Age | Commit message (Collapse) | Author |
|
Currently memcmp() 64bytes version in powerpc will fall back to .Lshort
(compare per byte mode) if either src or dst address is not 8 bytes aligned.
It can be opmitized in 2 situations:
1) if both addresses are with the same offset with 8 bytes boundary:
memcmp() can compare the unaligned bytes within 8 bytes boundary firstly
and then compare the rest 8-bytes-aligned content with .Llong mode.
2) If src/dst addrs are not with the same offset of 8 bytes boundary:
memcmp() can align src addr with 8 bytes, increment dst addr accordingly,
then load src with aligned mode and load dst with unaligned mode.
This patch optmizes memcmp() behavior in the above 2 situations.
Tested with both little/big endian. Performance result below is based on
little endian.
Following is the test result with src/dst having the same offset case:
(a similar result was observed when src/dst having different offset):
(1) 256 bytes
Test with the existing tools/testing/selftests/powerpc/stringloops/memcmp:
- without patch
29.773018302 seconds time elapsed ( +- 0.09% )
- with patch
16.485568173 seconds time elapsed ( +- 0.02% )
-> There is ~+80% percent improvement
(2) 32 bytes
To observe performance impact on < 32 bytes, modify
tools/testing/selftests/powerpc/stringloops/memcmp.c with following:
-------
#include <string.h>
#include "utils.h"
-#define SIZE 256
+#define SIZE 32
#define ITERATIONS 10000
int test_memcmp(const void *s1, const void *s2, size_t n);
--------
- Without patch
0.244746482 seconds time elapsed ( +- 0.36%)
- with patch
0.215069477 seconds time elapsed ( +- 0.51%)
-> There is ~+13% improvement
(3) 0~8 bytes
To observe <8 bytes performance impact, modify
tools/testing/selftests/powerpc/stringloops/memcmp.c with following:
-------
#include <string.h>
#include "utils.h"
-#define SIZE 256
-#define ITERATIONS 10000
+#define SIZE 8
+#define ITERATIONS 1000000
int test_memcmp(const void *s1, const void *s2, size_t n);
-------
- Without patch
1.845642503 seconds time elapsed ( +- 0.12% )
- With patch
1.849767135 seconds time elapsed ( +- 0.26% )
-> They are nearly the same. (-0.2%)
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This patch adds error reporting to H_ENTER and H_READ hcalls. A
failure for both these hcalls are mostly fatal and it would be good to
log the failure reason.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
[mpe: Split out of larger patch]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Switch from printk to pr_fmt() / pr_xxx().
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
[mpe: Split out of larger patch]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
We do this in some part. This patch make sure we always try to search
for hpte without holding lock and redo the compare with lock held once
match found.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
No functional change
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When computing the starting slot number for a hash page table group we used
to do this
hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;
Multiplying with 8 (HPTES_PER_GROUP) imply the last three bits are 0. Hence we
really don't need to clear then separately.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
We do this only with VMEMMAP config so that our page_to_[nid/section] etc are not
impacted.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
With SPARSEMEM config enabled, we make sure that we don't add sections beyond
MAX_PHYSMEM_BITS range. This results in not building vmemmap mapping for
range beyond max range. But our memblock layer looks the device tree and create
mapping for the full memory range. Prevent this by checking against
MAX_PHSYSMEM_BITS when doing memblock_add.
We don't do similar check for memeblock_reserve_range. If reserve range is beyond
MAX_PHYSMEM_BITS we expect that to be configured with 'nomap'. Any other
reserved range should come from existing memblock ranges which we already
filtered while adding.
