Age | Commit message (Collapse) | Author |
|
Fixes build problems for configurations with KVM enabled but SVE disabled.
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20211022141635.2360415-2-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Now that entry code handles IRQ entry (including setting the IRQ regs)
before calling irqchip code, irqchip code can safely call
generic_handle_domain_irq(), and there's no functional reason for it to
call handle_domain_irq().
Let's cement this split of responsibility and remove handle_domain_irq()
entirely, updating irqchip drivers to call generic_handle_domain_irq().
For consistency, handle_domain_nmi() is similarly removed and replaced
with a generic_handle_domain_nmi() function which also does not perform
any entry logic.
Previously handle_domain_{irq,nmi}() had a WARN_ON() which would fire
when they were called in an inappropriate context. So that we can
identify similar issues going forward, similar WARN_ON_ONCE() logic is
added to the generic_handle_*() functions, and comments are updated for
clarity and consistency.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
|
|
In preparation for removing HANDLE_DOMAIN_IRQ_IRQENTRY, have arch/riscv
perform all the irqentry accounting in its entry code. As arch/riscv
uses GENERIC_IRQ_MULTI_HANDLER, we can use generic_handle_arch_irq() to
do so.
Since generic_handle_arch_irq() handles the irq entry and setting the
irq regs, and happens before the irqchip code calls handle_IPI(), we can
remove the redundant irq entry and irq regs manipulation from
handle_IPI().
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Guo Ren <guoren@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
|
|
In preparation for removing HANDLE_DOMAIN_IRQ_IRQENTRY, have
arch/openrisc perform all the irqentry accounting in its entry code. As
arch/openrisc uses GENERIC_IRQ_MULTI_HANDLER, we can use
generic_handle_arch_irq() to do so.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Stafford Horne <shorne@gmail.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Thomas Gleixner <tglx@linutronix.de>
|
|
In preparation for removing HANDLE_DOMAIN_IRQ_IRQENTRY, have arch/csky
perform all the irqentry accounting in its entry code. As arch/csky uses
GENERIC_IRQ_MULTI_HANDLER, we can use generic_handle_arch_irq() to do
so.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Guo Ren <guoren@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
|
|
In preparation for removing HANDLE_DOMAIN_IRQ_IRQENTRY, have arch/arm64
perform all the irqentry accounting in its entry code.
As arch/arm64 already performs portions of the irqentry logic in
enter_from_kernel_mode() and exit_to_kernel_mode(), including
rcu_irq_{enter,exit}(), the only additional calls that need to be made
are to irq_{enter,exit}_rcu(). Removing the calls to
rcu_irq_{enter,exit}() from handle_domain_irq() ensures that we inform
RCU once per IRQ entry and will correctly identify quiescent periods.
Since we should not call irq_{enter,exit}_rcu() when entering a
pseudo-NMI, el1_interrupt() is reworked to have separate __el1_irq() and
__el1_pnmi() paths for regular IRQ and psuedo-NMI entry, with
irq_{enter,exit}_irq() only called for the former.
In preparation for removing HANDLE_DOMAIN_IRQ, the irq regs are managed
in do_interrupt_handler() for both regular IRQ and pseudo-NMI. This is
currently redundant, but not harmful.
For clarity the preemption logic is moved into __el1_irq(). We should
never preempt within a pseudo-NMI, and arm64_enter_nmi() already
enforces this by incrementing the preempt_count, but it's clearer if we
never invoke the preemption logic when entering a pseudo-NMI.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Pingfan Liu <kernelfans@gmail.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
|
|
Add the AMX state components in XFEATURE_MASK_USER_SUPPORTED and the
TILE_DATA component to the dynamic states and update the permission check
table accordingly.
This is only effective on 64 bit kernels as for 32bit kernels
XFEATURE_MASK_TILE is defined as 0.
TILE_DATA is caller-saved state and the only dynamic state. Add build time
sanity check to ensure the assumption that every dynamic feature is caller-
saved.
Make AMX state depend on XFD as it is dynamic feature.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-24-chang.seok.bae@intel.com
|
|
To handle the dynamic sizing of buffers on first use the XFD MSR has to be
armed. Store the delta between the maximum available and the default
feature bits in init_fpstate where it can be retrieved for task creation.
