Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton:
"20 hotfixes. 12 are cc:stable and the remainder address post-6.5
issues or aren't considered necessary for earlier kernel versions"
* tag 'mm-hotfixes-stable-2023-10-24-09-40' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
maple_tree: add GFP_KERNEL to allocations in mas_expected_entries()
selftests/mm: include mman header to access MREMAP_DONTUNMAP identifier
mailmap: correct email aliasing for Oleksij Rempel
mailmap: map Bartosz's old address to the current one
mm/damon/sysfs: check DAMOS regions update progress from before_terminate()
MAINTAINERS: Ondrej has moved
kasan: disable kasan_non_canonical_hook() for HW tags
kasan: print the original fault addr when access invalid shadow
hugetlbfs: close race between MADV_DONTNEED and page fault
hugetlbfs: extend hugetlb_vma_lock to private VMAs
hugetlbfs: clear resv_map pointer if mmap fails
mm: zswap: fix pool refcount bug around shrink_worker()
mm/migrate: fix do_pages_move for compat pointers
riscv: fix set_huge_pte_at() for NAPOT mappings when a swap entry is set
riscv: handle VM_FAULT_[HWPOISON|HWPOISON_LARGE] faults instead of panicking
mmap: fix error paths with dup_anon_vma()
mmap: fix vma_iterator in error path of vma_merge()
mm: fix vm_brk_flags() to not bail out while holding lock
mm/mempolicy: fix set_mempolicy_home_node() previous VMA pointer
mm/page_alloc: correct start page when guard page debug is enabled
|
|
Suzuki noticed that KVM's PMU emulation is oblivious to the NSU and NSK
event filter bits. On systems that have EL3 these bits modify the
filter behavior in non-secure EL0 and EL1, respectively. Even though the
kernel doesn't use these bits, it is entirely possible some other guest
OS does. Additionally, it would appear that these and the M bit are
required by the architecture if EL3 is implemented.
Allow the EL3 event filter bits to be set if EL3 is advertised in the
guest's ID register. Implement the behavior of NSU and NSK according to
the pseudocode, and entirely ignore the M bit for perf event creation.
Reported-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20231019185618.3442949-3-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
The NSH bit, which filters event counting at EL2, is required by the
architecture if an implementation has EL2. Even though KVM doesn't
support nested virt yet, it makes no effort to hide the existence of EL2
from the ID registers. Userspace can, however, change the value of PFR0
to hide EL2. Align KVM's sysreg emulation with the architecture and make
NSH RES0 if EL2 isn't advertised. Keep in mind the bit is ignored when
constructing the backing perf event.
While at it, build the event type mask using explicit field definitions
instead of relying on ARMV8_PMU_EVTYPE_MASK. KVM probably should've been
doing this in the first place, as it avoids changes to the
aforementioned mask affecting sysreg emulation.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20231019185618.3442949-2-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Introduce new helper functions to set the guest's PMU
(kvm->arch.arm_pmu) either to a default probed instance or to a
caller requested one, and use it when the guest's PMU needs to
be set. These helpers will make it easier for the following
patches to modify the relevant code.
No functional change intended.
Reviewed-by: Sebastian Ott <sebott@redhat.com>
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231020214053.2144305-2-rananta@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
A bug was recently found via CONFIG_DEBUG_ENTRY=y, and the x86
tree kinda is the main source of changes to the x86 entry code,
so enable this debug option by default in our defconfigs.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-kernel@vger.kernel.org
|
|
This patch was developed as OpenWrt downstream change and was recently
confirmed to work as expected.
