summaryrefslogtreecommitdiff
path: root/arch/x86
AgeCommit message (Collapse)Author
2019-11-15KVM: nVMX: Use kvm_set_msr to load IA32_PERF_GLOBAL_CTRL on VM-ExitOliver Upton
The existing implementation for loading the IA32_PERF_GLOBAL_CTRL MSR on VM-exit was incorrect, as the next call to atomic_switch_perf_msrs() could cause this value to be overwritten. Instead, call kvm_set_msr() which will allow atomic_switch_perf_msrs() to correctly set the values. Define a macro, SET_MSR_OR_WARN(), to set the MSR with kvm_set_msr() and WARN on failure. Suggested-by: Jim Mattson <jmattson@google.com> Co-developed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: Oliver Upton <oupton@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Reviewed-by: Peter Shier <pshier@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: nVMX: Check HOST_IA32_PERF_GLOBAL_CTRL on VM-EntryOliver Upton
Add a consistency check on nested vm-entry for host's IA32_PERF_GLOBAL_CTRL from vmcs12. Per Intel's SDM Vol 3 26.2.2: If the "load IA32_PERF_GLOBAL_CTRL" VM-exit control is 1, bits reserved in the IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register" Suggested-by: Jim Mattson <jmattson@google.com> Co-developed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: Oliver Upton <oupton@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Reviewed-by: Peter Shier <pshier@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: nVMX: Check GUEST_IA32_PERF_GLOBAL_CTRL on VM-EntryOliver Upton
Add condition to nested_vmx_check_guest_state() to check the validity of GUEST_IA32_PERF_GLOBAL_CTRL. Per Intel's SDM Vol 3 26.3.1.1: If the "load IA32_PERF_GLOBAL_CTRL" VM-entry control is 1, bits reserved in the IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register. Suggested-by: Jim Mattson <jmattson@google.com> Co-developed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: Oliver Upton <oupton@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Reviewed-by: Peter Shier <pshier@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: VMX: Add helper to check reserved bits in IA32_PERF_GLOBAL_CTRLOliver Upton
Create a helper function to check the validity of a proposed value for IA32_PERF_GLOBAL_CTRL from the existing check in intel_pmu_set_msr(). Per Intel's SDM, the reserved bits in IA32_PERF_GLOBAL_CTRL must be cleared for the corresponding host/guest state fields. Suggested-by: Jim Mattson <jmattson@google.com> Co-developed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: Oliver Upton <oupton@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Reviewed-by: Peter Shier <pshier@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: x86: Optimization: Requst TLB flush in fast_cr3_switch() instead of do ↵Liran Alon
it directly When KVM emulates a nested VMEntry (L1->L2 VMEntry), it switches mmu root page. If nEPT is used, this will happen from kvm_init_shadow_ept_mmu()->__kvm_mmu_new_cr3() and otherwise it will happpen from nested_vmx_load_cr3()->kvm_mmu_new_cr3(). Either case, __kvm_mmu_new_cr3() will use fast_cr3_switch() in attempt to switch to a previously cached root page. In case fast_cr3_switch() finds a matching cached root page, it will set it in mmu->root_hpa and request KVM_REQ_LOAD_CR3 such that on next entry to guest, KVM will set root HPA in appropriate hardware fields (e.g. vmcs->eptp). In addition, fast_cr3_switch() calls kvm_x86_ops->tlb_flush() in order to flush TLB as MMU root page was replaced. This works as mmu->root_hpa, which vmx_flush_tlb() use, was already replaced in cached_root_available(). However, this may result in unnecessary INVEPT execution because a KVM_REQ_TLB_FLUSH may have already been requested. For example, by prepare_vmcs02() in case L1 don't use VPID. Therefore, change fast_cr3_switch() to just request TLB flush on next entry to guest. Reviewed-by: Bhavesh Davda <bhavesh.davda@oracle.com> Signed-off-by: Liran Alon <liran.alon@oracle.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: x86/vPMU: Add lazy mechanism to release perf_event per vPMCLike Xu
Currently, a host perf_event is created for a vPMC functionality emulation. It’s unpredictable to determine if a disabled perf_event will be reused. If they are disabled and are not reused for a considerable period of time, those obsolete perf_events would increase host context switch overhead that could have been avoided. If the guest doesn't WRMSR any of the vPMC's MSRs during an entire vcpu sched time slice, and its independent enable bit of the vPMC isn't set, we can predict that the guest has finished the use of this vPMC, and then do request KVM_REQ_PMU in kvm_arch_sched_in and release those perf_events in the first call of kvm_pmu_handle_event() after the vcpu is scheduled in. This lazy mechanism delays the event release time to the beginning of the next scheduled time slice if vPMC's MSRs aren't changed during this time slice. If guest comes back to use this vPMC in next time slice, a new perf event would be re-created via perf_event_create_kernel_counter() as usual. Suggested-by: Wei Wang <wei.w.wang@intel.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Like Xu <like.xu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: x86/vPMU: Reuse perf_event to avoid unnecessary pmc_reprogram_counterLike Xu
