Age | Commit message (Collapse) | Author |
|
Rename arch_has_sparse_bitmaps to arch_has_sparse_bitmasks to ensure
consistent terminology throughout resctrl.
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Maciej Wieczor-Retman <maciej.wieczor-retman@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Peter Newman <peternewman@google.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Peter Newman <peternewman@google.com>
Link: https://lore.kernel.org/r/e330fcdae873ef1a831e707025a4b70fa346666e.1696934091.git.maciej.wieczor-retman@intel.com
|
|
Provide common prototypes for arch_register_cpu() and
arch_unregister_cpu(). These are called by acpi_processor.c, with weak
versions, so the prototype for this is already set. It is generally not
necessary for function prototypes to be conditional on preprocessor macros.
Some architectures (e.g. Loongarch) are missing the prototype for this, and
rather than add it to Loongarch's asm/cpu.h, do the job once for everyone.
Since this covers everyone, remove the now unnecessary prototypes in
asm/cpu.h, and therefore remove the 'static' from one of ia64's
arch_register_cpu() definitions.
[ tglx: Bring back the ia64 part and remove the ACPI prototypes ]
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/E1qkoRr-0088Q8-Da@rmk-PC.armlinux.org.uk
|
|
Fix erratum #1485 on Zen4 parts where running with STIBP disabled can
cause an #UD exception. The performance impact of the fix is negligible.
Reported-by: René Rebe <rene@exactcode.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: René Rebe <rene@exactcode.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/D99589F4-BC5D-430B-87B2-72C20370CF57@exactcode.com
|
|
Commit:
20f07a044a76 ("x86/sev: Move common memory encryption code to mem_encrypt.c")
... forgot to remove the include of virtio_config.h from mem_encrypt_amd.c
when it moved the related code to mem_encrypt.c (from where this include
subsequently got removed by a later commit).
Remove it now.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20231010145220.3960055-3-alexander.shishkin@linux.intel.com
|
|
Since commit:
4d96f9109109b ("x86/sev: Replace occurrences of sev_active() with cc_platform_has()")
... the SWIOTLB bounce buffer size adjustment and restricted virtio memory
setting also inadvertently apply to TDX: the code is using
cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) as a gatekeeping condition,
which is also true for TDX, and this is also what we want.
To reflect this, move the corresponding code to generic mem_encrypt.c.
No functional changes intended.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20231010145220.3960055-2-alexander.shishkin@linux.intel.com
|
|
The kernel test robot reported kernel-doc warnings here:
arch/x86/kernel/cpu/resctrl/rdtgroup.c:915: warning: Function parameter or member 'of' not described in 'rdt_bit_usage_show'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:915: warning: Function parameter or member 'seq' not described in 'rdt_bit_usage_show'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:915: warning: Function parameter or member 'v' not described in 'rdt_bit_usage_show'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1144: warning: Function parameter or member 'type' not described in '__rdtgroup_cbm_overlaps'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1224: warning: Function parameter or member 'rdtgrp' not described in 'rdtgroup_mode_test_exclusive'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1261: warning: Function parameter or member 'of' not described in 'rdtgroup_mode_write'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1261: warning: Function parameter or member 'buf' not described in 'rdtgroup_mode_write'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1261: warning: Function parameter or member 'nbytes' not described in 'rdtgroup_mode_write'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1261: warning: Function parameter or member 'off' not described in 'rdtgroup_mode_write'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1370: warning: Function parameter or member 'of' not described in 'rdtgroup_size_show'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1370: warning: Function parameter or member 's' not described in 'rdtgroup_size_show'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1370: warning: Function parameter or member 'v' not described in 'rdtgroup_size_show'
The first two functions are missing an argument description while the
other three are file callbacks and don't require a kernel-doc comment.