Tested-by: Rani Hod <rani.hod@gmail.com>
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Link: https://lore.kernel.org/r/20231024072605.32517-1-zajec5@gmail.com
Signed-off-by: Florian Fainelli <florian.fainelli@broadcom.com>
|
|
The counting of module PLTs has been broken when CONFIG_RANDOMIZE_BASE=n
since commit:
3e35d303ab7d22c4 ("arm64: module: rework module VA range selection")
Prior to that commit, when CONFIG_RANDOMIZE_BASE=n, the kernel image and
all modules were placed within a 128M region, and no PLTs were necessary
for B or BL. Hence count_plts() and partition_branch_plt_relas() skipped
handling B and BL when CONFIG_RANDOMIZE_BASE=n.
After that commit, modules can be placed anywhere within a 2G window
regardless of CONFIG_RANDOMIZE_BASE, and hence PLTs may be necessary for
B and BL even when CONFIG_RANDOMIZE_BASE=n. Unfortunately that commit
failed to update count_plts() and partition_branch_plt_relas()
accordingly.
Due to this, module_emit_plt_entry() may fail if an insufficient number
of PLT entries have been reserved, resulting in modules failing to load
with -ENOEXEC.
Fix this by counting PLTs regardless of CONFIG_RANDOMIZE_BASE in
count_plts() and partition_branch_plt_relas().
Fixes: 3e35d303ab7d ("arm64: module: rework module VA range selection")
Signed-off-by: Maria Yu <quic_aiquny@quicinc.com>
Cc: <stable@vger.kernel.org> # 6.5.x
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Fixes: 3e35d303ab7d ("arm64: module: rework module VA range selection")
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20231024010954.6768-1-quic_aiquny@quicinc.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
ACPI, irqchip and the architecture code all inspect the MADT
enabled bit for a GICC entry in the MADT.
The addition of an 'online capable' bit means all these sites need
updating.
Move the current checks behind a helper to make future updates easier.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: "Russell King (Oracle)" <rmk+kernel@armlinux.org.uk>
Acked-by: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Link: https://lore.kernel.org/r/E1quv5D-00AeNJ-U8@rmk-PC.armlinux.org.uk
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
In general users, don't have the necessary information to determine
whether late loading of a new microcode version is safe and does not
modify anything which the currently running kernel uses already, e.g.
removal of CPUID bits or behavioural changes of MSRs.
To address this issue, Intel has added a "minimum required version"
field to a previously reserved field in the microcode header. Microcode
updates should only be applied if the current microcode version is equal
to, or greater than this minimum required version.
Thomas made some suggestions on how meta-data in the microcode file could
provide Linux with information to decide if the new microcode is suitable
candidate for late loading. But even the "simpler" option requires a lot of
metadata and corresponding kernel code to parse it, so the final suggestion
was to add the 'minimum required version' field in the header.
When microcode changes visible features, microcode will set the minimum
required version to its own revision which prevents late loading.
Old microcode blobs have the minimum revision field always set to 0, which
indicates that there is no information and the kernel considers it
unsafe.
This is a pure OS software mechanism. The hardware/firmware ignores this
header field.
For early loading there is no restriction because OS visible features
are enumerated after the early load and therefore a change has no
effect.
The check is always enabled, but by default not enforced. It can be
enforced via Kconfig or kernel command line.
If enforced, the kernel refuses to late load microcode with a minimum
required version field which is zero or when the currently loaded
microcode revision is smaller than the minimum required revision.
If not enforced the load happens independent of the revision check to
stay compatible with the existing behaviour, but it influences the
decision whether the kernel is tainted or not. If the check signals that
the late load is safe, then the kernel is not tainted.
Early loading is not affected by this.
[ tglx: Massaged changelog and fixed up the implementation ]
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.776467264@linutronix.de
|
|
Applying microcode late can be fatal for the running kernel when the
update changes functionality which is in use already in a non-compatible
way, e.g. by removing a CPUID bit.
There is no way for admins which do not have access to the vendors deep
technical support to decide whether late loading of such a microcode is
safe or not.
Intel has added a new field to the microcode header which tells the
minimal microcode revision which is required to be active in the CPU in
order to be safe.