The perf_event_create_kernel_counter() in the pmc_reprogram_counter() is a heavyweight and high-frequency operation, especially when host disables the watchdog (maximum 21000000 ns) which leads to an unacceptable latency of the guest NMI handler. It limits the use of vPMUs in the guest. When a vPMC is fully enabled, the legacy reprogram_*_counter() would stop and release its existing perf_event (if any) every time EVEN in most cases almost the same requested perf_event will be created and configured again. For each vPMC, if the reuqested config ('u64 eventsel' for gp and 'u8 ctrl' for fixed) is the same as its current config AND a new sample period based on pmc->counter is accepted by host perf interface, the current event could be reused safely as a new created one does. Otherwise, do release the undesirable perf_event and reprogram a new one as usual. It's light-weight to call pmc_pause_counter (disable, read and reset event) and pmc_resume_counter (recalibrate period and re-enable event) as guest expects instead of release-and-create again on any condition. Compared to use the filterable event->attr or hw.config, a new 'u64 current_config' field is added to save the last original programed config for each vPMC. Based on this implementation, the number of calls to pmc_reprogram_counter is reduced by ~82.5% for a gp sampling event and ~99.9% for a fixed event. In the usage of multiplexing perf sampling mode, the average latency of the guest NMI handler is reduced from 104923 ns to 48393 ns (~2.16x speed up). If host disables watchdog, the minimum latecy of guest NMI handler could be speed up at ~3413x (from 20407603 to 5979 ns) and at ~786x in the average. Suggested-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Like Xu <like.xu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: x86/vPMU: Introduce a new kvm_pmu_ops->msr_idx_to_pmc callbackLike Xu
Introduce a new callback msr_idx_to_pmc that returns a struct kvm_pmc*, and change kvm_pmu_is_valid_msr to return ".msr_idx_to_pmc(vcpu, msr) || .is_valid_msr(vcpu, msr)" and AMD just returns false from .is_valid_msr. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Reported-by: kbuild test robot <lkp@intel.com> Signed-off-by: Like Xu <like.xu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: x86/vPMU: Rename pmu_ops callbacks from msr_idx to rdpmc_ecxLike Xu
The leagcy pmu_ops->msr_idx_to_pmc is only called in kvm_pmu_rdpmc, so this function actually receives the contents of ECX before RDPMC, and translates it to a kvm_pmc. Let's clarify its semantic by renaming the existing msr_idx_to_pmc to rdpmc_ecx_to_pmc, and is_valid_msr_idx to is_valid_rdpmc_ecx; likewise for the wrapper kvm_pmu_is_valid_msr_idx. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Like Xu <like.xu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: nVMX: Update vmcs01 TPR_THRESHOLD if L2 changed L1 TPRLiran Alon
When L1 don't use TPR-Shadow to run L2, L0 configures vmcs02 without TPR-Shadow and install intercepts on CR8 access (load and store). If L1 do not intercept L2 CR8 access, L0 intercepts on those accesses will emulate load/store on L1's LAPIC TPR. If in this case L2 lowers TPR such that there is now an injectable interrupt to L1, apic_update_ppr() will request a KVM_REQ_EVENT which will trigger a call to update_cr8_intercept() to update TPR-Threshold to highest pending IRR priority. However, this update to TPR-Threshold is done while active vmcs is vmcs02 instead of vmcs01. Thus, when later at some point L0 will emulate an exit from L2 to L1, L1 will still run with high TPR-Threshold. This will result in every VMEntry to L1 to immediately exit on TPR_BELOW_THRESHOLD and continue to do so infinitely until some condition will cause KVM_REQ_EVENT to be set. (Note that TPR_BELOW_THRESHOLD exit handler do not set KVM_REQ_EVENT until apic_update_ppr() will notice a new injectable interrupt for PPR) To fix this issue, change update_cr8_intercept() such that if L2 lowers L1's TPR in a way that requires to lower L1's TPR-Threshold, save update to TPR-Threshold and apply it to vmcs01 when L0 emulates an exit from L2 to L1. Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Liran Alon <liran.alon@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: VMX: Refactor update_cr8_intercept()Liran Alon
No functional changes. Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Liran Alon <liran.alon@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: SVM: Remove check if APICv enabled in SVM update_cr8_intercept() handlerLiran Alon
This check is unnecessary as x86 update_cr8_intercept() which calls this VMX/SVM specific callback already performs this check. Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Liran Alon <liran.alon@oracle.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: APIC: add helper func to remove duplicate code in kvm_pv_send_ipiMiaohe Lin
There are some duplicate code in kvm_pv_send_ipi when deal with ipi bitmap. Add helper func to remove it, and eliminate odd out label, get rid of unnecessary kvm_lapic_irq field init and so on. Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: X86: avoid unused setup_syscalls_segments call when SYSCALL check failedMiaohe Lin
When SYSCALL/SYSENTER ability check failed, cs and ss is inited but remain not used. Delay initializing cs and ss until SYSCALL/SYSENTER ability check passed. Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: VMX: Consume pending LAPIC INIT event when exit on INIT_SIGNALLiran Alon