If the delta is non zero then dynamic features are enabled. This needs also
to enable the static key which guards the XFD updates. This is delayed to
an initcall because the FPU setup runs before jump labels are initialized.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-23-chang.seok.bae@intel.com
|
|
When dynamically enabled states are supported the maximum and default sizes
for the kernel buffers and user space interfaces are not longer identical.
Put the necessary calculations in place which only take the default enabled
features into account.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-22-chang.seok.bae@intel.com
|
|
The XSTATE initialization uses check_xstate_against_struct() to sanity
check the size of XSTATE-enabled features. AMX is a XSAVE-enabled feature,
and its size is not hard-coded but discoverable at run-time via CPUID.
The AMX state is composed of state components 17 and 18, which are all user
state components. The first component is the XTILECFG state of a 64-byte
tile-related control register. The state component 18, called XTILEDATA,
contains the actual tile data, and the state size varies on
implementations. The architectural maximum, as defined in the CPUID(0x1d,
1): EAX[15:0], is a byte less than 64KB. The first implementation supports
8KB.
Check the XTILEDATA state size dynamically. The feature introduces the new
tile register, TMM. Define one register struct only and read the number of
registers from CPUID. Cross-check the overall size with CPUID again.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-21-chang.seok.bae@intel.com
|
|
The kernel checks at boot time which features are available by walking a
XSAVE feature table which contains the CPUID feature bit numbers which need
to be checked whether a feature is available on a CPU or not. So far the
feature numbers have been linear, but AMX will create a gap which the
current code cannot handle.
Make the table entries explicitly indexed and adjust the loop code
accordingly to prepare for that.
No functional change.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Len Brown <len.brown@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-20-chang.seok.bae@intel.com
|
|
The fpstate embedded in struct fpu is the default state for storing the FPU
registers. It's sized so that the default supported features can be stored.
For dynamically enabled features the register buffer is too small.
The #NM handler detects first use of a feature which is disabled in the
XFD MSR. After handling permission checks it recalculates the size for
kernel space and user space state and invokes fpstate_realloc() which
tries to reallocate fpstate and install it.
Provide the allocator function which checks whether the current buffer size
is sufficient and if not allocates one. If allocation is successful the new
fpstate is initialized with the new features and sizes and the now enabled
features is removed from the task's XFD mask.
realloc_fpstate() uses vzalloc(). If use of this mechanism grows to
re-allocate buffers larger than 64KB, a more sophisticated allocation
scheme that includes purpose-built reclaim capability might be justified.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-19-chang.seok.bae@intel.com
|
|
If the XFD MSR has feature bits set then #NM will be raised when user space
attempts to use an instruction related to one of these features.
When the task has no permissions to use that feature, raise SIGILL, which
is the same behavior as #UD.
If the task has permissions, calculate the new buffer size for the extended
feature set and allocate a larger fpstate. In the unlikely case that
vzalloc() fails, SIGSEGV is raised.
The allocation function will be added in the next step. Provide a stub
which fails for now.
[ tglx: Updated serialization ]
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-18-chang.seok.bae@intel.com
|
|
The IA32_XFD_MSR allows to arm #NM traps for XSTATE components which are
enabled in XCR0. The register has to be restored before the tasks XSTATE is
restored. The life time rules are the same as for FPU state.
XFD is updated on return to userspace only when the FPU state of the task
is not up to date in the registers. It's updated before the XRSTORS so
that eventually enabled dynamic features are restored as well and not
brought into init state.
Also in signal handling for restoring FPU state from user space the
correctness of the XFD state has to be ensured.
Add it to CPU initialization and resume as well.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-17-chang.seok.bae@intel.com
|
|
Add debug functionality to ensure that the XFD MSR is up to date for XSAVE*
and XRSTOR* operations.
[ tglx: Improve comment. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-16-chang.seok.bae@intel.com
|
|
Add storage for XFD register state to struct fpstate. This will be used to
store the XFD MSR state. This will be used for switching the XFD MSR when
FPU content is restored.