Provide infrastructure for handling this in the core code and a command
line switch which allows to enforce it.
If the update is considered safe the kernel is not tainted and the annoying
warning message not emitted. If it's enforced and the currently loaded
microcode revision is not safe for late loading then the load is aborted.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211724.079611170@linutronix.de
|
|
Offline CPUs need to be parked in a safe loop when microcode update is
in progress on the primary CPU. Currently, offline CPUs are parked in
mwait_play_dead(), and for Intel CPUs, its not a safe instruction,
because the MWAIT instruction can be patched in the new microcode update
that can cause instability.
- Add a new microcode state 'UCODE_OFFLINE' to report status on per-CPU
basis.
- Force NMI on the offline CPUs.
Wake up offline CPUs while the update is in progress and then return
them back to mwait_play_dead() after microcode update is complete.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.660850472@linutronix.de
|
|
When SMT siblings are soft-offlined and parked in one of the play_dead()
variants they still react on NMI, which is problematic on affected Intel
CPUs. The default play_dead() variant uses MWAIT on modern CPUs, which is
not guaranteed to be safe when updated concurrently.
Right now late loading is prevented when not all SMT siblings are online,
but as they still react on NMI, it is possible to bring them out of their
park position into a trivial rendezvous handler.
Provide a function which allows to do that. I does sanity checks whether
the target is in the cpus_booted_once_mask and whether the APIC driver
supports it.
Mark X2APIC and XAPIC as capable, but exclude 32bit and the UV and NUMACHIP
variants as that needs feedback from the relevant experts.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.603100036@linutronix.de
|
|
The wait for control loop in which the siblings are waiting for the
microcode update on the primary thread must be protected against
instrumentation as instrumentation can end up in #INT3, #DB or #PF,
which then returns with IRET. That IRET reenables NMI which is the
opposite of what the NMI rendezvous is trying to achieve.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.545969323@linutronix.de
|
|
stop_machine() does not prevent the spin-waiting sibling from handling
an NMI, which is obviously violating the whole concept of rendezvous.
Implement a static branch right in the beginning of the NMI handler
which is nopped out except when enabled by the late loading mechanism.
The late loader enables the static branch before stop_machine() is
invoked. Each CPU has an nmi_enable in its control structure which
indicates whether the CPU should go into the update routine.
This is required to bridge the gap between enabling the branch and
actually being at the point where it is required to enter the loader
wait loop.
Each CPU which arrives in the stopper thread function sets that flag and
issues a self NMI right after that. If the NMI function sees the flag
clear, it returns. If it's set it clears the flag and enters the
rendezvous.
This is safe against a real NMI which hits in between setting the flag
and sending the NMI to itself. The real NMI will be swallowed by the
microcode update and the self NMI will then let stuff continue.
Otherwise this would end up with a spurious NMI.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.489900814@linutronix.de
|
|
with a new handler which just separates the control flow of primary and
secondary CPUs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.433704135@linutronix.de
|
|
The current all in one code is unreadable and really not suited for
adding future features like uniform loading with package or system
scope.
Provide a set of new control functions which split the handling of the
primary and secondary CPUs. These will replace the current rendezvous
all in one function in the next step. This is intentionally a separate
change because diff makes an complete unreadable mess otherwise.
So the flow separates the primary and the secondary CPUs into their own
functions which use the control field in the per CPU ucode_ctrl struct.
primary() secondary()
wait_for_all() wait_for_all()
apply_ucode() wait_for_release()
release() apply_ucode()
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.377922731@linutronix.de
|
|
Add a per CPU control field to ucode_ctrl and define constants for it
which are going to be used to control the loading state machine.
In theory this could be a global control field, but a global control does
not cover the following case:
15 primary CPUs load microcode successfully
1 primary CPU fails and returns with an error code
With global control the sibling of the failed CPU would either try again or
the whole operation would be aborted with the consequence that the 15
siblings do not invoke the apply path and end up with inconsistent software
state. The result in dmesg would be inconsistent too.
