions between switch_mm_irqs_off,
which checks whether .tlb_gen changed, and the TLB invalidation code, which
increments .tlb_gen whenever page table entries get invalidated.
The atomic increment in inc_mm_tlb_gen is its own barrier; the context
switch code adds an explicit barrier between reading tlbstate.is_lazy and
next->context.tlb_gen.
Unlike the 2016 version of this patch, CPUs with cpu_tlbstate.is_lazy set
are not removed from the mm_cpumask(mm), since that would prevent the TLB
flush IPIs at page table free time from being sent to all the CPUs
that need them.
This patch reduces total CPU use in the system by about 1-2% for a
memcache workload on two socket systems, and by about 1% for a heavily
multi-process netperf between two systems.
Tested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: kernel-team@fb.com
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/20180716190337.26133-5-riel@surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Move some code that will be needed for the lazy -> !lazy state
transition when a lazy TLB CPU has gotten out of date.
No functional changes, since the if (real_prev == next) branch
always returns.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: kernel-team@fb.com
Link: http://lkml.kernel.org/r/20180716190337.26133-4-riel@surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Andy discovered that speculative memory accesses while in lazy
TLB mode can crash a system, when a CPU tries to dereference a
speculative access using memory contents that used to be valid
page table memory, but have since been reused for something else
and point into la-la land.
The latter problem can be prevented in two ways. The first is to
always send a TLB shootdown IPI to CPUs in lazy TLB mode, while
the second one is to only send the TLB shootdown at page table
freeing time.
The second should result in fewer IPIs, since operationgs like
mprotect and madvise are very common with some workloads, but
do not involve page table freeing. Also, on munmap, batching
of page table freeing covers much larger ranges of virtual
memory than the batching of unmapped user pages.
Tested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: kernel-team@fb.com
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/20180716190337.26133-3-riel@surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
APM_DO_POP_SEGS does not restore fs/gs which were zeroed by
APM_DO_ZERO_SEGS. Trying to access __preempt_count with
zeroed fs doesn't really work.
Move the ibrs call outside the APM_DO_SAVE_SEGS/APM_DO_RESTORE_SEGS
invocations so that fs is actually restored before calling
preempt_enable().
Fixes the following sort of oopses:
[ 0.313581] general protection fault: 0000 [#1] PREEMPT SMP
[ 0.313803] Modules linked in:
[ 0.314040] CPU: 0 PID: 268 Comm: kapmd Not tainted 4.16.0-rc1-triton-bisect-00090-gdd84441a7971 #19
[ 0.316161] EIP: __apm_bios_call_simple+0xc8/0x170
[ 0.316161] EFLAGS: 00210016 CPU: 0
[ 0.316161] EAX: 00000102 EBX: 00000000 ECX: 00000102 EDX: 00000000
[ 0.316161] ESI: 0000530e EDI: dea95f64 EBP: dea95f18 ESP: dea95ef0
[ 0.316161] DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068
[ 0.316161] CR0: 80050033 CR2: 00000000 CR3: 015d3000 CR4: 000006d0
[ 0.316161] Call Trace:
[ 0.316161] ? cpumask_weight.constprop.15+0x20/0x20
[ 0.316161] on_cpu0+0x44/0x70
[ 0.316161] apm+0x54e/0x720
[ 0.316161] ? __switch_to_asm+0x26/0x40
[ 0.316161] ? __schedule+0x17d/0x590
[ 0.316161] kthread+0xc0/0xf0
[ 0.316161] ? proc_apm_show+0x150/0x150
[ 0.316161] ? kthread_create_worker_on_cpu+0x20/0x20
[ 0.316161] ret_from_fork+0x2e/0x38
[ 0.316161] Code: da 8e c2 8e e2 8e ea 57 55 2e ff 1d e0 bb 5d b1 0f 92 c3 5d 5f 07 1f 89 47 0c 90 8d b4 26 00 00 00 00 90 8d b4 26 00 00 00 00 90 <64> ff 0d 84 16 5c b1 74 7f 8b 45 dc 8e e0 8b 45 d8 8e e8 8b 45
[ 0.316161] EIP: __apm_bios_call_simple+0xc8/0x170 SS:ESP: 0068:dea95ef0
[ 0.316161] ---[ end trace 656253db2deaa12c ]---
Fixes: dd84441a7971 ("x86/speculation: Use IBRS if available before calling into firmware")
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20180709133534.5963-1-ville.syrjala@linux.intel.com
|
|
pti_set_kernel_image_nonglobal() is only used in pti.c, make it static.