This avoids crash as below when running on a system with system ram config above
MAX_PHSYSMEM_BITS
Unable to handle kernel paging request for data at address 0xc00a001000000440
Faulting instruction address: 0xc000000001034118
cpu 0x0: Vector: 300 (Data Access) at [c00000000124fb30]
pc: c000000001034118: __free_pages_bootmem+0xc0/0x1c0
lr: c00000000103b258: free_all_bootmem+0x19c/0x22c
sp: c00000000124fdb0
msr: 9000000002001033
dar: c00a001000000440
dsisr: 40000000
current = 0xc00000000120dd00
paca = 0xc000000001f60000^I irqmask: 0x03^I irq_happened: 0x01
pid = 0, comm = swapper
[c00000000124fe20] c00000000103b258 free_all_bootmem+0x19c/0x22c
[c00000000124fee0] c000000001010a68 mem_init+0x3c/0x5c
[c00000000124ff00] c00000000100401c start_kernel+0x298/0x5e4
[c00000000124ff90] c00000000000b57c start_here_common+0x1c/0x520
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Similarly as we just did for 32-bit, add phony targets for generating
a little endian and Book3E allmodconfig. These aren't covered by the
regular allmodconfig, which is big endian and Book3S due to the way
the Kconfig symbols are structured.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Because the allmodconfig logic just sets every symbol to M or Y, it
has the effect of always generating a 64-bit config, because
CONFIG_PPC64 becomes Y.
So to make it easier for folks to test 32-bit code, provide a phony
defconfig target that generates a 32-bit allmodconfig.
The 32-bit port has several mutually exclusive CPU types, we choose
the Book3S variants as that's what the help text in Kconfig says is
most common.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When I added the spectre_v2 information in sysfs, I included the
availability of the ori31 speculation barrier.
Although the ori31 barrier can be used to mitigate v2, it's primarily
intended as a spectre v1 mitigation. Spectre v2 is mitigated by
hardware changes.
So rework the sysfs files to show the ori31 information in the
spectre_v1 file, rather than v2.
Currently we display eg:
$ grep . spectre_v*
spectre_v1:Mitigation: __user pointer sanitization
spectre_v2:Mitigation: Indirect branch cache disabled, ori31 speculation barrier enabled
After:
$ grep . spectre_v*
spectre_v1:Mitigation: __user pointer sanitization, ori31 speculation barrier enabled
spectre_v2:Mitigation: Indirect branch cache disabled
Fixes: d6fbe1c55c55 ("powerpc/64s: Wire up cpu_show_spectre_v2()")
Cc: stable@vger.kernel.org # v4.17+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
There is an asynchronous aspect to smp_send_nmi_ipi. The caller waits
for all CPUs to call in to the handler, but it does not wait for
completion of the handler. This is a needless complication, so remove
it and always wait synchronously.
The synchronous wait allows the caller to easily time out and clear
the wait for completion (zero nmi_ipi_busy_count) in the case of badly
behaved handlers. This would have prevented the recent smp_send_stop
NMI IPI bug from causing the system to hang.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When the masked interrupt handler clears MSR[EE] for an interrupt in
the PACA_IRQ_MUST_HARD_MASK set, it does not set PACA_IRQ_HARD_DIS.
This makes them get out of synch.
With that taken into account, it's only low level irq manipulation
(and interrupt entry before reconcile) where they can be out of synch.
This makes the code less surprising.
It also allows the IRQ replay code to rely on the IRQ_HARD_DIS value
and not have to mtmsrd again in this case (e.g., for an external
interrupt that has been masked). The bigger benefit might just be
that there is not such an element of surprise in these two bits of
state.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Applications need the ability to associate an address-range with some
key and latter revert to its initial default key. Pkey-0 comes close to
providing this function but falls short, because the current
implementation disallows applications to explicitly associate pkey-0 to
the address range.
Lets make pkey-0 less special and treat it almost like any other key.
Thus it can be explicitly associated with any address range, and can be
freed. This gives the application more flexibility and power. The
ability to free pkey-0 must be used responsibily, since pkey-0 is
associated with almost all address-range by default.
Even with this change pkey-0 continues to be slightly more special
from the following point of view.
(a) it is implicitly allocated.
(b) it is the default key assigned to any address-range.
(c) its permissions cannot be modified by userspace.
NOTE: (c) is specific to powerpc only. pkey-0 is associated by default
with all pages including kernel pages, and pkeys are also active in
kernel mode. If any permission is denied on pkey-0, the kernel running
in the context of the application will be unable to operate.
Tested on powerpc.
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
[mpe: Drop #define PKEY_0 0 in favour of plain old 0]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
execute-only key is allocated dynamically. This is a problem. When a
thread implicitly creates an execute-only key, and resets the UAMOR
for that key, the UAMOR value does not percolate to all the other
threads. Any other thread may ignorantly change the permissions on the
key. This can cause the key to be not execute-only for that thread.
