Age | Commit message (Collapse) | Author |
|
If the system has more than 8 CPUs then XAPIC and the bigsmp APIC driver is
required. This is ensured via:
1) Enumerating all possible CPUs up to NR_CPUS
2) Checking at boot CPU APIC setup time whether the system has more than
8 CPUs and has an XAPIC.
If that's the case then it's attempted to install the bigsmp APIC
driver and a magic variable 'def_to_bigsmp' is set to one.
3) If that magic variable is set and CONFIG_X86_BIGSMP=n and the system
has more than 8 CPUs smp_sanity_check() removes all CPUs >= #8 from
the present and possible mask in the most convoluted way.
This logic is completely broken for the case where the bigsmp driver is
enabled, but not selected due to a command line option specifying the
default APIC. In that case the system boots with default APIC in logical
destination mode and fails to reduce the number of CPUs.
That aside the above which is sprinkled over 3 different places is yet
another piece of art.
It would have been too obvious to check the requirements upfront and limit
nr_cpu_ids _before_ enumerating tons of CPUs and then removing them again.
Implement exactly this. Check the bigsmp requirement when the boot APIC is
registered which happens _before_ ACPI/MPTABLE parsing and limit the number
of CPUs to 8 if it can't be used. Switch it over when the boot CPU apic is
set up if necessary.
[ dhansen: fix nr_cpu_ids off-by-one in default_setup_apic_routing() ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
On 32bit there is no APIC implementing the acpi_madt_oem_check() except XEN
PV, but that does not matter at all.
generic_apic_probe() runs before ACPI tables are parsed. This selects the
XEN APIC if there is no command line override because the XEN APIC driver
is the first to be probed.
If there is a command line override then the XEN PV driver won't be
selected in the MADT OEM check either.
As there is no other MADT check implemented for 32bit APICs, this whole
excercise is a NOOP and can be removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
UV X2APIC uses the per CPU variable from:
native_smp_prepare_cpus()
uv_system_init()
uv_system_init_hub()
which is long after the per CPU areas have been set up.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
Remove completely useless and mindlessly copied comments and tidy up the
code which causes eye bleed when looking at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
This per CPU variable is just yet another form of voodoo programming. The
boot ordering is:
per_cpu(x86_cpu_to_logical_apicid, cpu) = 1U << cpu;
.....
setup_apic()
apic->init_apic_ldr()
default_init_apic_ldr()
apic_write(SET_APIC_LOGICAL_ID(1UL << smp_processor_id(), APIC_LDR);
id = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR);
WARN_ON(id != per_cpu(x86_cpu_to_logical_apicid, cpu));
per_cpu(x86_cpu_to_logical_apicid, cpu) = id;
So first write the default into LDR and then validate it against the same default
which was set up during early boot APIC enumeration.
Brilliant, isn't it?
The comment above the per CPU variable declaration describes it well:
'Let's keep it ugly for now.'
Remove the useless gunk and use '1U << cpu' consistently all over the place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
apic::x86_32_early_logical_apicid() is yet another historical joke.
It is used to preset the x86_cpu_to_logical_apicid per CPU variable during
APIC enumeration with:
- 1 shifted left by the CPU number
- the physical APIC ID in case of bigsmp
The latter is hillarious because bigsmp uses physical destination mode
which never can use the logical APIC ID.
It gets even worse. As bigsmp can be enforced late in the boot process the
probe function overwrites the per CPU variable which is never used for this
APIC type once again.
Remove that gunk and store 1 << cpunr unconditionally if and only if the
CPU number is less than 8, because the default logical destination mode
only allows up to 8 CPUs.
This is just an intermediate step before removing the per CPU insanity
completely. Stay tuned.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
No need for an extra variable to find out whether the APIC has been mapped
or is accessible (X2APIC mode).
Provide an inline for this and check apic_mmio_base which is only set when
the local APIC has been mapped.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
The only silly usage site is gone. Remove the gunk which was even outright
wrong in the bigsmp_32 case which returned true unconditionally.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
The boot CPUs local APIC is now always registered, so there is no point to
have another unreadable validatation for it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
num_processors is 0 by default and only gets incremented when local APICs
are registered.
Make init_apic_mappings(), which tries to enable the local APIC in the case
that no SMP configuration was found set num_processors to 1.
This allows to remove yet another check for the local APIC and yet another
place which registers the boot CPUs local APIC ID.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
Unlike all other SMP configuration "parsers" XEN/PV does not set
smp_found_config which is inconsistent and prevents doing proper decision
logic based on this flag.
Make XEN/PV pretend that it found SMP configuration.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
Convert places which just write mp_lapic_addr and let them register the
local APIC address directly instead of relying on magic other code to do
so.