Signed-off-by: Jiang Biao <jiang.biao2@zte.com.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: luto@kernel.org
Cc: hpa@zytor.com
Cc: albcamus@gmail.com
Cc: zhong.weidong@zte.com.cn
Link: https://lkml.kernel.org/r/1531713820-24544-4-git-send-email-jiang.biao2@zte.com.cn
|
|
Commit 1268ed0c474a ("x86/hyper-v: Fix the circular dependency in IPI
enlightenment") pre-filled hv_vp_index with VP_INVAL so it is now
(theoretically) possible to observe hv_cpu_number_to_vp_number()
returning VP_INVAL. We need to check for that in hyperv_flush_tlb_others().
Not checking for VP_INVAL on the first call site where we do
if (hv_cpu_number_to_vp_number(cpumask_last(cpus)) >= 64)
goto do_ex_hypercall;
is OK, in case we're eligible for non-ex hypercall we'll catch the
issue later in for_each_cpu() cycle and in case we'll be doing ex-
hypercall cpumask_to_vpset() will fail.
It would be nice to change hv_cpu_number_to_vp_number() return
value's type to 'u32' but this will likely be a bigger change as
all call sites need to be checked first.
Fixes: 1268ed0c474a ("x86/hyper-v: Fix the circular dependency in IPI enlightenment")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com>
Cc: devel@linuxdriverproject.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20180709174012.17429-3-vkuznets@redhat.com
|
|
hyperv_flush_tlb_others_ex()
Commit 1268ed0c474a ("x86/hyper-v: Fix the circular dependency in IPI
enlightenment") made cpumask_to_vpset() return '-1' when there is a CPU
with unknown VP index in the supplied set. This needs to be checked before
we pass 'nr_bank' to hypercall.
Fixes: 1268ed0c474a ("x86/hyper-v: Fix the circular dependency in IPI enlightenment")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com>
Cc: devel@linuxdriverproject.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20180709174012.17429-2-vkuznets@redhat.com
|
|
We want the char-misc fixes in here as well.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The current implementation of efi_mem_desc_lookup() includes the
following check on the memory descriptor it returns:
if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
md->type != EFI_BOOT_SERVICES_DATA &&
md->type != EFI_RUNTIME_SERVICES_DATA) {
continue;
}
This means that only EfiBootServicesData or EfiRuntimeServicesData
regions are considered, or any other region type provided that it
has the EFI_MEMORY_RUNTIME attribute set.
Given what the name of the function implies, and the fact that any
physical address can be described in the UEFI memory map only a single
time, it does not make sense to impose this condition in the body of the
loop, but instead, should be imposed by the caller depending on the value
that is returned to it.
Two such callers exist at the moment:
- The BGRT code when running on x86, via efi_mem_reserve() and
efi_arch_mem_reserve(). In this case, the region is already known to
be EfiBootServicesData, and so the check is redundant.
- The ESRT handling code which introduced this function, which calls it
both directly from efi_esrt_init() and again via efi_mem_reserve() and
efi_arch_mem_reserve() [on x86].
So let's move this check into the callers instead. This preserves the
current behavior both for BGRT and ESRT handling, and allows the lookup
routine to be reused by other [upcoming] users that don't have this
limitation.
In the ESRT case, keep the entire condition, so that platforms that
deviate from the UEFI spec and use something other than
EfiBootServicesData for the ESRT table will keep working as before.
For x86's efi_arch_mem_reserve() implementation, limit the type to
EfiBootServicesData, since it is the only type the reservation code
expects to operate on in the first place.
While we're at it, drop the __init annotation so that drivers can use it
as well.
Tested-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20180711094040.12506-8-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Presently, efi_delete_dummy_variable() uses set_variable() which might
block, which the scheduler is rightfully upset about when used from
the idle thread, producing this splat:
"bad: scheduling from the idle thread!"
So, make efi_delete_dummy_variable() use set_variable_nonblocking(),
which, as the name suggests, doesn't block.
Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20180711094040.12506-3-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Various small cleanups:
- Standardize printk messages:
'alloc' => 'allocate'
'mem' => 'memory'
also put variable names in printk messages between quotes.
- Align mass-assignments vertically for better readability
- Break multi-line function prototypes at the name where possible,
not in the middle of the parameter list
- Use a newline before return statements consistently.
- Use curly braces in a balanced fashion.
- Remove stray newlines.