Closes: https://lore.kernel.org/oe-kbuild-all/202310070434.mD8eRNAz-lkp@intel.com/
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Maciej Wieczor-Retman <maciej.wieczor-retman@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Newman <peternewman@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20231011064843.246592-1-maciej.wieczor-retman@intel.com
|
|
For KVM_X86_QUIRK_CD_NW_CLEARED is on, remove the IPAT (ignore PAT) bit in
EPT memory types when cache is disabled and non-coherent DMA are present.
To correctly emulate CR0.CD=1, UC + IPAT are required as memtype in EPT.
However, as with commit fb279950ba02 ("KVM: vmx: obey
KVM_QUIRK_CD_NW_CLEARED"), WB + IPAT are now returned to workaround a BIOS
issue that guest MTRRs are enabled too late. Without this workaround, a
super slow guest boot-up is expected during the pre-guest-MTRR-enabled
period due to UC as the effective memory type for all guest memory.
Absent emulating CR0.CD=1 with UC, it makes no sense to set IPAT when KVM
is honoring the guest memtype.
Removing the IPAT bit in this patch allows effective memory type to honor
PAT values as well, as WB is the weakest memtype. It means if a guest
explicitly claims UC as the memtype in PAT, the effective memory is UC
instead of previous WB. If, for some unknown reason, a guest meets a slow
boot-up issue with the removal of IPAT, it's desired to fix the blamed PAT
in the guest.
Returning guest MTRR type as if CR0.CD=0 is also not preferred because
KVMs ABI for the quirk also requires KVM to force WB memtype regardless of
guest MTRRs to workaround the slow guest boot-up issue.
In the future, honoring guest PAT will also allow KVM to more precisely
zap SPTEs when the effective memtype changes. E.g. by not forcing WB when
CR0.CD=1, instead of zapping SPTEs when guest MTRRs change, KVM can skip
MTRR-induced zaps if CR0.CD=1 and zap SPTEs for non-WB MTRR ranges when
CR0.CD is toggled (WB MTRR SPTEs can be kept because they're WB regardless
of CR0.CD).
The change of removing IPAT has been verified with normal boot-up time
on old OVMF of commit c9e5618f84b0cb54a9ac2d7604f7b7e7859b45a7 as well,
dated back to Apr 14 2015.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20230714065326.20557-1-yan.y.zhao@intel.com
[sean: massage changelog to apply patch without full series]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Zap KVM TDP when noncoherent DMA assignment starts (noncoherent dma count
transitions from 0 to 1) or stops (noncoherent dma count transitions
from 1 to 0). Before the zap, test if guest MTRR is to be honored after
the assignment starts or was honored before the assignment stops.
When there's no noncoherent DMA device, EPT memory type is
((MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT)
When there're noncoherent DMA devices, EPT memory type needs to honor
guest CR0.CD and MTRR settings.
So, if noncoherent DMA count transitions between 0 and 1, EPT leaf entries
need to be zapped to clear stale memory type.
This issue might be hidden when the device is statically assigned with
VFIO adding/removing MMIO regions of the noncoherent DMA devices for
several times during guest boot, and current KVM MMU will call
kvm_mmu_zap_all_fast() on the memslot removal.
But if the device is hot-plugged, or if the guest has mmio_always_on for
the device, the MMIO regions of it may only be added for once, then there's
no path to do the EPT entries zapping to clear stale memory type.
Therefore do the EPT zapping when noncoherent assignment starts/stops to
ensure stale entries cleaned away.
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20230714065223.20432-1-yan.y.zhao@intel.com
[sean: fix misspelled words in comment and changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
This commit comes at the tail end of a greater effort to remove the
empty elements at the end of the ctl_table arrays (sentinels) which
will reduce the overall build time size of the kernel and run time
memory bloat by ~64 bytes per sentinel (further information Link :
https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/)
Remove sentinel element from abi_table2. This removal is safe because
register_sysctl implicitly uses ARRAY_SIZE() in addition to checking for
the sentinel.