Intel SDM section 25.2 OTHER CAUSES OF VM EXITS specifies the following on INIT signals: "Such exits do not modify register state or clear pending events as they would outside of VMX operation." When commit 4b9852f4f389 ("KVM: x86: Fix INIT signal handling in various CPU states") was applied, I interepted above Intel SDM statement such that INIT_SIGNAL exit don’t consume the LAPIC INIT pending event. However, when Nadav Amit run matching kvm-unit-test on a bare-metal machine, it turned out my interpetation was wrong. i.e. INIT_SIGNAL exit does consume the LAPIC INIT pending event. (See: https://www.spinics.net/lists/kvm/msg196757.html) Therefore, fix KVM code to behave as observed on bare-metal. Fixes: 4b9852f4f389 ("KVM: x86: Fix INIT signal handling in various CPU states") Reported-by: Nadav Amit <nadav.amit@gmail.com> Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com> Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Liran Alon <liran.alon@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: x86: Prevent set vCPU into INIT/SIPI_RECEIVED state when INIT are latchedLiran Alon
Commit 4b9852f4f389 ("KVM: x86: Fix INIT signal handling in various CPU states") fixed KVM to also latch pending LAPIC INIT event when vCPU is in VMX operation. However, current API of KVM_SET_MP_STATE allows userspace to put vCPU into KVM_MP_STATE_SIPI_RECEIVED or KVM_MP_STATE_INIT_RECEIVED even when vCPU is in VMX operation. Fix this by introducing a util method to check if vCPU state latch INIT signals and use it in KVM_SET_MP_STATE handler. Fixes: 4b9852f4f389 ("KVM: x86: Fix INIT signal handling in various CPU states") Reported-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com> Signed-off-by: Liran Alon <liran.alon@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: x86: Evaluate latched_init in KVM_SET_VCPU_EVENTS when vCPU not in SMMLiran Alon
Commit 4b9852f4f389 ("KVM: x86: Fix INIT signal handling in various CPU states") fixed KVM to also latch pending LAPIC INIT event when vCPU is in VMX operation. However, current API of KVM_SET_VCPU_EVENTS defines this field as part of SMM state and only set pending LAPIC INIT event if vCPU is specified to be in SMM mode (events->smi.smm is set). Change KVM_SET_VCPU_EVENTS handler to set pending LAPIC INIT event by latched_init field regardless of if vCPU is in SMM mode or not. Fixes: 4b9852f4f389 ("KVM: x86: Fix INIT signal handling in various CPU states") Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com> Signed-off-by: Liran Alon <liran.alon@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15x86: retpolines: eliminate retpoline from msr event handlersAndrea Arcangeli
It's enough to check the value and issue the direct call. After this commit is applied, here the most common retpolines executed under a high resolution timer workload in the guest on a VMX host: [..] @[ trace_retpoline+1 __trace_retpoline+30 __x86_indirect_thunk_rax+33 do_syscall_64+89 entry_SYSCALL_64_after_hwframe+68 ]: 267 @[]: 2256 @[ trace_retpoline+1 __trace_retpoline+30 __x86_indirect_thunk_rax+33 __kvm_wait_lapic_expire+284 vmx_vcpu_run.part.97+1091 vcpu_enter_guest+377 kvm_arch_vcpu_ioctl_run+261 kvm_vcpu_ioctl+559 do_vfs_ioctl+164 ksys_ioctl+96 __x64_sys_ioctl+22 do_syscall_64+89 entry_SYSCALL_64_after_hwframe+68 ]: 2390 @[]: 33410 @total: 315707 Note the highest hit above is __delay so probably not worth optimizing even if it would be more frequent than 2k hits per sec. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: retpolines: x86: eliminate retpoline from svm.c exit handlersAndrea Arcangeli
It's enough to check the exit value and issue a direct call to avoid the retpoline for all the common vmexit reasons. After this commit is applied, here the most common retpolines executed under a high resolution timer workload in the guest on a SVM host: [..] @[ trace_retpoline+1 __trace_retpoline+30 __x86_indirect_thunk_rax+33 ktime_get_update_offsets_now+70 hrtimer_interrupt+131 smp_apic_timer_interrupt+106 apic_timer_interrupt+15 start_sw_timer+359 restart_apic_timer+85 kvm_set_msr_common+1497 msr_interception+142 vcpu_enter_guest+684 kvm_arch_vcpu_ioctl_run+261 kvm_vcpu_ioctl+559 do_vfs_ioctl+164 ksys_ioctl+96 __x64_sys_ioctl+22 do_syscall_64+89 entry_SYSCALL_64_after_hwframe+68 ]: 1940 @[ trace_retpoline+1 __trace_retpoline+30 __x86_indirect_thunk_r12+33 force_qs_rnp+217 rcu_gp_kthread+1270 kthread+268 ret_from_fork+34 ]: 4644 @[]: 25095 @[ trace_retpoline+1 __trace_retpoline+30 __x86_indirect_thunk_rax+33 lapic_next_event+28 clockevents_program_event+148 hrtimer_start_range_ns+528 start_sw_timer+356 restart_apic_timer+85 kvm_set_msr_common+1497 msr_interception+142 vcpu_enter_guest+684 kvm_arch_vcpu_ioctl_run+261 kvm_vcpu_ioctl+559 do_vfs_ioctl+164 ksys_ioctl+96 __x64_sys_ioctl+22 do_syscall_64+89 entry_SYSCALL_64_after_hwframe+68 ]: 41474 @[ trace_retpoline+1 __trace_retpoline+30 __x86_indirect_thunk_rax+33 clockevents_program_event+148 hrtimer_start_range_ns+528 start_sw_timer+356 restart_apic_timer+85 kvm_set_msr_common+1497 msr_interception+142 vcpu_enter_guest+684 kvm_arch_vcpu_ioctl_run+261 kvm_vcpu_ioctl+559 do_vfs_ioctl+164 ksys_ioctl+96 __x64_sys_ioctl+22 do_syscall_64+89 entry_SYSCALL_64_after_hwframe+68 ]: 41474 @[ trace_retpoline+1 __trace_retpoline+30 __x86_indirect_thunk_rax+33 ktime_get+58 clockevents_program_event+84 hrtimer_start_range_ns+528 start_sw_timer+356 restart_apic_timer+85 kvm_set_msr_common+1497 msr_interception+142 vcpu_enter_guest+684 kvm_arch_vcpu_ioctl_run+261 kvm_vcpu_ioctl+559 do_vfs_ioctl+164 ksys_ioctl+96 __x64_sys_ioctl+22 do_syscall_64+89 entry_SYSCALL_64_after_hwframe+68 ]: 41887 @[ trace_retpoline+1 __trace_retpoline+30 __x86_indirect_thunk_rax+33 lapic_next_event+28 clockevents_program_event+148 hrtimer_try_to_cancel+168 hrtimer_cancel+21 kvm_set_lapic_tscdeadline_msr+43 kvm_set_msr_common+1497 msr_interception+142 vcpu_enter_guest+684 kvm_arch_vcpu_ioctl_run+261 kvm_vcpu_ioctl+559 do_vfs_ioctl+164 ksys_ioctl+96 __x64_sys_ioctl+22 