No change in functionality.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20180711094040.12506-2-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The following commit:
e501ce957a78 ("x86: Force asm-goto")
... bumped the minimum GCC version to 4.5 for building the x86 kernel.
arch/x86/Makefile no longer needs to take care of older GCC versions,
such as this pre-4.0 -funit-at-a-time quirk.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: http://lkml.kernel.org/r/1531138041-24200-1-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
All copy_to_user() implementations need to be prepared to handle faults
accessing userspace. The __memcpy_mcsafe() implementation handles both
mmu-faults on the user destination and machine-check-exceptions on the
source buffer. However, the memcpy_mcsafe() wrapper may silently
fallback to memcpy() depending on build options and cpu-capabilities.
Force copy_to_user_mcsafe() to always use __memcpy_mcsafe() when
available, and otherwise disable all of the copy_to_user_mcsafe()
infrastructure when __memcpy_mcsafe() is not available, i.e.
CONFIG_X86_MCE=n.
This fixes crashes of the form:
run fstests generic/323 at 2018-07-02 12:46:23
BUG: unable to handle kernel paging request at 00007f0d50001000
RIP: 0010:__memcpy+0x12/0x20
[..]
Call Trace:
copyout_mcsafe+0x3a/0x50
_copy_to_iter_mcsafe+0xa1/0x4a0
? dax_alive+0x30/0x50
dax_iomap_actor+0x1f9/0x280
? dax_iomap_rw+0x100/0x100
iomap_apply+0xba/0x130
? dax_iomap_rw+0x100/0x100
dax_iomap_rw+0x95/0x100
? dax_iomap_rw+0x100/0x100
xfs_file_dax_read+0x7b/0x1d0 [xfs]
xfs_file_read_iter+0xa7/0xc0 [xfs]
aio_read+0x11c/0x1a0
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Fixes: 8780356ef630 ("x86/asm/memcpy_mcsafe: Define copy_to_iter_mcsafe()")
Link: http://lkml.kernel.org/r/153108277790.37979.1486841789275803399.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
pvti_cpu0_va is the address of shared kvmclock data structure.
pvti_cpu0_va is currently kept unset (1) on 32 bit systems, (2) when
kvmclock vsyscall is disabled, and (3) if kvmclock is not stable.
This poses a problem, because kvm_ptp needs pvti_cpu0_va, but (1) can
work on 32 bit, (2) has little relation to the vsyscall, and (3) does
not need stable kvmclock (although kvmclock won't be used for system
clock if it's not stable, so kvm_ptp is pointless in that case).
Expose pvti_cpu0_va whenever kvmclock is enabled to allow all users to
work with it.
This fixes a regression found on Gentoo: https://bugs.gentoo.org/658544.
Fixes: 9f08890ab906 ("x86/pvclock: add setter for pvclock_pvti_cpu0_va")
Cc: stable@vger.kernel.org
Reported-by: Andreas Steinmetz <ast@domdv.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Prevent a config where KVM_AMD=y and CRYPTO_DEV_CCP_DD=m thereby ensuring
that AMD Secure Processor device driver will be built-in when KVM_AMD is
also built-in.
v1->v2:
* Removed usage of 'imply' Kconfig option.
* Change patch commit message.
Fixes: 505c9e94d832 ("KVM: x86: prefer "depends on" to "select" for SEV")
Cc: <stable@vger.kernel.org> # 4.16.x
Signed-off-by: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This exit qualification was inadvertently dropped when the two
VM-entry failure blocks were coalesced.
Fixes: e79f245ddec1 ("X86/KVM: Properly update 'tsc_offset' to represent the running guest")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When we switched from doing rdmsr() to reading FS/GS base values from
current->thread we completely forgot about legacy 32-bit userspaces which
we still support in KVM (why?). task->thread.{fsbase,gsbase} are only
synced for 64-bit processes, calling save_fsgs_for_kvm() and using
its result from current is illegal for legacy processes.
There's no ARCH_SET_FS/GS prctls for legacy applications. Base MSRs are,
however, not always equal to zero. Intel's manual says (3.4.4 Segment
Loading Instructions in IA-32e Mode):
"In order to set up compatibility mode for an application, segment-load
instructions (MOV to Sreg, POP Sreg) work normally in 64-bit mode. An
entry is read from the system descriptor table (GDT or LDT) and is loaded
in the hidden portion of the segment register.
...
The hidden descriptor register fields for FS.base and GS.base are
physically mapped to MSRs in order to load all address bits supported by
a 64-bit implementation.
"
The issue was found by strace test suite where 32-bit ioctl_kvm_run test
started segfaulting.