There are two additional fields added and initialized:
ctrl_cpu and secondaries. ctrl_cpu is the CPU number of the primary thread
for now, but with the upcoming uniform loading at package or system scope
this will be one CPU per package or just one CPU. Secondaries hands the
control CPU a CPU mask which will be required to release the secondary CPUs
out of the wait loop.
Preparatory change for implementing a properly split control flow for
primary and secondary CPUs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.319959519@linutronix.de
|
|
The microcode rendezvous is purely acting on global state, which does
not allow to analyze fails in a coherent way.
Introduce per CPU state where the results are written into, which allows to
analyze the return codes of the individual CPUs.
Initialize the state when walking the cpu_present_mask in the online
check to avoid another for_each_cpu() loop.
Enhance the result print out with that.
The structure is intentionally named ucode_ctrl as it will gain control
fields in subsequent changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211723.632681010@linutronix.de
|
|
The code is too complicated for no reason:
- The return value is pointless as this is a strict boolean.
- It's way simpler to count down from num_online_cpus() and check for
zero.
- The timeout argument is pointless as this is always one second.
- Touching the NMI watchdog every 100ns does not make any sense, neither
does checking every 100ns. This is really not a hotpath operation.
Preload the atomic counter with the number of online CPUs and simplify the
whole timeout logic. Delay for one microsecond and touch the NMI watchdog
once per millisecond.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.204251527@linutronix.de
|
|
reload_store() is way too complicated. Split the inner workings out and
make the following enhancements:
- Taint the kernel only when the microcode was actually updated. If. e.g.
the rendezvous fails, then nothing happened and there is no reason for
tainting.
- Return useful error codes
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/r/20231002115903.145048840@linutronix.de
|
|
On CPUs where microcode loading is not NMI-safe the SMT siblings which
are parked in one of the play_dead() variants still react to NMIs.
So if an NMI hits while the primary thread updates the microcode the
resulting behaviour is undefined. The default play_dead() implementation on
modern CPUs is using MWAIT which is not guaranteed to be safe against
a microcode update which affects MWAIT.
Take the cpus_booted_once_mask into account to detect this case and
refuse to load late if the vendor specific driver does not advertise
that late loading is NMI safe.
AMD stated that this is safe, so mark the AMD driver accordingly.
This requirement will be partially lifted in later changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.087472735@linutronix.de
|
|
This function has nothing to do with suspend. It's a hotplug
callback. Remove the bogus comment.
Drop the pointless debug printk. The hotplug core provides tracepoints
which track the invocation of those callbacks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.028651784@linutronix.de
|
|
Scheduling work on all CPUs to collect the microcode information is just
another extra step for no value. Let the CPU hotplug callback registration
do it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211723.354748138@linutronix.de
|
|
Get rid of the initrd_gone hack which was required to keep
find_microcode_in_initrd() functional after init.
As find_microcode_in_initrd() is now only used during init, mark it
accordingly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211723.298854846@linutronix.de
|
|
Now that the microcode cache is initialized before the APs are brought
up, there is no point in scanning builtin/initrd microcode during AP
loading.
Convert the AP loader to utilize the cache, which in turn makes the CPU
hotplug callback which applies the microcode after initrd/builtin is
gone, obsolete as the early loading during late hotplug operations
including the resume path depends now only on the cache.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211723.243426023@linutronix.de
|
|
There is no reason to scan builtin/initrd microcode on each AP.
Cache the builtin/initrd microcode in an early initcall so that the
early AP loader can utilize the cache.
The existing fs initcall which invoked save_microcode_in_initrd_amd() is
still required to maintain the initrd_gone flag. Rename it accordingly.
This will be removed once the AP loader code is converted to use the
cache.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211723.187566507@linutronix.de
|
|
save_microcode_in_initrd_amd() fails to cache builtin microcode and only
scans initrd.