Signed-off-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
This commit comes at the tail end of a greater effort to remove the
empty elements at the end of the ctl_table arrays (sentinels) which
will reduce the overall build time size of the kernel and run time
memory bloat by ~64 bytes per sentinel (further information Link :
https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/)
Remove sentinel element from sld_sysctl and itmt_kern_table. This
removal is safe because register_sysctl_init and register_sysctl
implicitly use the array size in addition to checking for the sentinel.
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> # for x86
Signed-off-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv fixes from Wei Liu:
- fixes for Hyper-V VTL code (Saurabh Sengar and Olaf Hering)
- fix hv_kvp_daemon to support keyfile based connection profile
(Shradha Gupta)
* tag 'hyperv-fixes-signed-20231009' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
hv/hv_kvp_daemon:Support for keyfile based connection profile
hyperv: reduce size of ms_hyperv_info
x86/hyperv: Add common print prefix "Hyper-V" in hv_init
x86/hyperv: Remove hv_vtl_early_init initcall
x86/hyperv: Restrict get_vtl to only VTL platforms
|
|
Provide debug files which dump the topology related information of
cpuinfo_x86. This is useful to validate the upcoming conversion of the
topology evaluation for correctness or bug compatibility.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.353191313@linutronix.de
|
|
Per CPU cpuinfo is used to persist the logical package and die IDs. That's
really not the right place simply because cpuinfo is subject to be
reinitialized when a CPU goes through an offline/online cycle.
This works by chance today, but that's far from correct and neither obvious
nor documented.
Add a per cpu datastructure which persists those logical IDs, which allows
to cleanup the CPUID evaluation code.
This is a temporary workaround until the larger topology management is in
place, which makes all of this logical management mechanics obsolete.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.292947071@linutronix.de
|
|
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.233274223@linutronix.de
|
|
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.172569282@linutronix.de
|
|
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width even if that callback going to be removed soonish.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.113097126@linutronix.de
|
|
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width and fixup a few related usage sites for consistency sake.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.054064391@linutronix.de
|
|
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width and move the default implementation to local.h as there are
no users outside the apic directory.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.981956102@linutronix.de
|
|
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width and fixup the most obvious usage sites of that.
The APIC callbacks will be addressed separately.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.922905727@linutronix.de
|
|
APIC ID checks compare with BAD_APICID all over the place, but some
initializers and some code which fiddles with global data structure use
-1[U] instead. That simply cannot work at all.
Fix it up and use BAD_APICID consistently all over the place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.862835121@linutronix.de
|
|
The topology IDs which identify the LLC and L2 domains clearly belong to
the per CPU topology information.
Move them into cpuinfo_x86::cpuinfo_topo and get rid of the extra per CPU
data and the related exports.
This also paves the way to do proper topology evaluation during early boot
because it removes the only per CPU dependency for that.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.803864641@linutronix.de
|
|
Yet another topology related data pair. Rename logical_proc_id to
logical_pkg_id so it fits the common naming conventions.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.745139505@linutronix.de
|
|
cpuinfo_x86::x86_coreid_bits is only used by the AMD numa topology code. No
point in evaluating it on non AMD systems.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.687588373@linutronix.de
|
|
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.628405546@linutronix.de
|
|
Rename it to core_id and stick it to the other ID fields.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.566519388@linutronix.de
|
|
Move the next member.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.388185134@linutronix.de
|
|
Rename it to pkg_id which is the terminology used in the kernel.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.329006989@linutronix.de
|
|
The topology related information is randomly scattered across cpuinfo_x86.
Create a new structure cpuinfo_topo and move in a first step initial_apicid
and apicid into it.
Aside of being better readable this is in preparation for replacing the
horribly fragile CPU topology evaluation code further down the road.
Consolidate APIC ID fields to u32 as that represents the hardware type.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.269787744@linutronix.de
|
|
The SMT control mechanism got added as speculation attack vector
mitigation. The implemented logic relies on the primary thread mask to
be set up properly.
This turns out to be an issue with XEN/PV guests because their CPU hotplug
mechanics do not enumerate APICs and therefore the mask is never correctly
populated.