Preallocate the execute-only key and ensure that no thread can change
the permission of the key, by resetting the corresponding bit in
UAMOR.
Fixes: 5586cf61e108 ("powerpc: introduce execute-only pkey")
Cc: stable@vger.kernel.org # v4.16+
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Total number of pkeys calculation is off by 1. Fix it.
Fixes: 4fb158f65ac5 ("powerpc: track allocation status of all pkeys")
Cc: stable@vger.kernel.org # v4.16+
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Kconfig reports a warning on x86 builds after the ARM64 dependency
was added.
drivers/acpi/Kconfig:6:error: recursive dependency detected!
drivers/acpi/Kconfig:6: symbol ACPI depends on EFI
This rephrases the dependency to keep the ARM64 details out of the
shared Kconfig file, so Kconfig no longer gets confused by it.
For consistency, all three architectures that support ACPI now
select ARCH_SUPPORTS_ACPI in exactly the configuration in which
they allow it. We still need the 'default x86', as each one
wants a different default: default-y on x86, default-n on arm64,
and always-y on ia64.
Fixes: 5bcd44083a08 ("drivers: acpi: add dependency of EFI for arm64")
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
When a thread forks the contents of AMR, IAMR, UAMOR registers in the
newly forked thread are not inherited.
Save the registers before forking, for content of those
registers to be automatically copied into the new thread.
Fixes: cf43d3b26452 ("powerpc: Enable pkey subsystem")
Cc: stable@vger.kernel.org # v4.16+
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Key allocation and deallocation has the side effect of programming the
UAMOR/AMR/IAMR registers. This is wrong, since its the responsibility of
the application and not that of the kernel, to modify the permission on
the key.
Do not modify the pkey registers at key allocation/deallocation.
This patch also fixes a bug where a sys_pkey_free() resets the UAMOR
bits of the key, thus making its permissions unmodifiable from user
space. Later if the same key gets reallocated from a different thread
this thread will no longer be able to change the permissions on the key.
Fixes: cf43d3b26452 ("powerpc: Enable pkey subsystem")
Cc: stable@vger.kernel.org # v4.16+
Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Deny all permissions on all keys, with some exceptions. pkey-0 must
allow all permissions, or else everything comes to a screaching halt.
Execute-only key must allow execute permission.
Fixes: cf43d3b26452 ("powerpc: Enable pkey subsystem")
Cc: stable@vger.kernel.org # v4.16+
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Currently in a multithreaded application, a key allocated by one
thread is not usable by other threads. By "not usable" we mean that
other threads are unable to change the access permissions for that
key for themselves.
When a new key is allocated in one thread, the corresponding UAMOR
bits for that thread get enabled, however the UAMOR bits for that key
for all other threads remain disabled.
Other threads have no way to set permissions on the key, and the
current default permissions are that read/write is enabled for all
keys, which means the key has no effect for other threads. Although
that may be the desired behaviour in some circumstances, having all
threads able to control their permissions for the key is more
flexible.
The current behaviour also differs from the x86 behaviour, which is
problematic for users.
To fix this, enable the UAMOR bits for all keys, at process
creation (in start_thread(), ie exec time). Since the contents of
UAMOR are inherited at fork, all threads are capable of modifying the
permissions on any key.
This is technically an ABI break on powerpc, but pkey support is fairly
new on powerpc and not widely used, and this brings us into
line with x86.
Fixes: cf43d3b26452 ("powerpc: Enable pkey subsystem")
Cc: stable@vger.kernel.org # v4.16+
Tested-by: Florian Weimer <fweimer@redhat.com>
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
[mpe: Reword some of the changelog]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
error_entry and error_exit communicate the user vs. kernel status of
the frame using %ebx. This is unnecessary -- the information is in
regs->cs. Just use regs->cs.
This makes error_entry simpler and makes error_exit more robust.
It also fixes a nasty bug. Before all the Spectre nonsense, the
xen_failsafe_callback entry point returned like this:
ALLOC_PT_GPREGS_ON_STACK
SAVE_C_REGS
SAVE_EXTRA_REGS
ENCODE_FRAME_POINTER
jmp error_exit
And it did not go through error_entry. This was bogus: RBX
contained garbage, and error_exit expected a flag in RBX.