Use find_blobs_in_containers() instead which covers both.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231010150702.495139089@linutronix.de
|
|
find_blobs_in_containers() is invoked on every CPU but overwrites
unconditionally ucode_cpu_info of CPU0.
Fix this by using the proper CPU data and move the assignment into the
call site apply_ucode_from_containers() so that the function can be
reused.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231010150702.433454320@linutronix.de
|
|
Microcode is applied on the APs during early bringup. There is no point
in trying to apply the microcode again during the hotplug operations and
neither at the point where the microcode device is initialized.
Collect CPU info and microcode revision in setup_online_cpu() for now.
This will move to the CPU hotplug callback later.
[ bp: Leave the starting notifier for the following scenario:
- boot, late load, suspend to disk, resume
without the starting notifier, only the last core manages to update the
microcode upon resume:
# rdmsr -a 0x8b
10000bf
10000bf
10000bf
10000bf
10000bf
10000dc <----
This is on an AMD F10h machine.
For the future, one should check whether potential unification of
the CPU init path could cover the resume path too so that this can
be simplified even more.
tglx: This is caused by the odd handling of APs which try to find the
microcode blob in builtin or initrd instead of caching the microcode
blob during early init before the APs are brought up. Will be cleaned
up in a later step. ]
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20231017211723.018821624@linutronix.de
|
|
Take a cpu_signature argument and work from there. Move the match()
helper next to the callsite as there is no point for having it in
a header.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115902.797820205@linutronix.de
|
|
No point for an almost duplicate function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115902.741173606@linutronix.de
|
|
Nothing needs struct ucode_cpu_info. Make it take struct cpu_signature,
let it return a boolean and simplify the implementation. Rename it now
that the silly name clash with collect_cpu_info() is gone.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211722.851573238@linutronix.de
|
|
Deduplicate the early and late apply() functions.
[ bp: Rename the function which does the actual application to
__apply_microcode() to differentiate it from
microcode_ops.apply_microcode(). ]
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20231017211722.795508212@linutronix.de
|
|
Microcode blobs are getting larger and might soon reach the kmalloc()
limit. Switch over kvmalloc().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115902.564323243@linutronix.de
|
|
There are situations where the late microcode is loaded into memory but
is not applied:
1) The rendezvous fails
2) The microcode is rejected by the CPUs
If any of this happens then the pointer which was updated at firmware
load time is stale and subsequent CPU hotplug operations either fail to
update or create inconsistent microcode state.
Save the loaded microcode in a separate pointer before the late load is
attempted and when successful, update the hotplug pointer accordingly
via a new microcode_ops callback.
Remove the pointless fallback in the loader to a microcode pointer which
is never populated.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115902.505491309@linutronix.de
|
|
The early loading code is overly complicated:
- It scans the builtin/initrd for microcode not only on the BSP, but also
on all APs during early boot and then later in the boot process it
scans again to duplicate and save the microcode before initrd goes
away.
That's a pointless exercise because this can be simply done before
bringing up the APs when the memory allocator is up and running.
- Saving the microcode from within the scan loop is completely
non-obvious and a left over of the microcode cache.
This can be done at the call site now which makes it obvious.
Rework the code so that only the BSP scans the builtin/initrd microcode
once during early boot and save it away in an early initcall for later
use.
[ bp: Test and fold in a fix from tglx ontop which handles the need to
distinguish what save_microcode() does depending on when it is
called:
- when on the BSP during early load, it needs to find a newer
revision than the one currently loaded on the BSP
- later, before SMP init, it still runs on the BSP and gets the BSP
revision just loaded and uses that revision to know which patch
to save for the APs. For that it needs to find the exact one as
on the BSP.