This went unnoticed so far because by chance XEN/PV ends up with
smp_num_siblings == 2. So cpu_smt_control stays at its default value
CPU_SMT_ENABLED and the primary thread mask is never evaluated in the
context of CPU hotplug.
This stopped "working" with the upcoming overhaul of the topology
evaluation which legitimately provides a fake topology for XEN/PV. That
sets smp_num_siblings to 1, which causes the core CPU hot-plug core to
refuse to bring up the APs.
This happens because cpu_smt_control is set to CPU_SMT_NOT_SUPPORTED which
causes cpu_bootable() to evaluate the unpopulated primary thread mask with
the conclusion that all non-boot CPUs are not valid to be plugged.
The core code has already been made more robust against this kind of fail,
but the primary thread mask really wants to be populated to avoid other
issues all over the place.
Just fake the mask by pretending that all XEN/PV vCPUs are primary threads,
which is consistent because all of XEN/PVs topology is fake or non-existent.
Fixes: 6a4d2657e048 ("x86/smp: Provide topology_is_primary_thread()")
Fixes: f54d4434c281 ("x86/apic: Provide cpu_primary_thread mask")
Reported-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.210011520@linutronix.de
|
|
Hygon processors with a model ID > 3 have CPUID leaf 0xB correctly
populated and don't need the fixed package ID shift workaround. The fixup
is also incorrect when running in a guest.
Fixes: e0ceeae708ce ("x86/CPU/hygon: Fix phys_proc_id calculation logic for multi-die processors")
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/tencent_594804A808BD93A4EBF50A994F228E3A7F07@qq.com
Link: https://lore.kernel.org/r/20230814085112.089607918@linutronix.de
|
|
The legacy API for setting the TSC is fundamentally broken, and only
allows userspace to set a TSC "now", without any way to account for
time lost between the calculation of the value, and the kernel eventually
handling the ioctl.
To work around this, KVM has a hack which, if a TSC is set with a value
which is within a second's worth of the last TSC "written" to any vCPU in
the VM, assumes that userspace actually intended the two TSC values to be
in sync and adjusts the newly-written TSC value accordingly.
Thus, when a VMM restores a guest after suspend or migration using the
legacy API, the TSCs aren't necessarily *right*, but at least they're
in sync.
This trick falls down when restoring a guest which genuinely has been
running for less time than the 1 second of imprecision KVM allows for in
in the legacy API. On *creation*, the first vCPU starts its TSC counting
from zero, and the subsequent vCPUs synchronize to that. But then when
the VMM tries to restore a vCPU's intended TSC, because the VM has been
alive for less than 1 second and KVM's default TSC value for new vCPU's is
'0', the intended TSC is within a second of the last "written" TSC and KVM
incorrectly adjusts the intended TSC in an attempt to synchronize.
But further hacks can be piled onto KVM's existing hackish ABI, and
declare that the *first* value written by *userspace* (on any vCPU)
should not be subject to this "correction", i.e. KVM can assume that the
first write from userspace is not an attempt to sync up with TSC values
that only come from the kernel's default vCPU creation.
To that end: Add a flag, kvm->arch.user_set_tsc, protected by
kvm->arch.tsc_write_lock, to record that a TSC for at least one vCPU in
the VM *has* been set by userspace, and make the 1-second slop hack only
trigger if user_set_tsc is already set.
Note that userspace can explicitly request a *synchronization* of the
TSC by writing zero. For the purpose of user_set_tsc, an explicit
synchronization counts as "setting" the TSC, i.e. if userspace then
subsequently writes an explicit non-zero value which happens to be within
1 second of the previous value, the new value will be "corrected". This
behavior is deliberate, as treating explicit synchronization as "setting"
the TSC preserves KVM's existing behaviour inasmuch as possible (KVM
always applied the 1-second "correction" regardless of whether the write
came from userspace vs. the kernel).