Fortunately, it generally contained *nonzero* garbage, so the
correct code path was used. As part of the Spectre fixes, code was
added to clear RBX to mitigate certain speculation attacks. Now,
depending on kernel configuration, RBX got zeroed and, when running
some Wine workloads, the kernel crashes. This was introduced by:
commit 3ac6d8c787b8 ("x86/entry/64: Clear registers for exceptions/interrupts, to reduce speculation attack surface")
With this patch applied, RBX is no longer needed as a flag, and the
problem goes away.
I suspect that malicious userspace could use this bug to crash the
kernel even without the offending patch applied, though.
[ Historical note: I wrote this patch as a cleanup before I was aware
of the bug it fixed. ]
[ Note to stable maintainers: this should probably get applied to all
kernels. If you're nervous about that, a more conservative fix to
add xorl %ebx,%ebx; incl %ebx before the jump to error_exit should
also fix the problem. ]
Reported-and-tested-by: M. Vefa Bicakci <m.v.b@runbox.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Fixes: 3ac6d8c787b8 ("x86/entry/64: Clear registers for exceptions/interrupts, to reduce speculation attack surface")
Link: http://lkml.kernel.org/r/b5010a090d3586b2d6e06c7ad3ec5542d1241c45.1532282627.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
All SKX with stepping higher than 4 support the TSC_DEADLINE,
no matter the microcode version.
Without this patch, upcoming SKX steppings will not be able to use
their TSC_DEADLINE timer.
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: <stable@kernel.org> # v4.14+
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 616dd5872e ("x86/apic: Update TSC_DEADLINE quirk with additional SKX stepping")
Link: http://lkml.kernel.org/r/d0c7129e509660be9ec6b233284b8d42d90659e8.1532207856.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Fixes the following sparse warning:
arch/x86/mm/tlb.c:38:6: warning: symbol 'clear_asid_other' was not declared. Should it be static?
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave.hansen@linux.intel.com
Cc: kirill.shutemov@linux.intel.com
Cc: tim.c.chen@linux.intel.com
Link: http://lkml.kernel.org/r/1532159732-22939-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Paul Menzel reported the following bug:
> Enabling the undefined behavior sanitizer and building GNU/Linux 4.18-rc5+
> (with some unrelated commits) with GCC 8.1.0 from Debian Sid/unstable, the
> warning below is shown.
>
> > [ 2.111913]
> > ================================================================================
> > [ 2.111917] UBSAN: Undefined behaviour in arch/x86/events/amd/ibs.c:582:24
> > [ 2.111919] member access within null pointer of type 'struct perf_event'
> > [ 2.111926] CPU: 0 PID: 144 Comm: udevadm Not tainted 4.18.0-rc5-00316-g4864b68cedf2 #104
> > [ 2.111928] Hardware name: ASROCK E350M1/E350M1, BIOS TIMELESS 01/01/1970
> > [ 2.111930] Call Trace:
> > [ 2.111943] dump_stack+0x55/0x89
> > [ 2.111949] ubsan_epilogue+0xb/0x33
> > [ 2.111953] handle_null_ptr_deref+0x7f/0x90
> > [ 2.111958] __ubsan_handle_type_mismatch_v1+0x55/0x60
> > [ 2.111964] perf_ibs_handle_irq+0x596/0x620
The code dereferences event before checking the STARTED bit. Patch
below should cure the issue.
The warning should not trigger, if I analyzed the thing correctly.
(And Paul's testing confirms this.)
Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Tested-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Menzel <pmenzel+linux-x86@molgen.mpg.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1807200958390.1580@nanos.tec.linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The ptr_ret.cocci script generates the following warning:
arch/x86/kernel/pcspeaker.c:12:8-14: WARNING: PTR_ERR_OR_ZERO can be used
Use PTR_ERR_OR_ZERO() rather than an open-coded version to fix this.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: gregkh@linuxfoundation.org
Cc: kstewart@linuxfoundation.org
Cc: pombredanne@nexb.com
Link: http://lkml.kernel.org/r/20180720073213.14996-1-yuehaibing@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The s390 build currently fails with the latent entropy plugin:
arch/s390/kernel/als.o: In function `verify_facilities':
als.c:(.init.text+0x24): undefined reference to `latent_entropy'
als.c:(.init.text+0xae): undefined reference to `latent_entropy'
make[3]: *** [arch/s390/boot/compressed/vmlinux] Error 1
make[2]: *** [arch/s390/boot/compressed/vmlinux] Error 2
make[1]: *** [bzImage] Error 2
This will be fixed with the early boot rework from Vasily, which
is planned for the 4.19 merge window.