do_syscall_64+89 entry_SYSCALL_64_after_hwframe+68 ]: 42723 @[ trace_retpoline+1 __trace_retpoline+30 __x86_indirect_thunk_rax+33 clockevents_program_event+148 hrtimer_try_to_cancel+168 hrtimer_cancel+21 kvm_set_lapic_tscdeadline_msr+43 kvm_set_msr_common+1497 msr_interception+142 vcpu_enter_guest+684 kvm_arch_vcpu_ioctl_run+261 kvm_vcpu_ioctl+559 do_vfs_ioctl+164 ksys_ioctl+96 __x64_sys_ioctl+22 do_syscall_64+89 entry_SYSCALL_64_after_hwframe+68 ]: 42766 @[ trace_retpoline+1 __trace_retpoline+30 __x86_indirect_thunk_rax+33 ktime_get+58 clockevents_program_event+84 hrtimer_try_to_cancel+168 hrtimer_cancel+21 kvm_set_lapic_tscdeadline_msr+43 kvm_set_msr_common+1497 msr_interception+142 vcpu_enter_guest+684 kvm_arch_vcpu_ioctl_run+261 kvm_vcpu_ioctl+559 do_vfs_ioctl+164 ksys_ioctl+96 __x64_sys_ioctl+22 do_syscall_64+89 entry_SYSCALL_64_after_hwframe+68 ]: 42848 @[ trace_retpoline+1 __trace_retpoline+30 __x86_indirect_thunk_rax+33 ktime_get+58 start_sw_timer+279 restart_apic_timer+85 kvm_set_msr_common+1497 msr_interception+142 vcpu_enter_guest+684 kvm_arch_vcpu_ioctl_run+261 kvm_vcpu_ioctl+559 do_vfs_ioctl+164 ksys_ioctl+96 __x64_sys_ioctl+22 do_syscall_64+89 entry_SYSCALL_64_after_hwframe+68 ]: 499845 @total: 1780243 SVM has no TSC based programmable preemption timer so it is invoking ktime_get() frequently. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: retpolines: x86: eliminate retpoline from vmx.c exit handlersAndrea Arcangeli
It's enough to check the exit value and issue a direct call to avoid the retpoline for all the common vmexit reasons. Of course CONFIG_RETPOLINE already forbids gcc to use indirect jumps while compiling all switch() statements, however switch() would still allow the compiler to bisect the case value. It's more efficient to prioritize the most frequent vmexits instead. The halt may be slow paths from the point of the guest, but not necessarily so from the point of the host if the host runs at full CPU capacity and no host CPU is ever left idle. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: x86: optimize more exit handlers in vmx.cAndrea Arcangeli
Eliminate wasteful call/ret non RETPOLINE case and unnecessary fentry dynamic tracing hooking points. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15x86/pci: Remove #ifdef __KERNEL__ guard from <asm/pci.h>Christoph Hellwig
pci.h is not a UAPI header, so the __KERNEL__ ifdef is rather pointless. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191113071836.21041-4-hch@lst.de
2019-11-15x86/pci: Remove pci_64.hChristoph Hellwig
This file only contains external declarations for two non-existing function pointers. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191113071836.21041-3-hch@lst.de
2019-11-15x86: Remove the calgary IOMMU driverChristoph Hellwig
The calgary IOMMU was only used on high-end IBM systems in the early x86_64 age and has no known users left. Remove it to avoid having to touch it for pending changes to the DMA API. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191113071836.21041-2-hch@lst.de
2019-11-15x86/hyperv: Initialize clockevents earlier in CPU onliningMichael Kelley
Hyper-V has historically initialized stimer-based clockevents late in the process of onlining a CPU because clockevents depend on stimer interrupts. In the original Hyper-V design, stimer interrupts generate a VMbus message, so the VMbus machinery must be running first, and VMbus can't be initialized until relatively late. On x86/64, LAPIC timer based clockevents are used during early initialization before VMbus and stimer-based clockevents are ready, and again during CPU offlining after the stimer clockevents have been shut down. Unfortunately, this design creates problems when offlining CPUs for hibernation or other purposes. stimer-based clockevents are shut down relatively early in the offlining process, so clockevents_unbind_device() must be used to fallback to the LAPIC-based clockevents for the remainder of the offlining process. Furthermore, the late initialization and early shutdown of stimer-based clockevents doesn't work well on ARM64 since there is no other timer like the LAPIC to fallback to. So CPU onlining and offlining doesn't work properly. Fix this by recognizing that stimer Direct Mode is the normal path for newer versions of Hyper-V on x86/64, and the only path on other architectures. With stimer Direct Mode, stimer interrupts don't require any VMbus machinery. stimer clockevents can be initialized and shut down consistent with how it is done for other clockevent devices. While the old VMbus-based stimer interrupts must still be supported for backward compatibility on x86, that mode of operation can be treated as legacy. So add a new Hyper-V stimer entry in the CPU hotplug state list, and use that new state when in Direct Mode. Update the Hyper-V clocksource driver to allocate and initialize stimer clockevents earlier during boot. Update Hyper-V initialization and the VMbus driver to use this new design. As a result, the LAPIC timer is no longer used during boot or CPU onlining/offlining and clockevents_unbind_device() is not called. But retain the old design as a legacy implementation for older versions of Hyper-V that don't support Direct Mode. Signed-off-by: Michael Kelley <mikelley@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Dexuan Cui <decui@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Link: https://lkml.kernel.org/r/1573607467-9456-1-git-send-email-mikelley@microsoft.com
2019-11-15Merge branch 'linus' into x86/hypervThomas Gleixner
Pick up upstream fixes to avoid conflicts.