Add a per-CPU variable to cache the current MSR value so the MSR has only
to be written when the values are different.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-15-chang.seok.bae@intel.com
|
|
XFD introduces two MSRs:
- IA32_XFD to enable/disable a feature controlled by XFD
- IA32_XFD_ERR to expose to the #NM trap handler which feature
was tried to be used for the first time.
Both use the same xstate-component bitmap format, used by XCR0.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-14-chang.seok.bae@intel.com
|
|
Intel's eXtended Feature Disable (XFD) feature is an extension of the XSAVE
architecture. XFD allows the kernel to enable a feature state in XCR0 and
to receive a #NM trap when a task uses instructions accessing that state.
This is going to be used to postpone the allocation of a larger XSTATE
buffer for a task to the point where it is actually using a related
instruction after the permission to use that facility has been granted.
XFD is not used by the kernel, but only applied to userspace. This is a
matter of policy as the kernel knows how a fpstate is reallocated and the
XFD state.
The compacted XSAVE format is adjustable for dynamic features. Make XFD
depend on XSAVES.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-13-chang.seok.bae@intel.com
|
|
On exec(), extended register states saved in the buffer is cleared. With
dynamic features, each task carries variables besides the register states.
The struct fpu has permission information and struct fpstate contains
buffer size and feature masks. They are all dynamically updated with
dynamic features.
Reset the current task's entire FPU data before an exec() so that the new
task starts with default permission and fpstate.
Rename the register state reset function because the old naming confuses as
it does not reset struct fpstate.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-12-chang.seok.bae@intel.com
|
|
The default portion of the parent's FPU state is saved in a child task.
With dynamic features enabled, the non-default portion is not saved in a
child's fpstate because these register states are defined to be
caller-saved. The new task's fpstate is therefore the default buffer.
Fork inherits the permission of the parent.
Also, do not use memcpy() when TIF_NEED_FPU_LOAD is set because it is
invalid when the parent has dynamic features.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-11-chang.seok.bae@intel.com
|
|
The software reserved portion of the fxsave frame in the signal frame
is copied from structures which have been set up at boot time. With
dynamically enabled features the content of these structures is no
longer correct because the xfeatures and size can be different per task.
Calculate the software reserved portion at runtime and fill in the
xfeatures and size values from the tasks active fpstate.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-10-chang.seok.bae@intel.com
|
|
Use the current->group_leader->fpu to check for pending permissions to use
extended features and validate against the resulting user space size which
is stored in the group leaders fpu struct as well.
This prevents a task from installing a too small sized sigaltstack after
permissions to use dynamically enabled features have been granted, but
the task has not (yet) used a related instruction.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-9-chang.seok.bae@intel.com
|
|
To allow building up the infrastructure required to support dynamically
enabled FPU features, add:
- XFEATURES_MASK_DYNAMIC
This constant will hold xfeatures which can be dynamically enabled.
- fpu_state_size_dynamic()
A static branch for 64-bit and a simple 'return false' for 32-bit.
This helper allows to add dynamic-feature-specific changes to common
code which is shared between 32-bit and 64-bit without #ifdeffery.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-8-chang.seok.bae@intel.com
|
|
Dynamically enabled XSTATE features are by default disabled for all
processes. A process has to request permission to use such a feature.
To support this implement a architecture specific prctl() with the options:
- ARCH_GET_XCOMP_SUPP
Copies the supported feature bitmap into the user space provided
u64 storage. The pointer is handed in via arg2
- ARCH_GET_XCOMP_PERM
Copies the process wide permitted feature bitmap into the user space
provided u64 storage. The pointer is handed in via arg2
- ARCH_REQ_XCOMP_PERM
Request permission for a feature set. A feature set can be mapped to a
facility, e.g. AMX, and can require one or more XSTATE components to
be enabled.
The feature argument is the number of the highest XSTATE component
which is required for a facility to work.
The request argument is not a user supplied bitmap because that makes
filtering harder (think seccomp) and even impossible because to
support 32bit tasks the argument would have to be a pointer.
The permission mechanism works this way:
Task asks for permission for a facility and kernel checks whether that's
supported. If supported it does:
1) Check whether permission has already been granted
2) Compute the size of the required kernel and user space buffer
(sigframe) size.