For 4.18 the simplest solution is to disable the gcc plugins and
reenable them after the early boot rework is upstream.
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Defines CP0_CONFIG3, CP0_CONFIG6, CP0_PAGEGRAIN and use them in
kernel-entry-init.h for Loongson64.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/19264/
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <james.hogan@mips.com>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Cc: Huacai Chen <chenhuacai@gmail.com>
|
|
Loongson-3A R3.1 is the bugfix revision of Loongson-3A R3.
All Loongson-3 CPU family:
Code-name Brand-name PRId
Loongson-3A R1 Loongson-3A1000 0x6305
Loongson-3A R2 Loongson-3A2000 0x6308
Loongson-3A R3 Loongson-3A3000 0x6309
Loongson-3A R3.1 Loongson-3A3000 0x630d
Loongson-3B R1 Loongson-3B1000 0x6306
Loongson-3B R2 Loongson-3B1500 0x6307
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/19263/
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <james.hogan@mips.com>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Cc: Huacai Chen <chenhuacai@gmail.com>
|
|
Having the zload address at 0x8060.0000 means the size of the
uncompressed kernel cannot be bigger than around 6 MiB, as it is
deflated at address 0x8001.0000.
This limit is too small; a kernel with some built-in drivers and things
like debugfs enabled will already be over 6 MiB in size, and so will
fail to extract properly.
To fix this, we bump the zload address from 0x8060.0000 to 0x8100.0000.
This is fine, as all the boards featuring Ingenic JZ SoCs have at least
32 MiB of RAM, and use u-boot or compatible bootloaders which won't
hardcode the load address but read it from the uImage's header.
Signed-off-by: Paul Cercueil <paul@crapouillou.net>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/19787/
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
|
|
Since ia64 already uses memblock to register available physical memory it
is only required to move the calls to register_active_ranges() that wrap
memblock_add_node() earlier and replace bootmem memory reservations with
memblock_reserve(). Of course, all the code that find the place to put the
bootmem bitmap is removed.
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Instead of using dma_alloc_coherent() and memset() directly use
dma_zalloc_coherent().
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/19962/
Cc: ralf@linux-mips.org
Cc: jhogan@kernel.org
Cc: john@phrozen.org
Cc: linux-mips@linux-mips.org
Cc: dev@kresin.me
|
|
When EFI memory map is traversed to determine the extents of each node, the
minimal and maximal PFNs are stored in the bootmem_data structures. The
same information ls later stored in the mem_data array of 'struct
early_node_data'.
Switch to using mem_data from the very beginning.
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Since commit 05e0caad3b7b ("[PATCH] Have ia64 use add_active_range() and
free_area_init_nodes") the num_dma_physpages member of 'struct
early_node_data' is calculated but never used. Remove it.
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
The FLATMEM version of paging_init has calls to free_area_init_nodes() in
the end of every branch of 'if' and 'ifdef' statements.
Let's call this function outside the 'ifdef' and 'if' statements instead.
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Linux expects that if a CPU modifies a memory location, then that
modification will eventually become visible to other CPUs in the system.
Loongson 3 CPUs include a Store Fill Buffer (SFB) which sits between a
core & its L1 data cache, queueing memory accesses & allowing for faster
forwarding of data from pending stores to younger loads from the core.
Unfortunately the SFB prioritizes loads such that a continuous stream of
loads may cause a pending write to be buffered indefinitely. This is
problematic if we end up with 2 CPUs which each perform a store that the
other polls for - one or both CPUs may end up with their stores buffered
in the SFB, never reaching cache due to the continuous reads from the
poll loop. Such a deadlock condition has been observed whilst running
qspinlock code.
This patch changes the definition of cpu_relax() to smp_mb() for
Loongson-3, forcing a flush of the SFB on SMP systems which will cause
any pending writes to make it as far as the L1 caches where they will
become visible to other CPUs. If the kernel is not compiled for SMP
support, this will expand to a barrier() as before.