Reported-by: Yong He <alexyonghe@tencent.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=217423
Suggested-by: Oliver Upton <oliver.upton@linux.dev>
Original-by: Oliver Upton <oliver.upton@linux.dev>
Original-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Tested-by: Yong He <alexyonghe@tencent.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20231008025335.7419-1-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When guest MTRRs are updated, zap SPTEs and do zap range calcluation if and
only if KVM's MMU is honoring guest MTRRs, which is the only time that KVM
incorporates the guest's MTRR type into the final memtype.
Suggested-by: Chao Gao <chao.gao@intel.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20230714065156.20375-1-yan.y.zhao@intel.com
[sean: rephrase shortlog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Zap SPTEs when CR0.CD is toggled if and only if KVM's MMU is honoring
guest MTRRs, which is the only time that KVM incorporates the guest's
CR0.CD into the final memtype.
Suggested-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20230714065122.20315-1-yan.y.zhao@intel.com
[sean: rephrase shortlog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add helpers to check if KVM honors guest MTRRs instead of open coding the
logic in kvm_tdp_page_fault(). Future fixes and cleanups will also need
to determine if KVM should honor guest MTRRs, e.g. for CR0.CD toggling and
and non-coherent DMA transitions.
Provide an inner helper, __kvm_mmu_honors_guest_mtrrs(), so that KVM can
check if guest MTRRs were honored when stopping non-coherent DMA.
Note, there is no need to explicitly check that TDP is enabled, KVM clears
shadow_memtype_mask when TDP is disabled, i.e. it's non-zero if and only
if EPT is enabled.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20230714065006.20201-1-yan.y.zhao@intel.com
Link: https://lore.kernel.org/r/20230714065043.20258-1-yan.y.zhao@intel.com
[sean: squash into a one patch, drop explicit TDP check massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
On certain CPUs, Linux guests expect HWCR.TscFreqSel[bit 24] to be
set. If it isn't set, they complain:
[Firmware Bug]: TSC doesn't count with P0 frequency!
Allow userspace (and the guest) to set this bit in the virtual HWCR to
eliminate the above complaint.
Allow the guest to write the bit even though its is R/O on *some* CPUs.
Like many bits in HWRC, TscFreqSel is not architectural at all. On Family
10h[1], it was R/W and powered on as 0. In Family 15h, one of the "changes
relative to Family 10H Revision D processors[2] was:
• MSRC001_0015 [Hardware Configuration (HWCR)]:
• Dropped TscFreqSel; TSC can no longer be selected to run at NB P0-state.
Despite the "Dropped" above, that same document later describes
HWCR[bit 24] as follows:
TscFreqSel: TSC frequency select. Read-only. Reset: 1. 1=The TSC
increments at the P0 frequency
If the guest clears the bit, the worst case scenario is the guest will be
no worse off than it is today, e.g. the whining may return after a guest
clears the bit and kexec()'s into a new kernel.
[1] https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/31116.pdf
[2] https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/42301_15h_Mod_00h-0Fh_BKDG.pdf,
Signed-off-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20230929230246.1954854-3-jmattson@google.com
[sean: elaborate on why the bit is writable by the guest]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When HWCR is set to 0, store 0 in vcpu->arch.msr_hwcr.
Fixes: 191c8137a939 ("x86/kvm: Implement HWCR support")
Signed-off-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20230929230246.1954854-2-jmattson@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Introduce the arch_sync_try_cmpxchg() macro to improve code using