3) Validate that no task has a sigaltstack installed
which is smaller than the resulting sigframe size
4) Add the requested feature bit(s) to the permission bitmap of
current->group_leader->fpu and store the sizes in the group
leaders fpu struct as well.
If that is successful then the feature is still not enabled for any of the
tasks. The first usage of a related instruction will result in a #NM
trap. The trap handler validates the permission bit of the tasks group
leader and if permitted it installs a larger kernel buffer and transfers
the permission and size info to the new fpstate container which makes all
the FPU functions which require per task information aware of the extended
feature set.
[ tglx: Adopted to new base code, added missing serialization,
massaged namings, comments and changelog ]
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-7-chang.seok.bae@intel.com
|
|
The upcoming prctl() which is required to request the permission for a
dynamically enabled feature will also provide an option to retrieve the
supported features. If the CPU does not support XSAVE, the supported
features would be 0 even when the CPU supports FP and SSE.
Provide separate storage for the legacy feature set to avoid that and fill
in the bits in the legacy init function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-6-chang.seok.bae@intel.com
|
|
Dynamically enabled features can be requested by any thread of a running
process at any time. The request does neither enable the feature nor
allocate larger buffers. It just stores the permission to use the feature
by adding the features to the permission bitmap and by calculating the
required sizes for kernel and user space.
The reallocation of the kernel buffer happens when the feature is used
for the first time which is caught by an exception. The permission
bitmap is then checked and if the feature is permitted, then it becomes
fully enabled. If not, the task dies similarly to a task which uses an
undefined instruction.
The size information is precomputed to allow proper sigaltstack size checks
once the feature is permitted, but not yet in use because otherwise this
would open race windows where too small stacks could be installed causing
a later fail on signal delivery.
Initialize them to the default feature set and sizes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-5-chang.seok.bae@intel.com
|
|
Split out the size calculation from the paranoia check so it can be used
for recalculating buffer sizes when dynamically enabled features are
supported.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
[ tglx: Adopted to changed base code ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-4-chang.seok.bae@intel.com
|
|
For historical reasons MINSIGSTKSZ is a constant which became already too
small with AVX512 support.
Add a mechanism to enforce strict checking of the sigaltstack size against
the real size of the FPU frame.
The strict check can be enabled via a config option and can also be
controlled via the kernel command line option 'strict_sas_size' independent
of the config switch.
Enabling it might break existing applications which allocate a too small
sigaltstack but 'work' because they never get a signal delivered. Though it
can be handy to filter out binaries which are not yet aware of
AT_MINSIGSTKSZ.
Also the upcoming support for dynamically enabled FPU features requires a
strict sanity check to ensure that:
- Enabling of a dynamic feature, which changes the sigframe size fits
into an enabled sigaltstack
- Installing a too small sigaltstack after a dynamic feature has been
added is not possible.
Implement the base check which is controlled by config and command line
options.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-3-chang.seok.bae@intel.com
|
|
New x86 FPU features will be very large, requiring ~10k of stack in
signal handlers. These new features require a new approach called
"dynamic features".
The kernel currently tries to ensure that altstacks are reasonably
sized. Right now, on x86, sys_sigaltstack() requires a size of >=2k.
However, that 2k is a constant. Simply raising that 2k requirement
to >10k for the new features would break existing apps which have a
compiled-in size of 2k.
Instead of universally enforcing a larger stack, prohibit a process from
using dynamic features without properly-sized altstacks. This must be
enforced in two places:
* A dynamic feature can not be enabled without an large-enough altstack
for each process thread.
* Once a dynamic feature is enabled, any request to install a too-small
altstack will be rejected
The dynamic feature enabling code must examine each thread in a
process to ensure that the altstacks are large enough. Add a new lock
(sigaltstack_lock()) to ensure that threads can not race and change
their altstack after being examined.
Add the infrastructure in form of a config option and provide empty
stubs for architectures which do not need dynamic altstack size checks.