2019-11-14x86/crash: Align function arguments on opening bracesBorislav Petkov
... or let function calls stick out and thus remain on a single line, even if the 80 cols rule is violated by a couple of chars, for better readability. No functional changes. Signed-off-by: Borislav Petkov <bp@suse.de> Cc: x86@kernel.org Link: https://lkml.kernel.org/r/20191114172200.19563-1-bp@alien8.de
2019-11-14x86/kdump: Remove the backup region handlingLianbo Jiang
When the crashkernel kernel command line option is specified, the low 1M memory will always be reserved now. Therefore, it's not necessary to create a backup region anymore and also no need to copy the contents of the first 640k to it. Remove all the code related to handling that backup region. [ bp: Massage commit message. ] Signed-off-by: Lianbo Jiang <lijiang@redhat.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: bhe@redhat.com Cc: Dave Young <dyoung@redhat.com> Cc: d.hatayama@fujitsu.com Cc: dhowells@redhat.com Cc: ebiederm@xmission.com Cc: horms@verge.net.au Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jürgen Gross <jgross@suse.com> Cc: kexec@lists.infradead.org Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: vgoyal@redhat.com Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20191108090027.11082-3-lijiang@redhat.com
2019-11-14KVM: x86/mmu: Take slots_lock when using kvm_mmu_zap_all_fast()Sean Christopherson
Acquire the per-VM slots_lock when zapping all shadow pages as part of toggling nx_huge_pages. The fast zap algorithm relies on exclusivity (via slots_lock) to identify obsolete vs. valid shadow pages, because it uses a single bit for its generation number. Holding slots_lock also obviates the need to acquire a read lock on the VM's srcu. Failing to take slots_lock when toggling nx_huge_pages allows multiple instances of kvm_mmu_zap_all_fast() to run concurrently, as the other user, KVM_SET_USER_MEMORY_REGION, does not take the global kvm_lock. (kvm_mmu_zap_all_fast() does take kvm->mmu_lock, but it can be temporarily dropped by kvm_zap_obsolete_pages(), so it is not enough to enforce exclusivity). Concurrent fast zap instances causes obsolete shadow pages to be incorrectly identified as valid due to the single bit generation number wrapping, which results in stale shadow pages being left in KVM's MMU and leads to all sorts of undesirable behavior. The bug is easily confirmed by running with CONFIG_PROVE_LOCKING and toggling nx_huge_pages via its module param. Note, until commit 4ae5acbc4936 ("KVM: x86/mmu: Take slots_lock when using kvm_mmu_zap_all_fast()", 2019-11-13) the fast zap algorithm used an ulong-sized generation instead of relying on exclusivity for correctness, but all callers except the recently added set_nx_huge_pages() needed to hold slots_lock anyways. Therefore, this patch does not have to be backported to stable kernels. Given that toggling nx_huge_pages is by no means a fast path, force it to conform to the current approach instead of reintroducing the previous generation count. Fixes: b8e8c8303ff28 ("kvm: mmu: ITLB_MULTIHIT mitigation", but NOT FOR STABLE) Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-14x86/kdump: Always reserve the low 1M when the crashkernel option is specifiedLianbo Jiang
On x86, purgatory() copies the first 640K of memory to a backup region because the kernel needs those first 640K for the real mode trampoline during boot, among others. However, when SME is enabled, the kernel cannot properly copy the old memory to the backup area but reads only its encrypted contents. The result is that the crash tool gets invalid pointers when parsing vmcore: crash> kmem -s|grep -i invalid kmem: dma-kmalloc-512: slab:ffffd77680001c00 invalid freepointer:a6086ac099f0c5a4 kmem: dma-kmalloc-512: slab:ffffd77680001c00 invalid freepointer:a6086ac099f0c5a4 crash> So reserve the remaining low 1M memory when the crashkernel option is specified (after reserving real mode memory) so that allocated memory does not fall into the low 1M area and thus the copying of the contents of the first 640k to a backup region in purgatory() can be avoided altogether. This way, it does not need to be included in crash dumps or used for anything except the trampolines that must live in the low 1M. [ bp: Heavily rewrite commit message, flip check logic in crash_reserve_low_1M().] Signed-off-by: Lianbo Jiang <lijiang@redhat.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: bhe@redhat.com Cc: Dave Young <dyoung@redhat.com> Cc: d.hatayama@fujitsu.com Cc: dhowells@redhat.com Cc: ebiederm@xmission.com Cc: horms@verge.net.au Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jürgen Gross <jgross@suse.com> Cc: kexec@lists.infradead.org Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: vgoyal@redhat.com Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20191108090027.11082-2-lijiang@redhat.com Link: https://bugzilla.kernel.org/show_bug.cgi?id=204793
2019-11-14x86/crash: Add a forward declaration of struct kimageLianbo Jiang
Add a forward declaration of struct kimage to the crash.h header because future changes will invoke a crash-specific function from the realmode init path and the compiler will complain otherwise like this: In file included from arch/x86/realmode/init.c:11: ./arch/x86/include/asm/crash.h:5:32: warning: ‘struct kimage’ declared inside\ parameter list will not be visible outside of this definition or declaration 5 | int crash_load_segments(struct kimage *image); | ^~~~~~ ./arch/x86/include/asm/crash.h:6:37: warning: ‘struct kimage’ declared inside\ parameter list will not be visible outside of this definition or declaration 6 | int crash_copy_backup_region(struct kimage *image); | ^~~~~~ ./arch/x86/include/asm/crash.h:7:39: warning: ‘struct kimage’ declared inside\ parameter list will not be visible outside of this definition or declaration 7 | int crash_setup_memmap_entries(struct kimage *image, | [ bp: Rewrite the commit message. ] Reported-by: kbuild test robot <lkp@intel.com> Signed-off-by: Lianbo Jiang <lijiang@redhat.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: bhe@redhat.com Cc: d.hatayama@fujitsu.com Cc: dhowells@redhat.com Cc: dyoung@redhat.com Cc: ebiederm@xmission.com Cc: horms@verge.net.au Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jürgen Gross <jgross@suse.com> Cc: kexec@lists.infradead.org Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: vgoyal@redhat.com Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20191108090027.11082-4-lijiang@redhat.com Link: https://lkml.kernel.org/r/201910310233.EJRtTMWP%25lkp@intel.com