]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211722.629085215@linutronix.de
|
|
The conversion to vgacon_register_screen() was missing an #include statement
for the swarm board:
arch/mips/sibyte/swarm/setup.c:146:9: error: implicit declaration of function 'vgacon_register_screen' [-Werror=implicit-function-declaration]
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202310240429.UqeQ2Cpr-lkp@intel.com/
Fixes: 555624c0d10b vgacon: clean up global screen_info instances
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20231024054412.2291220-1-arnd@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Ports 5 and 7 are disabled by default because the standard use case is
for port 8 to manage all CPU directed traffic. For experimentation
purposes however it is desirable to provide adequate properties such
that people can experiment with using different ports without having to
figure out their configuration. Some of the use cases include but are
not limited to doubling or tripling the bandwidth by leveraging the
additional ports/Ethernet MAC combinations.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Link: https://lore.kernel.org/r/20231013103314.10306-2-zajec5@gmail.com
Signed-off-by: Florian Fainelli <florian.fainelli@broadcom.com>
|
|
When redescribing ports I assumed that missing "label" (like "cpu")
means switch port isn't used. That was incorrect and I realized my
change made Linux always use the first (5) CPU port (there are 3 of
them).
While above should technically be possible it often isn't correct:
1. Non-default switch ports are often connected to Ethernet interfaces
not fully covered by vendor setup (they may miss MACs)
2. On some devices non-default ports require specifying fixed link
This fixes network connectivity for some devices. It was reported &
tested for Netgear R8000. It also affects Linksys EA9200 with its
downstream DTS.
Fixes: ba4aebce23b2 ("ARM: dts: BCM5301X: Describe switch ports in the main DTS")
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Link: https://lore.kernel.org/r/20231013103314.10306-1-zajec5@gmail.com
Signed-off-by: Florian Fainelli <florian.fainelli@broadcom.com>
|
|
Move code added by Vivek to the bcm-ns.dtsi which uses dual licensing.
That syncs more Northstar code to be based on the same licensing schema.
This code was added in the commit 37f6130ec39f ("ARM: dts: BCM5301X:
Make USB 3.0 PHY use MDIO PHY driver").
Cc: Vivek Unune <npcomplete13@gmail.com>
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Acked-by: Vivek Unune <npcomplete13@gmail.com>
Link: https://lore.kernel.org/r/20230916085855.28375-1-zajec5@gmail.com
Signed-off-by: Florian Fainelli <florian.fainelli@broadcom.com>
|
|
Move code added by Felix to the bcm-ns.dtsi which uses dual licensing.
That syncs more Northstar code to be based on the same licensing schema.
This code was added in the commit 1ff80363524c ("ARM: BCM5301X: Add
profiling support").
Cc: Felix Fietkau <nbd@nbd.name>
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Acked-by: Felix Fietkau <nbd@nbd.name>
Link: https://lore.kernel.org/r/20230916083057.10458-1-zajec5@gmail.com
Signed-off-by: Florian Fainelli <florian.fainelli@broadcom.com>
|
|
Specify NVRAM access and use its "et1macaddr" NVMEM cell.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Link: https://lore.kernel.org/r/20230901124311.31156-1-zajec5@gmail.com
Signed-off-by: Florian Fainelli <florian.fainelli@broadcom.com>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/krzk/linux into soc/dt
Samsung DTS ARM64 changes for v6.7, part two
Add ramoops reserved memory region to E850-96 board for debugging
purposes.
* tag 'samsung-dt64-6.7-2' of https://git.kernel.org/pub/scm/linux/kernel/git/krzk/linux:
arm64: dts: exynos: Add reserved memory for pstore on E850-96
Link: https://lore.kernel.org/r/20231023165412.529762-1-krzysztof.kozlowski@linaro.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
As all level 2 and level 3 caches are unified, add required
cache-unified property to fix warnings like:
uniphier-ld11-ref.dtb: l2-cache: 'cache-unified' is a required property
Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Signed-off-by: Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
Link: https://lore.kernel.org/r/20231023021221.2884828-3-hayashi.kunihiko@socionext.com
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Convert the th1520 devicetrees to use the new properties
"riscv,isa-base" & "riscv,isa-extensions".