This workaround matches that currently implemented for ARM when
CONFIG_ARM_ERRATA_754327=y, which was introduced by commit 534be1d5a2da
("ARM: 6194/1: change definition of cpu_relax() for ARM11MPCore").
Although the workaround is only required when the Loongson 3 SFB
functionality is enabled, and we only began explicitly enabling that
functionality in v4.7 with commit 1e820da3c9af ("MIPS: Loongson-3:
Introduce CONFIG_LOONGSON3_ENHANCEMENT"), existing or future firmware
may enable the SFB which means we may need the workaround backported to
earlier kernels too.
[paul.burton@mips.com:
- Reword commit message & comment.
- Limit stable backport to v3.15+ where we support Loongson 3 CPUs.]
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
References: 534be1d5a2da ("ARM: 6194/1: change definition of cpu_relax() for ARM11MPCore")
References: 1e820da3c9af ("MIPS: Loongson-3: Introduce CONFIG_LOONGSON3_ENHANCEMENT")
Patchwork: https://patchwork.linux-mips.org/patch/19830/
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Cc: Huacai Chen <chenhuacai@gmail.com>
Cc: stable@vger.kernel.org # v3.15+
|
|
This pin is externally pulled up, so we need to disable the SoC's
internal pull down resistor to allow it to function properly.
Signed-off-by: Simon Shields <simon@lineageos.org>
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
|
|
This pin is externally pulled up, so we need to disable the
SoC's internal pull-down.
Signed-off-by: Simon Shields <simon@lineageos.org>
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
|
|
This pin is externally pulled up, so we should disable the SoC's
pull down resistor in order for the interrupt to function properly.
Signed-off-by: Simon Shields <simon@lineageos.org>
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
|
|
This pins are externally pulled up, and so we should explicitly
configure them to disable the SoC-internal pull-downs. Previously
we relied on the bootloader doing this in order to allow the buttons
to function properly.
Signed-off-by: Simon Shields <simon@lineageos.org>
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
|
|
Currently, we assume that the bootloader has correctly configured
the interrupt pin for max77693. This might not actually be the case -
so it's better to configure it explicitly.
Signed-off-by: Simon Shields <simon@lineageos.org>
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
|
|
This is a fix against the issue that crash dump kernel may hang up
during booting, which can happen on any ACPI-based system with "ACPI
Reclaim Memory."
(kernel messages after panic kicked off kdump)
(snip...)
Bye!
(snip...)
ACPI: Core revision 20170728
pud=000000002e7d0003, *pmd=000000002e7c0003, *pte=00e8000039710707
Internal error: Oops: 96000021 [#1] SMP
Modules linked in:
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.14.0-rc6 #1
task: ffff000008d05180 task.stack: ffff000008cc0000
PC is at acpi_ns_lookup+0x25c/0x3c0
LR is at acpi_ds_load1_begin_op+0xa4/0x294
(snip...)
Process swapper/0 (pid: 0, stack limit = 0xffff000008cc0000)
Call trace:
(snip...)
[<ffff0000084a6764>] acpi_ns_lookup+0x25c/0x3c0
[<ffff00000849b4f8>] acpi_ds_load1_begin_op+0xa4/0x294
[<ffff0000084ad4ac>] acpi_ps_build_named_op+0xc4/0x198
[<ffff0000084ad6cc>] acpi_ps_create_op+0x14c/0x270
[<ffff0000084acfa8>] acpi_ps_parse_loop+0x188/0x5c8
[<ffff0000084ae048>] acpi_ps_parse_aml+0xb0/0x2b8
[<ffff0000084a8e10>] acpi_ns_one_complete_parse+0x144/0x184
[<ffff0000084a8e98>] acpi_ns_parse_table+0x48/0x68
[<ffff0000084a82cc>] acpi_ns_load_table+0x4c/0xdc
[<ffff0000084b32f8>] acpi_tb_load_namespace+0xe4/0x264
[<ffff000008baf9b4>] acpi_load_tables+0x48/0xc0
[<ffff000008badc20>] acpi_early_init+0x9c/0xd0
[<ffff000008b70d50>] start_kernel+0x3b4/0x43c
Code: b9008fb9 2a000318 36380054 32190318 (b94002c0)
---[ end trace c46ed37f9651c58e ]---
Kernel panic - not syncing: Fatal exception
Rebooting in 10 seconds..