2019-11-14xen/mcelog: add PPIN to record when availableJan Beulich
This is to augment commit 3f5a7896a5 ("x86/mce: Include the PPIN in MCE records when available"). I'm also adding "synd" and "ipid" fields to struct xen_mce, in an attempt to keep field offsets in sync with struct mce. These two fields won't get populated for now, though. Signed-off-by: Jan Beulich <jbeulich@suse.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com>
2019-11-13KVM: X86: Reset the three MSR list number variables to 0 in kvm_init_msr_list()Xiaoyao Li
When applying commit 7a5ee6edb42e ("KVM: X86: Fix initialization of MSR lists"), it forgot to reset the three MSR lists number varialbes to 0 while removing the useless conditionals. Fixes: 7a5ee6edb42e (KVM: X86: Fix initialization of MSR lists) Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-13kvm: x86: disable shattered huge page recovery for PREEMPT_RT.Paolo Bonzini
If a huge page is recovered (and becomes no executable) while another thread is executing it, the resulting contention on mmu_lock can cause latency spikes. Disabling recovery for PREEMPT_RT kernels fixes this issue. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-13ftrace/x86: Tell objtool to ignore nondeterministic ftrace stack layoutJosh Poimboeuf
Objtool complains about the new ftrace direct trampoline code: arch/x86/kernel/ftrace_64.o: warning: objtool: ftrace_regs_caller()+0x190: stack state mismatch: cfa1=7+16 cfa2=7+24 Typically, code has a deterministic stack layout, such that at a given instruction address, the stack frame size is always the same. That's not the case for the new ftrace_regs_caller() code after it adjusts the stack for the direct case. Just plead ignorance and assume it's always the non-direct path. Note this creates a tiny window for ORC to get confused. Link: http://lkml.kernel.org/r/20191108225100.ea3bhsbdf6oerj6g@treble Reported-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-11-13ftrace/x86: Add a counter to test function_graph with directSteven Rostedt (VMware)
As testing for direct calls from the function graph tracer adds a little overhead (which is a lot when tracing every function), add a counter that can be used to test if function_graph tracer needs to test for a direct caller or not. It would have been nicer if we could use a static branch, but the static branch logic fails when used within the function graph tracer trampoline. Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-11-13ftrace/x86: Add register_ftrace_direct() for custom trampolinesSteven Rostedt (VMware)
Enable x86 to allow for register_ftrace_direct(), where a custom trampoline may be called directly from an ftrace mcount/fentry location. Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-11-13x86/resctrl: Fix potential lockdep warningXiaochen Shen
rdtgroup_cpus_write() and mkdir_rdt_prepare() call rdtgroup_kn_lock_live() -> kernfs_to_rdtgroup() to get 'rdtgrp', and then call the rdt_last_cmd_{clear,puts,...}() functions which will check if rdtgroup_mutex is held/requires its caller to hold rdtgroup_mutex. But if 'rdtgrp' returned from kernfs_to_rdtgroup() is NULL, rdtgroup_mutex is not held and calling rdt_last_cmd_{clear,puts,...}() will result in a self-incurred, potential lockdep warning. Remove the rdt_last_cmd_{clear,puts,...}() calls in these two paths. Just returning error should be sufficient to report to the user that the entry doesn't exist any more. [ bp: Massage. ] Fixes: 94457b36e8a5 ("x86/intel_rdt: Add diagnostics when writing the cpus file") Fixes: cfd0f34e4cd5 ("x86/intel_rdt: Add diagnostics when making directories") Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Fenghua Yu <fenghua.yu@intel.com> Reviewed-by: Reinette Chatre <reinette.chatre@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: pei.p.jia@intel.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/1573079796-11713-1-git-send-email-xiaochen.shen@intel.com
2019-11-13perf/x86/intel/pt: Prevent redundant WRMSRsAlexander Shishkin
With recent optimizations to AUX and PT buffer management code (high order AUX allocations, opportunistic Single Range Output), it is far more likely now that the output MSRs won't need reprogramming on every sched-in. To avoid needless WRMSRs of those registers, cache their values and only write them when needed. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: https://lkml.kernel.org/r/20191105082701.78442-3-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-13perf/x86/intel/pt: Opportunistically use single range output modeAlexander Shishkin
Most of PT implementations support Single Range Output mode, which is an alternative to ToPA that can be used for a single contiguous buffer and if we don't require an interrupt, that is, in AUX snapshot mode. Now that perf core will use high order allocations for the AUX buffer, in many cases the first condition will also be satisfied. The two most obvious benefits of the Single Range Output mode over the ToPA are: * not having to allocate the ToPA table(s), * not using the ToPA walk hardware. Make use of this functionality where available and appropriate. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: https://lkml.kernel.org/r/20191105082701.78442-2-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-13perf/x86/intel/pt: Add sampling supportAlexander Shishkin
Add AUX sampling support to the PT PMU: implement an NMI-safe callback that takes a snapshot of the buffer without touching the event states. This is done for PT events that don't use PMIs, that is, snapshot mode (RO mapping of the AUX area). Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: adrian.hunter@intel.com Cc: mathieu.poirier@linaro.org Link: https://lkml.kernel.org/r/20191025140835.53665-4-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-13perf/x86/intel/pt: Factor out pt_config_start()Alexander Shishkin