For compatibility with other projects, "riscv,isa" remains.
Reviewed-by: Jisheng Zhang <jszhang@kernel.org>
Acked-by: Guo Ren <guoren@kernel.org>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20231022154135.3746-1-jszhang@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
The DeviceTree Specification v0.3 specifies that the cache node
'compatible' and 'cache-level' properties are 'required'. Cf.
s3.8 Multi-level and Shared Cache Nodes
The 'cache-unified' property should be present if one of the
properties for unified cache is present ('cache-size', ...).
Update the Device Trees accordingly.
Signed-off-by: Pierre Gondois <pierre.gondois@arm.com>
Reviewed-by: Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
Link: https://lore.kernel.org/r/20221107155825.1644604-21-pierre.gondois@arm.com
Signed-off-by: Rob Herring <robh@kernel.org>
Reviewed-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Link: https://lore.kernel.org/r/20231020195022.4183862-2-robh@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gclement/mvebu into soc/dt
mvebu dt64 for 6.7 (part 1)
Declare switch on eDPU (Armada 3720 based)
Use proper suffix -gpios for SFP GPIO properties on uDPU (Armada 3720 based)
Use appropriate label for spi1 pins on cn9310 boards
* tag 'mvebu-dt64-6.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/gclement/mvebu:
arm64: dts: marvell: eDPU: add support for version with external switch
arm64: dts: marvell: uDPU: rename the SFP GPIO properties
ARM64: dts: marvell: cn9310: Use appropriate label for spi1 pins
Link: https://lore.kernel.org/r/8734y6aaqb.fsf@BL-laptop
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
We currently have a global VTCR_EL2 value for each guest, even
if the guest uses NV. This implies that the guest's own S2 must
fit in the host's. This is odd, for multiple reasons:
- the PARange values and the number of IPA bits don't necessarily
match: you can have 33 bits of IPA space, and yet you can only
describe 32 or 36 bits of PARange
- When userspace set the IPA space, it creates a contract with the
kernel saying "this is the IPA space I'm prepared to handle".
At no point does it constraint the guest's own IPA space as
long as the guest doesn't try to use a [I]PA outside of the
IPA space set by userspace
- We don't even try to hide the value of ID_AA64MMFR0_EL1.PARange.
And then there is the consequence of the above: if a guest tries
to create a S2 that has for input address something that is larger
than the IPA space defined by the host, we inject a fatal exception.
This is no good. For all intent and purposes, a guest should be
able to have the S2 it really wants, as long as the *output* address
of that S2 isn't outside of the IPA space.
For that, we need to have a per-s2_mmu VTCR_EL2 setting, which
allows us to represent the full PARange. Move the vctr field into
the s2_mmu structure, which has no impact whatsoever, except for NV.
Note that once we are able to override ID_AA64MMFR0_EL1.PARange
from userspace, we'll also be able to restrict the size of the
shadow S2 that NV uses.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231012205108.3937270-1-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Get fixes needed so we can enable build of ams-delta in more
configurations.
|
|
If the cmma no-dat feature is available all pages that are not used for
dynamic address translation are marked as "no-dat" with the ESSA
instruction. This information is visible to the hypervisor, so that the
hypervisor can optimize purging of guest TLB entries. This also means that
pages which are used for dynamic address translation must not be marked as
"no-dat", since the hypervisor may then incorrectly not purge guest TLB
entries.
Region and segment tables allocated via vmem_crst_alloc() are incorrectly
marked as "no-dat", as soon as slab_is_available() returns true.
Such tables are allocated e.g. when kernel page tables are split, memory is
hotplugged, or a DCSS segment is loaded.
Fix this by adding the missing arch_set_page_dat() call.
Cc: <stable@vger.kernel.org>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|