sync_try_cmpxchg() locking primitive. The new definitions use existing
__raw_try_cmpxchg() macros, but use its own "lock; " prefix.
The new macros improve assembly of the cmpxchg loop in
evtchn_fifo_unmask() from drivers/xen/events/events_fifo.c from:
57a: 85 c0 test %eax,%eax
57c: 78 52 js 5d0 <...>
57e: 89 c1 mov %eax,%ecx
580: 25 ff ff ff af and $0xafffffff,%eax
585: c7 04 24 00 00 00 00 movl $0x0,(%rsp)
58c: 81 e1 ff ff ff ef and $0xefffffff,%ecx
592: 89 4c 24 04 mov %ecx,0x4(%rsp)
596: 89 44 24 08 mov %eax,0x8(%rsp)
59a: 8b 74 24 08 mov 0x8(%rsp),%esi
59e: 8b 44 24 04 mov 0x4(%rsp),%eax
5a2: f0 0f b1 32 lock cmpxchg %esi,(%rdx)
5a6: 89 04 24 mov %eax,(%rsp)
5a9: 8b 04 24 mov (%rsp),%eax
5ac: 39 c1 cmp %eax,%ecx
5ae: 74 07 je 5b7 <...>
5b0: a9 00 00 00 40 test $0x40000000,%eax
5b5: 75 c3 jne 57a <...>
<...>
to:
578: a9 00 00 00 40 test $0x40000000,%eax
57d: 74 2b je 5aa <...>
57f: 85 c0 test %eax,%eax
581: 78 40 js 5c3 <...>
583: 89 c1 mov %eax,%ecx
585: 25 ff ff ff af and $0xafffffff,%eax
58a: 81 e1 ff ff ff ef and $0xefffffff,%ecx
590: 89 4c 24 04 mov %ecx,0x4(%rsp)
594: 89 44 24 08 mov %eax,0x8(%rsp)
598: 8b 4c 24 08 mov 0x8(%rsp),%ecx
59c: 8b 44 24 04 mov 0x4(%rsp),%eax
5a0: f0 0f b1 0a lock cmpxchg %ecx,(%rdx)
5a4: 89 44 24 04 mov %eax,0x4(%rsp)
5a8: 75 30 jne 5da <...>
<...>
5da: 8b 44 24 04 mov 0x4(%rsp),%eax
5de: eb 98 jmp 578 <...>
The new code removes move instructions from 585: 5a6: and 5a9:
and the compare from 5ac:. Additionally, the compiler assumes that
cmpxchg success is more probable and optimizes code flow accordingly.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Unified Memory Controller (UMC) events were introduced with Zen 4 as a
part of the Performance Monitoring Version 2 (PerfMonV2) enhancements.
An event is specified using the EventSelect bits and the RdWrMask bits
can be used for additional filtering of read and write requests.
As of now, a maximum of 12 channels of DDR5 are available on each socket
and each channel is controlled by a dedicated UMC. Each UMC, in turn,
has its own set of performance monitoring counters.
Since the MSR address space for the UMC PERF_CTL and PERF_CTR registers
are reused across sockets, uncore groups are created on the basis of
socket IDs. Hence, group exclusivity is mandatory while opening events
so that events for an UMC can only be opened on CPUs which are on the
same socket as the corresponding memory channel.
For each socket, the total number of available UMC counters and active
memory channels are determined from CPUID leaf 0x80000022 EBX and ECX
respectively. Usually, on Zen 4, each UMC has four counters.
MSR assignments are determined on the basis of active UMCs. E.g. if
UMCs 1, 4 and 9 are active for a given socket, then
* UMC 1 gets MSRs 0xc0010800 to 0xc0010807 as PERF_CTLs and PERF_CTRs
* UMC 4 gets MSRs 0xc0010808 to 0xc001080f as PERF_CTLs and PERF_CTRs
* UMC 9 gets MSRs 0xc0010810 to 0xc0010817 as PERF_CTLs and PERF_CTRs
If there are sockets without any online CPUs when the amd_uncore driver
is loaded, UMCs for such sockets will not be discoverable since the
mechanism relies on executing the CPUID instruction on an online CPU
from the socket.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/b25f391205c22733493abec1ed850b71784edc5f.1696425185.git.sandipan.das@amd.com
|
|
In some cases, it may be necessary to restrict opening PMU events to a
subset of CPUs. E.g. Unified Memory Controller (UMC) PMUs are specific
to each active memory channel and the MSR address space for the PERF_CTL
and PERF_CTR registers is reused on each socket. Thus, opening events
for a specific UMC PMU should be restricted to CPUs belonging to the
same socket as that of the UMC. The "cpumask" of the PMU should also
reflect this accordingly.