Add a WARN_ON() into register_lapic_address() which is raised when
register_lapic_address() is invoked more than once during boot.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
Split the fixmap setup out of register_lapic_address() and reuse it when
the X2APIC is disabled during setup.
This avoids registering the APIC ID (setting 'mp_lapic_addr') twice.
[ dhansen: changelog wording tweak ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
Quite some APIC init functions are pure boolean, but use the success = 0,
fail < 0 model. That's confusing as hell when reading through the code.
Convert them to boolean.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
The device tree APIC parser tries to force-enable the local APIC when it is
not set in CPUID. apic_force_enable() registers the boot CPU apic on
success.
If that succeeds then dtb_lapic_setup() registers the local APIC again
eventually with a different address.
Rewrite the code so that it only registers it once.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
From: Dave Hansen <dave.hansen@linux.intel.com>
Some truly ancient code had different ways of calculating the 'apicid'
but it is long gone. Zap the unnecssary local variablee
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
|
|
This historical leftover is really uninteresting today. Whatever MPTABLE or
MADT delivers we only trust the hardware anyway.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
Register the boot CPU APIC right when the boot CPUs APIC is read from the
hardware. No point is doing this on random places and having wild
heuristics to save the boot CPU APIC ID slot and CPU number 0 reserved.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
boot_cpu_physical_apicid is written in random places and in the last
consequence filled with the APIC ID read from the local APIC. That causes
it to have inconsistent state when the MPTABLE is broken. As a consequence
tons of moronic checks are sprinkled all over the place.
Consolidate the code and read it exactly once when either X2APIC mode is
detected early or when the APIC mapping is established.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
Put it to the other historical leftovers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
max_physical_apicid is assigned but never read.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
No point in having a wrapper around read_apic_id().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
It's a useless copy of x86_cpu_to_apicid.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
Another variable name which is confusing at best. Convert to bool.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
It reflects a state and not a command. Make it bool while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
Tons of silly unused bitmap wrappers...
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
It's not longer used outside the source file.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
Under certain circumstances, an integer division by 0 which faults, can
leave stale quotient data from a previous division operation on Zen1
microarchitectures.
Do a dummy division 0/1 before returning from the #DE exception handler
in order to avoid any leaks of potentially sensitive data.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The BUILD_VDSO macro was incorrectly spelled as BULID_VDSO in
asm/linkage.h. This causes the !defined(BULID_VDSO) directive to always
evaluate to true.
Correct the spelling to BUILD_VDSO.
Fixes: bea75b33895f ("x86/Kconfig: Introduce function padding")
Signed-off-by: Jinghao Jia <jinghao@linux.ibm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230808182353.76218-1-jinghao@linux.ibm.com
|
|
microcode_mutex is only used by reload_store(). It has a comment saying
"to synchronize with each other". Other user of this mutex have been
removed in the commits
181b6f40e9ea8 ("x86/microcode: Rip out the OLD_INTERFACE").
b6f86689d5b74 ("x86/microcode: Rip out the subsys interface gunk")
The sysfs interface does not need additional synchronisation vs itself
because it is provided as kernfs_ops::mutex which is acquired in
kernfs_fop_write_iter().
Remove the superfluous microcode_mutex.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230804075853.JF_n6GXC@linutronix.de
|
|
kernel
The vDSO getcpu() reads CPU ID from the GDT_ENTRY_CPUNODE entry when the RDPID
instruction is not available. And GDT_ENTRY_CPUNODE is defined as 28 on 32-bit
Linux kernel and 15 on 64-bit. But the 32-bit getcpu() on 64-bit Linux kernel
is compiled with 32-bit Linux kernel GDT_ENTRY_CPUNODE, i.e., 28, beyond the
64-bit Linux kernel GDT limit. Thus, it just fails _silently_.
When BUILD_VDSO32_64 is defined, choose the 64-bit Linux kernel GDT definitions
to compile the 32-bit getcpu().
Fixes: 877cff5296faa6e ("x86/vdso: Fake 32bit VDSO build on 64bit compile for vgetcpu")
Reported-by: kernel test robot <yujie.liu@intel.com>
Reported-by: Shan Kang <shan.kang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230322061758.10639-1-xin3.li@intel.com
Link: https://lore.kernel.org/oe-lkp/202303020903.b01fd1de-yujie.liu@intel.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/gds fixes from Dave Hansen:
"Mitigate Gather Data Sampling issue:
- Add Base GDS mitigation
- Support GDS_NO under KVM
- Fix a documentation typo"
* tag 'gds-for-linus-2023-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/x86: Fix backwards on/off logic about YMM support
KVM: Add GDS_NO support to KVM
x86/speculation: Add Kconfig option for GDS
x86/speculation: Add force option to GDS mitigation
x86/speculation: Add Gather Data Sampling mitigation
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/srso fixes from Borislav Petkov:
"Add a mitigation for the speculative RAS (Return Address Stack)
overflow vulnerability on AMD processors.