PT trace is now enabled at the bottom of the event configuration function that takes care of all configuration bits related to a given event, including the address filter update. This is only needed where the event configuration changes, that is, in ->add()/->start(). In the interrupt path we can use a lighter version that keeps the configuration intact, since it hasn't changed, and only flips the enable bit. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: adrian.hunter@intel.com Cc: mathieu.poirier@linaro.org Link: https://lkml.kernel.org/r/20191025140835.53665-3-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-12Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm fixes from Paolo Bonzini: "Fix unwinding of KVM_CREATE_VM failure, VT-d posted interrupts, DAX/ZONE_DEVICE, and module unload/reload" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: MMU: Do not treat ZONE_DEVICE pages as being reserved KVM: VMX: Introduce pi_is_pir_empty() helper KVM: VMX: Do not change PID.NDST when loading a blocked vCPU KVM: VMX: Consider PID.PIR to determine if vCPU has pending interrupts KVM: VMX: Fix comment to specify PID.ON instead of PIR.ON KVM: X86: Fix initialization of MSR lists KVM: fix placement of refcount initialization KVM: Fix NULL-ptr deref after kvm_create_vm fails
2019-11-12Merge branch 'x86-pti-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 TSX Async Abort and iTLB Multihit mitigations from Thomas Gleixner: "The performance deterioration departement is not proud at all of presenting the seventh installment of speculation mitigations and hardware misfeature workarounds: 1) TSX Async Abort (TAA) - 'The Annoying Affair' TAA is a hardware vulnerability that allows unprivileged speculative access to data which is available in various CPU internal buffers by using asynchronous aborts within an Intel TSX transactional region. The mitigation depends on a microcode update providing a new MSR which allows to disable TSX in the CPU. CPUs which have no microcode update can be mitigated by disabling TSX in the BIOS if the BIOS provides a tunable. Newer CPUs will have a bit set which indicates that the CPU is not vulnerable, but the MSR to disable TSX will be available nevertheless as it is an architected MSR. That means the kernel provides the ability to disable TSX on the kernel command line, which is useful as TSX is a truly useful mechanism to accelerate side channel attacks of all sorts. 2) iITLB Multihit (NX) - 'No eXcuses' iTLB Multihit is an erratum where some Intel processors may incur a machine check error, possibly resulting in an unrecoverable CPU lockup, when an instruction fetch hits multiple entries in the instruction TLB. This can occur when the page size is changed along with either the physical address or cache type. A malicious guest running on a virtualized system can exploit this erratum to perform a denial of service attack. The workaround is that KVM marks huge pages in the extended page tables as not executable (NX). If the guest attempts to execute in such a page, the page is broken down into 4k pages which are marked executable. The workaround comes with a mechanism to recover these shattered huge pages over time. Both issues come with full documentation in the hardware vulnerabilities section of the Linux kernel user's and administrator's guide. Thanks to all patch authors and reviewers who had the extraordinary priviledge to be exposed to this nuisance. Special thanks to Borislav Petkov for polishing the final TAA patch set and to Paolo Bonzini for shepherding the KVM iTLB workarounds and providing also the backports to stable kernels for those!" * 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/speculation/taa: Fix printing of TAA_MSG_SMT on IBRS_ALL CPUs Documentation: Add ITLB_MULTIHIT documentation kvm: x86: mmu: Recovery of shattered NX large pages kvm: Add helper function for creating VM worker threads kvm: mmu: ITLB_MULTIHIT mitigation cpu/speculation: Uninline and export CPU mitigations helpers x86/cpu: Add Tremont to the cpu vulnerability whitelist x86/bugs: Add ITLB_MULTIHIT bug infrastructure x86/tsx: Add config options to set tsx=on|off|auto x86/speculation/taa: Add documentation for TSX Async Abort x86/tsx: Add "auto" option to the tsx= cmdline parameter kvm/x86: Export MDS_NO=0 to guests when TSX is enabled x86/speculation/taa: Add sysfs reporting for TSX Async Abort x86/speculation/taa: Add mitigation for TSX Async Abort x86/cpu: Add a "tsx=" cmdline option with TSX disabled by default x86/cpu: Add a helper function x86_read_arch_cap_msr() x86/msr: Add the IA32_TSX_CTRL MSR
2019-11-12Merge branches 'iommu/fixes', 'arm/qcom', 'arm/renesas', 'arm/rockchip', ↵Joerg Roedel
'arm/mediatek', 'arm/tegra', 'arm/smmu', 'x86/amd', 'x86/vt-d', 'virtio' and 'core' into next
2019-11-12x86/boot: Introduce setup_indirectDaniel Kiper
The setup_data is a bit awkward to use for extremely large data objects, both because the setup_data header has to be adjacent to the data object and because it has a 32-bit length field. However, it is important that intermediate stages of the boot process have a way to identify which chunks of memory are occupied by kernel data. Thus introduce an uniform way to specify such indirect data as setup_indirect struct and SETUP_INDIRECT type. And finally bump setup_header version in arch/x86/boot/header.S. Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com> Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Ross Philipson <ross.philipson@oracle.com> Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com> Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: ard.biesheuvel@linaro.org Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: dave.hansen@linux.intel.com Cc: eric.snowberg@oracle.com Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Juergen Gross <jgross@suse.com> Cc: kanth.ghatraju@oracle.com Cc: linux-doc@vger.kernel.org Cc: linux-efi <linux-efi@vger.kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: rdunlap@infradead.org Cc: ross.philipson@oracle.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Cc: xen-devel@lists.xenproject.org Link: https://lkml.kernel.org/r/20191112134640.16035-4-daniel.kiper@oracle.com
2019-11-12x86/boot: Introduce kernel_info.setup_type_maxDaniel Kiper
This field contains maximal allowed type for setup_data. Do not bump setup_header version in arch/x86/boot/header.S because it will be followed by additional changes coming into the Linux/x86 boot protocol. Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com> Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Reviewed-by: Ross Philipson <ross.philipson@oracle.com> Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: ard.biesheuvel@linaro.org Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: dave.hansen@linux.intel.com Cc: eric.snowberg@oracle.com Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Juergen Gross <jgross@suse.com> Cc: kanth.ghatraju@oracle.com Cc: linux-doc@vger.kernel.org Cc: linux-efi <linux-efi@vger.kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: rdunlap@infradead.org Cc: ross.philipson@oracle.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Cc: xen-devel@lists.xenproject.org Link: https://lkml.kernel.org/r/20191112134640.16035-3-daniel.kiper@oracle.com