This implementation will be fleshed out for x86 in a future patch called
x86/arch_prctl: Add controls for dynamic XSTATE components
[dhansen: commit message. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-2-chang.seok.bae@intel.com
|
|
It can be compatible with exynos850's chipid. The SoC has eight chipid
registers that can be used for OTP.
Cc: Sam Protsenko <semen.protsenko@linaro.org>
Signed-off-by: Chanho Park <chanho61.park@samsung.com>
Link: https://lore.kernel.org/r/20211021012017.158919-3-chanho61.park@samsung.com
Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com>
|
|
This removes properties not used by either the PWM or timer drivers.
This lets us set additionalProperties: false.
Signed-off-by: Sean Anderson <sean.anderson@seco.com>
Acked-by: Michal Simek <michal.simek@xilinx.com>
Link: https://lore.kernel.org/r/20211025180605.252476-1-sean.anderson@seco.com
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
|
|
s/CONFIG_OSNOISE_TRAECR/CONFIG_OSNOISE_TRACER/
No functional changes.
Link: https://lkml.kernel.org/r/33924a16f6e5559ce24952ca7d62561604bfd94a.1634308385.git.bristot@kernel.org
Cc: Daniel Bristot de Oliveira <bristot@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
As of commit a3595962d82495f5 ("m68knommu: remove obsolete 68360
support"), nothing selects MCPU32 anymore.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Greg Ungerer <gerg@linux-m68k.org>
|
|
'make randconfig' can produce a .config file with
"CONFIG_MEMORY_RESERVE=" (no value) since it has no default.
When a subsequent 'make all' is done, kconfig restarts the config
and prompts for a value for MEMORY_RESERVE. This breaks
scripting/automation where there is no interactive user input.
Add a default value for MEMORY_RESERVE. (Any integer value will
work here for kconfig.)
Fixes a kconfig warning:
.config:214:warning: symbol value '' invalid for MEMORY_RESERVE
* Restart config...
Memory reservation (MiB) (MEMORY_RESERVE) [] (NEW)
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") # from beginning of git history
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: linux-m68k@lists.linux-m68k.org
Signed-off-by: Greg Ungerer <gerg@linux-m68k.org>
|
|
Update save_v86_state to always complete all of it's work except
possibly some of the copies to userspace even if save_v86_state takes
a fault. This ensures that the kernel is always in a sane state, even
if userspace has done something silly.
When save_v86_state takes a fault update it to force userspace to take
a SIGSEGV and terminate the userspace application.
As Andy pointed out in review of the first version of this change
there are races between sigaction and the application terinating. Now
that the code has been modified to always perform all save_v86_state's
work (except possibly copying to userspace) those races do not matter
from a kernel perspective.
Forcing the userspace application to terminate (by resetting it's
handler to SIGDFL) is there to keep everything as close to the current
behavior as possible while removing the unique (and difficult to
maintain) use of do_exit.
If this new SIGSEGV happens during handle_signal the next time around
the exit_to_user_mode_loop, SIGSEGV will be delivered to userspace.
All of the callers of handle_vm86_trap and handle_vm86_fault run the
exit_to_user_mode_loop before they return to userspace any signal sent
to the current task during their execution will be delivered to the
current task before that tasks exits to usermode.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: H Peter Anvin <hpa@zytor.com>
v1: https://lkml.kernel.org/r/20211020174406.17889-10-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/877de1xcr6.fsf_-_@disp2133
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
The function save_v86_state is only called when userspace was
operating in vm86 mode before entering the kernel. Not having vm86
state in the task_struct should never happen. So transform the hand
rolled BUG_ON into an actual BUG_ON to make it clear what is
happening.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: H Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20211020174406.17889-9-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
The function setup_tsb_params has exactly one caller tsb_grow. The
function tsb_grow passes in a tsb_bytes value that is between 8192 and
1048576 inclusive, and is guaranteed to be a power of 2. The function
setup_tsb_params verifies this property with a switch statement and
then prints an error and causes the task to exit if this is not true.
In practice that print statement can never be reached because tsb_grow
never passes in a bad tsb_size. So if tsb_size ever gets a bad value
that is a kernel bug.