In short, this is yet another issue where userspace poisons a
microarchitectural structure which can then be used to leak privileged
information through a side channel"
* tag 'x86_bugs_srso' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/srso: Tie SBPB bit setting to microcode patch detection
x86/srso: Add a forgotten NOENDBR annotation
x86/srso: Fix return thunks in generated code
x86/srso: Add IBPB on VMEXIT
x86/srso: Add IBPB
x86/srso: Add SRSO_NO support
x86/srso: Add IBPB_BRTYPE support
x86/srso: Add a Speculative RAS Overflow mitigation
x86/bugs: Increase the x86 bugs vector size to two u32s
|
|
The bare metal decompressor code was never really intended to run in a
hosted environment such as the EFI boot services, and does a few things
that are becoming problematic in the context of EFI boot now that the
logo requirements are getting tighter: EFI executables will no longer be
allowed to consist of a single executable section that is mapped with
read, write and execute permissions if they are intended for use in a
context where Secure Boot is enabled (and where Microsoft's set of
certificates is used, i.e., every x86 PC built to run Windows).
To avoid stepping on reserved memory before having inspected the E820
tables, and to ensure the correct placement when running a kernel build
that is non-relocatable, the bare metal decompressor moves its own
executable image to the end of the allocation that was reserved for it,
in order to perform the decompression in place. This means the region in
question requires both write and execute permissions, which either need
to be given upfront (which EFI will no longer permit), or need to be
applied on demand using the existing page fault handling framework.
However, the physical placement of the kernel is usually randomized
anyway, and even if it isn't, a dedicated decompression output buffer
can be allocated anywhere in memory using EFI APIs when still running in
the boot services, given that EFI support already implies a relocatable
kernel. This means that decompression in place is never necessary, nor
is moving the compressed image from one end to the other.
Since EFI already maps all of memory 1:1, it is also unnecessary to
create new page tables or handle page faults when decompressing the
kernel. That means there is also no need to replace the special
exception handlers for SEV. Generally, there is little need to do
any of the things that the decompressor does beyond
- initialize SEV encryption, if needed,
- perform the 4/5 level paging switch, if needed,
- decompress the kernel
- relocate the kernel
So do all of this from the EFI stub code, and avoid the bare metal
decompressor altogether.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-24-ardb@kernel.org
|
|
Before refactoring the EFI stub boot flow to avoid the legacy bare metal
decompressor, duplicate the SNP feature check in the EFI stub before
handing over to the kernel proper.
The SNP feature check can be performed while running under the EFI boot
services, which means it can force the boot to fail gracefully and
return an error to the bootloader if the loaded kernel does not
implement support for all the features that the hypervisor enabled.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-23-ardb@kernel.org
|
|
Factor out the decompressor sequence that invokes the decompressor,
parses the ELF and applies the relocations so that it can be called
directly from the EFI stub.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-21-ardb@kernel.org
|
|
It is no longer necessary to be cautious when referring to global
variables in the position independent decompressor code, now that it is
built using PIE codegen and makes an assertion in the linker script that
no GOT entries exist (which would require adjustment for the actual
runtime load address of the decompressor binary).
This means global variables can be referenced directly from C code,
instead of having to pass their runtime addresses into C routines from
asm code, which needs to happen at each call site. Do so for the code
that will be called directly from the EFI stub after a subsequent patch,
and avoid the need to duplicate this logic a third time.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-20-ardb@kernel.org
|
|
Now that the trampoline setup code and the actual invocation of it are
all done from the C routine, the trampoline cleanup can be merged into
it as well, instead of returning to asm just to call another C function.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230807162720.545787-16-ardb@kernel.org
|
|
The only remaining use of the trampoline address by the trampoline
itself is deriving the page table address from it, and this involves
adding an offset of 0x0. So simplify this, and pass the new CR3 value
directly.
This makes the fact that the page table happens to be at the start of
the trampoline allocation an implementation detail of the caller.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-15-ardb@kernel.org
|
|
Since the current and desired number of paging levels are known when the
trampoline is being prepared, avoid calling the trampoline at all if it
is clear that calling it is not going to result in a change to the
number of paging levels.
Given that the CPU is already running in long mode, the PAE and LA57
settings are necessarily consistent with the currently active page
tables, and other fields in CR4 will be initialized by the startup code
in the kernel proper. So limit the manipulation of CR4 to toggling the
LA57 bit, which is the only thing that really needs doing at this point
in the boot. This also means that there is no need to pass the value of
l5_required to toggle_la57(), as it will not be called unless CR4.LA57
needs to toggle.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230807162720.545787-14-ardb@kernel.org
|
|
Instead of returning to the asm calling code to invoke the trampoline,
call it straight from the C code that sets it up. That way, the struct
return type is no longer needed for returning two values, and the call
can be made conditional more cleanly in a subsequent patch.