2019-11-12x86/boot: Introduce kernel_infoDaniel Kiper
The relationships between the headers are analogous to the various data sections: setup_header = .data boot_params/setup_data = .bss What is missing from the above list? That's right: kernel_info = .rodata We have been (ab)using .data for things that could go into .rodata or .bss for a long time, for lack of alternatives and -- especially early on -- inertia. Also, the BIOS stub is responsible for creating boot_params, so it isn't available to a BIOS-based loader (setup_data is, though). setup_header is permanently limited to 144 bytes due to the reach of the 2-byte jump field, which doubles as a length field for the structure, combined with the size of the "hole" in struct boot_params that a protected-mode loader or the BIOS stub has to copy it into. It is currently 119 bytes long, which leaves us with 25 very precious bytes. This isn't something that can be fixed without revising the boot protocol entirely, breaking backwards compatibility. boot_params proper is limited to 4096 bytes, but can be arbitrarily extended by adding setup_data entries. It cannot be used to communicate properties of the kernel image, because it is .bss and has no image-provided content. kernel_info solves this by providing an extensible place for information about the kernel image. It is readonly, because the kernel cannot rely on a bootloader copying its contents anywhere, but that is OK; if it becomes necessary it can still contain data items that an enabled bootloader would be expected to copy into a setup_data chunk. Do not bump setup_header version in arch/x86/boot/header.S because it will be followed by additional changes coming into the Linux/x86 boot protocol. Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com> Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Reviewed-by: Ross Philipson <ross.philipson@oracle.com> Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: ard.biesheuvel@linaro.org Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: dave.hansen@linux.intel.com Cc: eric.snowberg@oracle.com Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Juergen Gross <jgross@suse.com> Cc: kanth.ghatraju@oracle.com Cc: linux-doc@vger.kernel.org Cc: linux-efi <linux-efi@vger.kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: rdunlap@infradead.org Cc: ross.philipson@oracle.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Cc: xen-devel@lists.xenproject.org Link: https://lkml.kernel.org/r/20191112134640.16035-2-daniel.kiper@oracle.com
2019-11-12x86/mce/therm_throt: Optimize notifications of thermal throttleSrinivas Pandruvada
Some modern systems have very tight thermal tolerances. Because of this they may cross thermal thresholds when running normal workloads (even during boot). The CPU hardware will react by limiting power/frequency and using duty cycles to bring the temperature back into normal range. Thus users may see a "critical" message about the "temperature above threshold" which is soon followed by "temperature/speed normal". These messages are rate-limited, but still may repeat every few minutes. This issue became worse starting with the Ivy Bridge generation of CPUs because they include a TCC activation offset in the MSR IA32_TEMPERATURE_TARGET. OEMs use this to provide alerts long before critical temperatures are reached. A test run on a laptop with Intel 8th Gen i5 core for two hours with a workload resulted in 20K+ thermal interrupts per CPU for core level and another 20K+ interrupts at package level. The kernel logs were full of throttling messages. The real value of these threshold interrupts, is to debug problems with the external cooling solutions and performance issues due to excessive throttling. So the solution here is the following: - In the current thermal_throttle folder, show: - the maximum time for one throttling event and, - the total amount of time the system was in throttling state. - Do not log short excursions. - Log only when, in spite of thermal throttling, the temperature is rising. On the high threshold interrupt trigger a delayed workqueue that monitors the threshold violation log bit (THERM_STATUS_PROCHOT_LOG). When the log bit is set, this workqueue callback calculates three point moving average and logs a warning message when the temperature trend is rising. When this log bit is clear and temperature is below threshold temperature, then the workqueue callback logs a "Normal" message. Once a high threshold event is logged, the logging is rate-limited. With this patch on the same test laptop, no warnings are printed in the logs as the max time the processor could bring the temperature under control is only 280 ms. This implementation is done with the inputs from Alan Cox and Tony Luck. [ bp: Touchups. ] Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: bberg@redhat.com Cc: ckellner@redhat.com Cc: hdegoede@redhat.com Cc: Ingo Molnar <mingo@redhat.com> Cc: linux-edac <linux-edac@vger.kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20191111214312.81365-1-srinivas.pandruvada@linux.intel.com
2019-11-12x86/quirks: Disable HPET on Intel Coffe Lake platformsKai-Heng Feng
Some Coffee Lake platforms have a skewed HPET timer once the SoCs entered PC10, which in consequence marks TSC as unstable because HPET is used as watchdog clocksource for TSC. Harry Pan tried to work around it in the clocksource watchdog code [1] thereby creating a circular dependency between HPET and TSC. This also ignores the fact, that HPET is not only unsuitable as watchdog clocksource on these systems, it becomes unusable in general. Disable HPET on affected platforms. Suggested-by: Feng Tang <feng.tang@intel.com> Signed-off-by: Kai-Heng Feng <kai.heng.feng@canonical.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203183 Link: https://lore.kernel.org/lkml/20190516090651.1396-1-harry.pan@intel.com/ [1] Link: https://lkml.kernel.org/r/20191016103816.30650-1-kai.heng.feng@canonical.com