So replace the do_exit which is effectively an open coded version of
BUG() with an actuall call to BUG(). Making it clearer that this
is a case that can never, and should never happen.
Cc: David Miller <davem@davemloft.net>
Cc: sparclinux@vger.kernel.org
Link: https://lkml.kernel.org/r/20211020174406.17889-8-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
If the register state may be partial and corrupted instead of calling
do_exit, call force_sigsegv(SIGSEGV). Which properly kills the
process with SIGSEGV and does not let any more userspace code execute,
instead of just killing one thread of the process and potentially
confusing everything.
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: linuxppc-dev@lists.ozlabs.org
History-tree: git://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git
Fixes: 756f1ae8a44e ("PPC32: Rework signal code and add a swapcontext system call.")
Fixes: 04879b04bf50 ("[PATCH] ppc64: VMX (Altivec) support & signal32 rework, from Ben Herrenschmidt")
Link: https://lkml.kernel.org/r/20211020174406.17889-7-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
Today the sh code allocates memory the first time a process uses
the fpu. If that memory allocation fails, kill the affected task
with force_sig(SIGKILL) rather than do_group_exit(SIGKILL).
Calling do_group_exit from an exception handler can potentially lead
to dead locks as do_group_exit is not designed to be called from
interrupt context. Instead use force_sig(SIGKILL) to kill the
userspace process. Sending signals in general and force_sig in
particular has been tested from interrupt context so there should be
no problems.
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: linux-sh@vger.kernel.org
Fixes: 0ea820cf9bf5 ("sh: Move over to dynamically allocated FPU context.")
Link: https://lkml.kernel.org/r/20211020174406.17889-6-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
When an instruction to save or restore a register from the stack fails
in _save_fp_context or _restore_fp_context return with -EFAULT. This
change was made to r2300_fpu.S[1] but it looks like it got lost with
the introduction of EX2[2]. This is also what the other implementation
of _save_fp_context and _restore_fp_context in r4k_fpu.S does, and
what is needed for the callers to be able to handle the error.
Furthermore calling do_exit(SIGSEGV) from bad_stack is wrong because
it does not terminate the entire process it just terminates a single
thread.
As the changed code was the only caller of arch/mips/kernel/syscall.c:bad_stack
remove the problematic and now unused helper function.
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Maciej Rozycki <macro@orcam.me.uk>
Cc: linux-mips@vger.kernel.org
[1] 35938a00ba86 ("MIPS: Fix ISA I FP sigcontext access violation handling")
[2] f92722dc4545 ("MIPS: Correct MIPS I FP sigcontext layout")
Cc: stable@vger.kernel.org
Fixes: f92722dc4545 ("MIPS: Correct MIPS I FP sigcontext layout")
Acked-by: Maciej W. Rozycki <macro@orcam.me.uk>
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Link: https://lkml.kernel.org/r/20211020174406.17889-5-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
sm8250 target"
This reverts commit 001ce9785c0674d913531345e86222c965fc8bf4.