Uncore PMUs which require this can use the new group attribute in struct
amd_uncore_pmu to set a valid group ID during the scan() phase. Later,
during init(), an uncore context for a CPU will be unavailable if the
group ID does not match.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/937d6d71010a48ea4e069f4904b3116a5f99ecdf.1696425185.git.sandipan.das@amd.com
|
|
Not all uncore PMUs may support the use of the RDPMC instruction for
reading counters. In such cases, read the count from the corresponding
PERF_CTR register using the RDMSR instruction.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/e9d994e32a3fcb39fa59fcf43ab4260d11aba097.1696425185.git.sandipan.das@amd.com
|
|
Uncore PMUs have traditionally been registered in the module init path.
This is fine for the existing DF and L3 PMUs since the CPUID information
does not vary across CPUs but not for the memory controller (UMC) PMUs
since information like active memory channels can vary for each socket
depending on how the DIMMs have been physically populated.
To overcome this, the discovery of PMU information using CPUID is moved
to the startup of UNCORE_STARTING. This cannot be done in the startup of
UNCORE_PREP since the hotplug callback does not run on the CPU that is
being brought online.
Previously, the startup of UNCORE_PREP was used for allocating uncore
contexts following which, the startup of UNCORE_STARTING was used to
find and reuse an existing sibling context, if possible. Any unused
contexts were added to a list for reclaimation later during the startup
of UNCORE_ONLINE.
Since all required CPUID info is now available only after the startup of
UNCORE_STARTING has completed, context allocation has been moved to the
startup of UNCORE_ONLINE. Before allocating contexts, the first CPU that
comes online has to take up the additional responsibility of registering
the PMUs. This is a one-time process though. Since sibling discovery now
happens prior to deciding whether a new context is required, there is no
longer a need to track and free up unused contexts.
The teardown of UNCORE_ONLINE and UNCORE_PREP functionally remain the
same.
Overall, the flow of control described above is achieved using the
following handlers for managing uncore PMUs. It is mandatory to define
them for each type of uncore PMU.
* scan() runs during startup of UNCORE_STARTING and collects PMU info
using CPUID.
* init() runs during startup of UNCORE_ONLINE, registers PMUs and sets
up uncore contexts.
* move() runs during teardown of UNCORE_ONLINE and migrates uncore
contexts to a shared sibling, if possible.
* free() runs during teardown of UNCORE_PREP and frees up uncore
contexts.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/e6c447e48872fcab8452e0dd81b1c9cb09f39eb4.1696425185.git.sandipan.das@amd.com
|
|
Since struct amd_uncore is used to manage per-cpu contexts, rename it to
amd_uncore_ctx in order to better reflect its purpose. Add a new struct
amd_uncore_pmu to encapsulate all attributes which are shared by per-cpu
contexts for a corresponding PMU. These include the number of counters,
active mask, MSR and RDPMC base addresses, etc. Since the struct pmu is
now embedded, the corresponding amd_uncore_pmu for a given event can be
found by simply using container_of().
Finally, move all PMU-specific code to separate functions. While the
original event management functions continue to provide the base
functionality, all PMU-specific quirks and customizations are applied in
separate functions.
The motivation is to simplify the management of uncore PMUs.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/24b38c49a5dae65d8c96e5d75a2b96ae97aaa651.1696425185.git.sandipan.das@amd.com
|
|
The MSR registers for reading the package residency counters are
available on every CPU of the package. To avoid doing unnecessary SMP
calls to read the values for these from the various CPUs inside a
package, allow reading them from any CPU of the package.
Suggested-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Tero Kristo <tero.kristo@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230912124432.3616761-2-tero.kristo@linux.intel.com
|
|
Check the IO permission bitmap (if present) before emulating IOIO #VC
exceptions for user-space. These permissions are checked by hardware
already before the #VC is raised, but due to the VC-handler decoding
race it needs to be checked again in software.