Reported-by: Dmitry V. Levin <ldv@altlinux.org>
Bisected-by: Masatake YAMATO <yamato@redhat.com>
Fixes: 42b933b59721 ("x86/kvm/vmx: read MSR_{FS,KERNEL_GS}_BASE from current->thread")
Cc: stable@vger.kernel.org
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This lets userspace read the MSR_IA32_ARCH_CAPABILITIES and check that all
requested features are available on the host.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Markus reported that BTS is sporadically missing the tail of the trace
in the perf_event data buffer: [decode error (1): instruction overflow]
shown in GDB; and bisected it to the conversion of debug_store to PTI.
A little "optimization" crept into alloc_bts_buffer(), which mistakenly
placed bts_interrupt_threshold away from the 24-byte record boundary.
Intel SDM Vol 3B 17.4.9 says "This address must point to an offset from
the BTS buffer base that is a multiple of the BTS record size."
Revert "max" from a byte count to a record count, to calculate the
bts_interrupt_threshold correctly: which turns out to fix problem seen.
Fixes: c1961a4631da ("x86/events/intel/ds: Map debug buffers in cpu_entry_area")
Reported-and-tested-by: Markus T Metzger <markus.t.metzger@intel.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: stable@vger.kernel.org # v4.14+
Link: https://lkml.kernel.org/r/alpine.LSU.2.11.1807141248290.1614@eggly.anvils
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes from Juergen Gross:
"Two related fixes for a boot failure of Xen PV guests"
* tag 'for-linus-4.18-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: setup pv irq ops vector earlier
xen: remove global bit from __default_kernel_pte_mask for pv guests
|
|
- Build the kernel without the fix
- Add some flag to the purgatories KBUILD_CFLAGS,I used
-fno-asynchronous-unwind-tables
- Re-build the kernel
When you look at makes output you see that sha256.o is not re-build in the
last step. Also readelf -S still shows the .eh_frame section for
sha256.o.
With the fix sha256.o is rebuilt in the last step.
Without FORCE make does not detect changes only made to the command line
options. So object files might not be re-built even when they should be.
Fix this by adding FORCE where it is missing.
Link: http://lkml.kernel.org/r/20180704110044.29279-2-prudo@linux.ibm.com
Fixes: df6f2801f511 ("kernel/kexec_file.c: move purgatories sha256 to common code")
Signed-off-by: Philipp Rudo <prudo@linux.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org> [4.17+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Introduce the 'l1tf=' kernel command line option to allow for boot-time
switching of mitigation that is used on processors affected by L1TF.
The possible values are:
full
Provides all available mitigations for the L1TF vulnerability. Disables
SMT and enables all mitigations in the hypervisors. SMT control via
/sys/devices/system/cpu/smt/control is still possible after boot.
Hypervisors will issue a warning when the first VM is started in
a potentially insecure configuration, i.e. SMT enabled or L1D flush
disabled.
full,force
Same as 'full', but disables SMT control. Implies the 'nosmt=force'
command line option. sysfs control of SMT and the hypervisor flush
control is disabled.
flush
Leaves SMT enabled and enables the conditional hypervisor mitigation.
Hypervisors will issue a warning when the first VM is started in a
potentially insecure configuration, i.e. SMT enabled or L1D flush
disabled.
flush,nosmt
Disables SMT and enables the conditional hypervisor mitigation. SMT
control via /sys/devices/system/cpu/smt/control is still possible
after boot. If SMT is reenabled or flushing disabled at runtime
hypervisors will issue a warning.
flush,nowarn
Same as 'flush', but hypervisors will not warn when
a VM is started in a potentially insecure configuration.
off
Disables hypervisor mitigations and doesn't emit any warnings.
Default is 'flush'.
Let KVM adhere to these semantics, which means:
- 'lt1f=full,force' : Performe L1D flushes. No runtime control
possible.
- 'l1tf=full'
- 'l1tf-flush'
- 'l1tf=flush,nosmt' : Perform L1D flushes and warn on VM start if
SMT has been runtime enabled or L1D flushing
has been run-time enabled
- 'l1tf=flush,nowarn' : Perform L1D flushes and no warnings are emitted.
- 'l1tf=off' : L1D flushes are not performed and no warnings
are emitted.
KVM can always override the L1D flushing behavior using its 'vmentry_l1d_flush'
module parameter except when lt1f=full,force is set.
This makes KVM's private 'nosmt' option redundant, and as it is a bit
non-systematic anyway (this is something to control globally, not on
hypervisor level), remove that option.
Add the missing Documentation entry for the l1tf vulnerability sysfs file
while at it.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.202758176@linutronix.de
|