This upstream commit broke AOSP (post Android 12 merge) build
on RB5. The device either silently crashes into USB crash mode
after android boot animation or we see a blank blue screen
with following dpu errors in dmesg:
[ T444] hw recovery is not complete for ctl:3
[ T444] [drm:dpu_encoder_phys_vid_prepare_for_kickoff:539] [dpu error]enc31 intf1 ctl 3 reset failure: -22
[ T444] [drm:dpu_encoder_phys_vid_wait_for_commit_done:513] [dpu error]vblank timeout
[ T444] [drm:dpu_kms_wait_for_commit_done:454] [dpu error]wait for commit done returned -110
[ C7] [drm:dpu_encoder_frame_done_timeout:2127] [dpu error]enc31 frame done timeout
[ T444] [drm:dpu_encoder_phys_vid_wait_for_commit_done:513] [dpu error]vblank timeout
[ T444] [drm:dpu_kms_wait_for_commit_done:454] [dpu error]wait for commit done returned -110
Fixes: 001ce9785c06 ("arm64: dts: qcom: sm8250: remove bus clock from the mdss node for sm8250 target")
Signed-off-by: Amit Pundir <amit.pundir@linaro.org>
Signed-off-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Link: https://lore.kernel.org/r/20211014135410.4136412-1-dmitry.baryshkov@linaro.org
|
|
Pull ARM fixes from Russell King:
- Fix clang-related relocation warning in futex code
- Fix incorrect use of get_kernel_nofault()
- Fix bad code generation in __get_user_check() when kasan is enabled
- Ensure TLB function table is correctly aligned
- Remove duplicated string function definitions in decompressor
- Fix link-time orphan section warnings
- Fix old-style function prototype for arch_init_kprobes()
- Only warn about XIP address when not compile testing
- Handle BE32 big endian for keystone2 remapping
* tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm:
ARM: 9148/1: handle CONFIG_CPU_ENDIAN_BE32 in arch/arm/kernel/head.S
ARM: 9141/1: only warn about XIP address when not compile testing
ARM: 9139/1: kprobes: fix arch_init_kprobes() prototype
ARM: 9138/1: fix link warning with XIP + frame-pointer
ARM: 9134/1: remove duplicate memcpy() definition
ARM: 9133/1: mm: proc-macros: ensure *_tlb_fns are 4B aligned
ARM: 9132/1: Fix __get_user_check failure with ARM KASAN images
ARM: 9125/1: fix incorrect use of get_kernel_nofault()
ARM: 9122/1: select HAVE_FUTEX_CMPXCHG
|
|
Hyper-V needs to issue the GHCB HV call in order to read/write MSRs in
Isolation VMs. For that, expose sev_es_ghcb_hv_call().
The Hyper-V Isolation VMs are unenlightened guests and run a paravisor
at VMPL0 for communicating. GHCB pages are being allocated and set up
by that paravisor. Linux gets the GHCB page's physical address via
MSR_AMD64_SEV_ES_GHCB from the paravisor and should not change it.
Add a @set_ghcb_msr parameter to sev_es_ghcb_hv_call() to control
whether the function should set the GHCB's address prior to the call or
not and export that function for use by HyperV.
[ bp: - Massage commit message
- add a struct ghcb forward declaration to fix randconfig builds. ]
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20211025122116.264793-6-ltykernel@gmail.com
|
|
In kvm_vcpu_block, the current task is set to TASK_INTERRUPTIBLE before
making a final check whether the vCPU should be woken from HLT by any
incoming interrupt.
This is a problem for the get_user() in __kvm_xen_has_interrupt(), which
really shouldn't be sleeping when the task state has already been set.
I think it's actually harmless as it would just manifest itself as a
spurious wakeup, but it's causing a debug warning:
[ 230.963649] do not call blocking ops when !TASK_RUNNING; state=1 set at [<00000000b6bcdbc9>] prepare_to_swait_exclusive+0x30/0x80
Fix the warning by turning it into an *explicit* spurious wakeup. When
invoked with !task_is_running(current) (and we might as well add
in_atomic() there while we're at it), just return 1 to indicate that
an IRQ is pending, which will cause a wakeup and then something will
call it again in a context that *can* sleep so it can fault the page
back in.
Cc: stable@vger.kernel.org
Fixes: 40da8ccd724f ("KVM: x86/xen: Add event channel interrupt vector upcall")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <168bf8c689561da904e48e2ff5ae4713eaef9e2d.camel@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD
KVM: s390: Fixes for interrupt delivery
Two bugs that might result in CPUs not woken up when interrupts are
pending.
|
|
qdio.ko no longer needs to care about how the QAOBs are allocated,
from its perspective they are merely another parameter to do_QDIO().
So for a start, shift the cache into the only qdio driver that uses
QAOBs (ie. qeth). Here there's further opportunity to optimize its
usage in the future - eg. make it per-{device, TX queue}, or only
compile it when the driver is built with CQ/QAOB support.
Signed-off-by: Julian Wiedmann <jwi@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
On the preemption path when updating a Xen guest's runstate times, this
lock is taken inside the scheduler rq->lock, which is a raw spinlock.