(diagnosis)
* This fault is a data abort, alignment fault (ESR=0x96000021)
during reading out ACPI table.
* Initial ACPI tables are normally stored in system ram and marked as
"ACPI Reclaim memory" by the firmware.
* After the commit f56ab9a5b73c ("efi/arm: Don't mark ACPI reclaim
memory as MEMBLOCK_NOMAP"), those regions are differently handled
as they are "memblock-reserved", without NOMAP bit.
* So they are now excluded from device tree's "usable-memory-range"
which kexec-tools determines based on a current view of /proc/iomem.
* When crash dump kernel boots up, it tries to accesses ACPI tables by
mapping them with ioremap(), not ioremap_cache(), in acpi_os_ioremap()
since they are no longer part of mapped system ram.
* Given that ACPI accessor/helper functions are compiled in without
unaligned access support (ACPI_MISALIGNMENT_NOT_SUPPORTED),
any unaligned access to ACPI tables can cause a fatal panic.
With this patch, acpi_os_ioremap() always honors memory attribute
information provided by the firmware (EFI) and retaining cacheability
allows the kernel safe access to ACPI tables.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reported-by and Tested-by: Bhupesh Sharma <bhsharma@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
There has been some confusion around what is necessary to prevent kexec
overwriting important memory regions. memblock: reserve, or nomap?
Only memblock nomap regions are reported via /proc/iomem, kexec's
user-space doesn't know about memblock_reserve()d regions.
Until commit f56ab9a5b73ca ("efi/arm: Don't mark ACPI reclaim memory
as MEMBLOCK_NOMAP") the ACPI tables were nomap, now they are reserved
and thus possible for kexec to overwrite with the new kernel or initrd.
But this was always broken, as the UEFI memory map is also reserved
and not marked as nomap.
Exporting both nomap and reserved memblock types is a nuisance as
they live in different memblock structures which we can't walk at
the same time.
Take a second walk over memblock.reserved and add new 'reserved'
subnodes for the memblock_reserved() regions that aren't already
described by the existing code. (e.g. Kernel Code)
We use reserve_region_with_split() to find the gaps in existing named
regions. This handles the gap between 'kernel code' and 'kernel data'
which is memblock_reserve()d, but already partially described by
request_standard_resources(). e.g.:
| 80000000-dfffffff : System RAM
| 80080000-80ffffff : Kernel code
| 81000000-8158ffff : reserved
| 81590000-8237efff : Kernel data
| a0000000-dfffffff : Crash kernel
| e00f0000-f949ffff : System RAM
reserve_region_with_split needs kzalloc() which isn't available when
request_standard_resources() is called, use an initcall.
Reported-by: Bhupesh Sharma <bhsharma@redhat.com>
Reported-by: Tyler Baicar <tbaicar@codeaurora.org>
Suggested-by: Akashi Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: James Morse <james.morse@arm.com>
Fixes: d28f6df1305a ("arm64/kexec: Add core kexec support")
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
CC: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Not all toolchains have the baremetal elf targets, RedHat/Fedora ones
in particular. So, probe for whether it's available and use the previous
(linux) targets if it isn't.
Reported-by: Laura Abbott <labbott@redhat.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Paul Kocialkowski <contact@paulk.fr>
Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
It's possible for userspace to control idx. Sanitize idx when using it
as an array index, to inhibit the potential spectre-v1 write gadget.
Found by smatch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Switch to the generic noncoherent direct mapping implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Greg Ungerer <gerg@linux-m68k.org>
Tested-by: Greg Ungerer <gerg@linux-m68k.org>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
|
I can confirm that mac_scsi PDMA now works on these machines.
This increases sequential read throughput by a factor of 4.5.
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
|
Use new return type vm_fault_t for fault handler vdso_fault.
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Enable support for the Renesas RZN1D-DB Board:
- RZ/N1D (R9A06G032) base SoC support.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Simon Horman <horms+renesas@verge.net.au>
|
|
Replace the hardcoded clock indices by R8A77470_CLK_* symbols.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Biju Das <biju.das@bp.renesas.com>
Signed-off-by: Simon Horman <horms+renesas@verge.net.au>
|