This means that all callee save 64-bit registers need to be preserved
and restored, as their contents may not survive the legacy mode switch.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230807162720.545787-13-ardb@kernel.org
|
|
The 32-bit trampoline no longer uses the stack for anything except
performing a far return back to long mode, and preserving the caller's
stack pointer value. Currently, the trampoline stack is placed in the
same page that carries the trampoline code, which means this page must
be mapped writable and executable, and the stack is therefore executable
as well.
Replace the far return with a far jump, so that the return address can
be pre-calculated and patched into the code before it is called. This
removes the need for a 32-bit addressable stack entirely, and in a later
patch, this will be taken advantage of by removing writable permissions
from (and adding executable permissions to) the trampoline code page
when booting via the EFI stub.
Note that the value of RSP still needs to be preserved explicitly across
the switch into 32-bit mode, as the register may get truncated to 32
bits.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230807162720.545787-12-ardb@kernel.org
|
|
Update the trampoline code so its arguments are passed via RDI and RSI,
which matches the ordinary SysV calling convention for x86_64. This will
allow this code to be called directly from C.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230807162720.545787-11-ardb@kernel.org
|
|
Move the long return to switch to 32-bit mode into the trampoline code
so it can be called as an ordinary function. This will allow it to be
called directly from C code in a subsequent patch.
While at it, reorganize the code somewhat to keep the prologue and
epilogue of the function together, making the code a bit easier to
follow. Also, given that the trampoline is now entered in 64-bit mode, a
simple RIP-relative reference can be used to take the address of the
exit point.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230807162720.545787-10-ardb@kernel.org
|
|
There is no need to defer the assignment of the paging related global
variables 'pgdir_shift' and 'ptrs_per_p4d' until after the trampoline is
cleaned up, so assign them as soon as it is clear that 5-level paging
will be enabled.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-9-ardb@kernel.org
|
|
Instead of pushing and popping %RSI several times to preserve the struct
boot_params pointer across the execution of the startup code, move it
into a callee save register before the first call into C, and copy it
back when needed.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-8-ardb@kernel.org
|
|
The so-called EFI handover protocol is value-add from the distros that
permits a loader to simply copy a PE kernel image into memory and call
an alternative entrypoint that is described by an embedded boot_params
structure.
Most implementations of this protocol do not bother to check the PE
header for minimum alignment, section placement, etc, and therefore also
don't clear the image's BSS, or even allocate enough memory for it.
Allocating more memory on the fly is rather difficult, but at least
clear the BSS region explicitly when entering in this manner, so that
the EFI stub code does not get confused by global variables that were
not zero-initialized correctly.
When booting in mixed mode, this BSS clearing must occur before any
global state is created, so clear it in the 32-bit asm entry point.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-7-ardb@kernel.org
|
|
The native 32-bit or 64-bit EFI handover protocol entrypoint offset
relative to the respective startup_32/64 address is described in
boot_params as handover_offset, so that the special Linux/x86 aware EFI
loader can find it there.
When mixed mode is enabled, this single field has to describe this
offset for both the 32-bit and 64-bit entrypoints, so their respective
relative offsets have to be identical. Given that startup_32 and
startup_64 are 0x200 bytes apart, and the EFI handover entrypoint
resides at a fixed offset, the 32-bit and 64-bit versions of those
entrypoints must be exactly 0x200 bytes apart as well.
Currently, hard-coded fixed offsets are used to ensure this, but it is
sufficient to emit the 64-bit entrypoint 0x200 bytes after the 32-bit
one, wherever it happens to reside. This allows this code (which is now
EFI mixed mode specific) to be moved into efi_mixed.S and out of the
startup code in head_64.S.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-6-ardb@kernel.org
|
|
Now that the EFI entry code in assembler is only used by the optional
and deprecated EFI handover protocol, and given that the EFI stub C code
no longer returns to it, most of it can simply be dropped.
While at it, clarify the symbol naming, by merging efi_main() and
efi_stub_entry(), making the latter the shared entry point for all
different boot modes that enter via the EFI stub.
The efi32_stub_entry() and efi64_stub_entry() names are referenced
explicitly by the tooling that populates the setup header, so these must
be retained, but can be emitted as aliases of efi_stub_entry() where
appropriate.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-5-ardb@kernel.org
|
|
Instead of pushing/popping %RSI to/from the stack every time a function
is called from startup_64(), store it in a callee preserved register
and grab it from there when its value is actually needed.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-3-ardb@kernel.org
|