Fixes: 25189d08e516 ("x86/sev-es: Add support for handling IOIO exceptions")
Reported-by: Tom Dohrmann <erbse.13@gmx.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tom Dohrmann <erbse.13@gmx.de>
Cc: <stable@kernel.org>
|
|
A virt scenario can be constructed where MMIO memory can be user memory.
When that happens, a race condition opens between when the hardware
raises the #VC and when the #VC handler gets to emulate the instruction.
If the MOVS is replaced with a MOVS accessing kernel memory in that
small race window, then write to kernel memory happens as the access
checks are not done at emulation time.
Disable MMIO emulation in user mode temporarily until a sensible use
case appears and justifies properly handling the race window.
Fixes: 0118b604c2c9 ("x86/sev-es: Handle MMIO String Instructions")
Reported-by: Tom Dohrmann <erbse.13@gmx.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tom Dohrmann <erbse.13@gmx.de>
Cc: <stable@kernel.org>
|
|
Some parameters or return codes were either wrong or missing,
update them.
Signed-off-by: Lucy Mielke <lucymielke@icloud.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/ZSOjQW3e2nJR4bAo@fedora.fritz.box
|
|
We found that a panic can occur when a vsyscall is made while LBR sampling
is active. If the vsyscall is interrupted (NMI) for perf sampling, this
call sequence can occur (most recent at top):
__insn_get_emulate_prefix()
insn_get_emulate_prefix()
insn_get_prefixes()
insn_get_opcode()
decode_branch_type()
get_branch_type()
intel_pmu_lbr_filter()
intel_pmu_handle_irq()
perf_event_nmi_handler()
Within __insn_get_emulate_prefix() at frame 0, a macro is called:
peek_nbyte_next(insn_byte_t, insn, i)
Within this macro, this dereference occurs:
(insn)->next_byte
Inspecting registers at this point, the value of the next_byte field is the
address of the vsyscall made, for example the location of the vsyscall
version of gettimeofday() at 0xffffffffff600000. The access to an address
in the vsyscall region will trigger an oops due to an unhandled page fault.
To fix the bug, filtering for vsyscalls can be done when
determining the branch type. This patch will return
a "none" branch if a kernel address if found to lie in the
vsyscall region.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
|
|
Prepare for the coming implementation by GCC and Clang of the __counted_by
attribute. Flexible array members annotated with __counted_by can have
their accesses bounds-checked at run-time via CONFIG_UBSAN_BOUNDS=y (for
array indexing) and CONFIG_FORTIFY_SOURCE=y (for strcpy/memcpy-family
functions).
Found with Coccinelle:
https://github.com/kees/kernel-tools/blob/trunk/coccinelle/examples/counted_by.cocci [1]
Add __counted_by for 'struct rapl_pmus'.
No change in functionality intended.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Link: https://lore.kernel.org/r/20231006201754.work.473-kees@kernel.org
|
|
The kernel test robot reported kernel-doc warnings here:
monitor.c:34: warning: Cannot understand * @rmid_free_lru A least recently used list of free RMIDs on line 34 - I thought it was a doc line
monitor.c:41: warning: Cannot understand * @rmid_limbo_count count of currently unused but (potentially) on line 41 - I thought it was a doc line
monitor.c:50: warning: Cannot understand * @rmid_entry - The entry in the limbo and free lists. on line 50 - I thought it was a doc line
We don't have a syntax for documenting individual data items via
kernel-doc, so remove the "/**" kernel-doc markers and add a hyphen
for consistency.
Fixes: 6a445edce657 ("x86/intel_rdt/cqm: Add RDT monitoring initialization")
Fixes: 24247aeeabe9 ("x86/intel_rdt/cqm: Improve limbo list processing")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231006235132.16227-1-rdunlap@infradead.org
|