This was shown in a lockdep warning:
[ 89.138354] =============================
[ 89.138356] [ BUG: Invalid wait context ]
[ 89.138358] 5.15.0-rc5+ #834 Tainted: G S I E
[ 89.138360] -----------------------------
[ 89.138361] xen_shinfo_test/2575 is trying to lock:
[ 89.138363] ffffa34a0364efd8 (&kvm->arch.pvclock_gtod_sync_lock){....}-{3:3}, at: get_kvmclock_ns+0x1f/0x130 [kvm]
[ 89.138442] other info that might help us debug this:
[ 89.138444] context-{5:5}
[ 89.138445] 4 locks held by xen_shinfo_test/2575:
[ 89.138447] #0: ffff972bdc3b8108 (&vcpu->mutex){+.+.}-{4:4}, at: kvm_vcpu_ioctl+0x77/0x6f0 [kvm]
[ 89.138483] #1: ffffa34a03662e90 (&kvm->srcu){....}-{0:0}, at: kvm_arch_vcpu_ioctl_run+0xdc/0x8b0 [kvm]
[ 89.138526] #2: ffff97331fdbac98 (&rq->__lock){-.-.}-{2:2}, at: __schedule+0xff/0xbd0
[ 89.138534] #3: ffffa34a03662e90 (&kvm->srcu){....}-{0:0}, at: kvm_arch_vcpu_put+0x26/0x170 [kvm]
...
[ 89.138695] get_kvmclock_ns+0x1f/0x130 [kvm]
[ 89.138734] kvm_xen_update_runstate+0x14/0x90 [kvm]
[ 89.138783] kvm_xen_update_runstate_guest+0x15/0xd0 [kvm]
[ 89.138830] kvm_arch_vcpu_put+0xe6/0x170 [kvm]
[ 89.138870] kvm_sched_out+0x2f/0x40 [kvm]
[ 89.138900] __schedule+0x5de/0xbd0
Cc: stable@vger.kernel.org
Reported-by: syzbot+b282b65c2c68492df769@syzkaller.appspotmail.com
Fixes: 30b5c851af79 ("KVM: x86/xen: Add support for vCPU runstate information")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <1b02a06421c17993df337493a68ba923f3bd5c0f.camel@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Adding such an attribute is helpful to detect errors related to printf
formats at compile-time.
Link: https://lore.kernel.org/r/20160828165815.25647-1-nicolas.iooss_linux@m4x.org
Signed-off-by: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
|
|
Attempting to build mach-rpc with gcc-9 or higher, or with any version
of clang results in a build failure, like:
arm-linux-gnueabi-gcc-11.1.0: error: unrecognized -march target: armv3m
arm-linux-gnueabi-gcc-11.1.0: note: valid arguments are: armv4 armv4t armv5t armv5te armv5tej armv6 armv6j armv6k armv6z armv6kz armv6zk armv6t2 armv6-m armv6s-m armv7 armv7-a armv7ve armv7-r armv7-m armv7e-m armv8-a armv8.1-a armv8.2-a armv8.3-a armv8.4-a armv8.5-a armv8.6-a armv8-m.base armv8-m.main armv8-r armv8.1-m.main iwmmxt iwmmxt2; did you mean 'armv4'?
Building with gcc-5 also fails in at least one of these ways:
/tmp/cczZoCcv.s:68: Error: selected processor does not support `bx lr' in ARM mode
drivers/tty/vt/vt_ioctl.c:958:1: internal compiler error: Segmentation fault
Handle this in Kconfig so we don't run into this with randconfig
builds, allowing only gcc-6 through gcc-8.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
|
|
On BE32 kernels, the __opcode_to_mem_thumb32() interface is intentionally
not defined, but it is referenced whenever runtime patching is enabled
for the kernel, which may be for ftrace, jump label, kprobes or kgdb:
arch/arm/kernel/patch.c: In function '__patch_text_real':
arch/arm/kernel/patch.c:94:32: error: implicit declaration of function '__opcode_to_mem_thumb32' [-Werror=implicit-function-declaration]
94 | insn = __opcode_to_mem_thumb32(insn);
| ^~~~~~~~~~~~~~~~~~~~~~~
Since BE32 kernels never run Thumb2 code, we never end up using the
result of this call, so providing an extern declaration without
a definition makes it build correctly.
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
|