Age | Commit message (Collapse) | Author |
|
To better self explain the meaning of this field and match the
PT_CAP_num_address_ranges constatn.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-4-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The number of valid PT ADDR MSRs for the guest is precomputed in
vmx->pt_desc.addr_range. Use it instead of calculating again.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-3-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
A minor optimization to WRMSR MSR_IA32_RTIT_CTL when necessary.
Opportunistically refine the comment to call out that KVM requires
VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-2-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
"prefetch", "prefault" and "speculative" are used throughout KVM to mean
the same thing. Use a single name, standardizing on "prefetch" which
is already used by various functions such as direct_pte_prefetch,
FNAME(prefetch_gpte), FNAME(pte_prefetch), etc.
Suggested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Unify the flags for rmaps and page tracking data, using a
single flag in struct kvm_arch and a single loop to go
over all the address spaces and memslots. This avoids
code duplication between alloc_all_memslots_rmaps and
kvm_page_track_enable_mmu_write_tracking.
Signed-off-by: David Stevens <stevensd@chromium.org>
[This patch is the delta between David's v2 and v3, with conflicts
fixed and my own commit message. - Paolo]
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Changing the deliverable mask in __airqs_kick_single_vcpu() is a bug. If
one idle vcpu can't take the interrupts we want to deliver, we should
look for another vcpu that can, instead of saying that we don't want
to deliver these interrupts by clearing the bits from the
deliverable_mask.
Fixes: 9f30f6216378 ("KVM: s390: add gib_alert_irq_handler()")
Signed-off-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Michael Mueller <mimu@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20211019175401.3757927-3-pasic@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
The idea behind kicked mask is that we should not re-kick a vcpu that
is already in the "kick" process, i.e. that was kicked and is
is about to be dispatched if certain conditions are met.
The problem with the current implementation is, that it assumes the
kicked vcpu is going to enter SIE shortly. But under certain
circumstances, the vcpu we just kicked will be deemed non-runnable and
will remain in wait state. This can happen, if the interrupt(s) this
vcpu got kicked to deal with got already cleared (because the interrupts
got delivered to another vcpu). In this case kvm_arch_vcpu_runnable()
would return false, and the vcpu would remain in kvm_vcpu_block(),
but this time with its kicked_mask bit set. So next time around we
wouldn't kick the vcpu form __airqs_kick_single_vcpu(), but would assume
that we just kicked it.
Let us make sure the kicked_mask is cleared before we give up on
re-dispatching the vcpu.
Fixes: 9f30f6216378 ("KVM: s390: add gib_alert_irq_handler()")
Reported-by: Matthew Rosato <mjrosato@linux.ibm.com>
Signed-off-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Michael Mueller <mimu@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20211019175401.3757927-2-pasic@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
To date, VMM-directed TSC synchronization and migration has been a bit
messy. KVM has some baked-in heuristics around TSC writes to infer if
the VMM is attempting to synchronize. This is problematic, as it depends
on host userspace writing to the guest's TSC within 1 second of the last
write.
A much cleaner approach to configuring the guest's views of the TSC is to
simply migrate the TSC offset for every vCPU. Offsets are idempotent,
and thus not subject to change depending on when the VMM actually
reads/writes values from/to KVM. The VMM can then read the TSC once with
KVM_GET_CLOCK to capture a (realtime, host_tsc) pair at the instant when
the guest is paused.
Cc: David Matlack <dmatlack@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210916181538.968978-8-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Refactor kvm_synchronize_tsc to make a new function that allows callers
to specify TSC parameters (offset, value, nanoseconds, etc.) explicitly
for the sake of participating in TSC synchronization.
Signed-off-by: Oliver Upton <oupton@google.com>
Message-Id: <20210916181538.968978-7-oupton@google.com>
[Make sure kvm->arch.cur_tsc_generation and vcpu->arch.this_tsc_generation are
equal at the end of __kvm_synchronize_tsc, if matched is false. Reported by
Maxim Levitsky. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Protect the reference point for kvmclock with a seqcount, so that
kvmclock updates for all vCPUs can proceed in parallel. Xen runstate
updates will also run in parallel and not bounce the kvmclock cacheline.
Of the variables that were protected by pvclock_gtod_sync_lock,
nr_vcpus_matched_tsc is different because it is updated outside
pvclock_update_vm_gtod_copy and read inside it. Therefore, we
need to keep it protected by a spinlock. In fact it must now
be a raw spinlock, because pvclock_update_vm_gtod_copy, being the
write-side of a seqcount, is non-preemptible. Since we already
have tsc_write_lock which is a raw spinlock, we can just use
tsc_write_lock as the lock that protects the write-side of the
seqcount.
Co-developed-by: Oliver Upton <oupton@google.com>
Message-Id: <20210916181538.968978-6-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Handling the migration of TSCs correctly is difficult, in part because
Linux does not provide userspace with the ability to retrieve a (TSC,
realtime) clock pair for a single instant in time. In lieu of a more
convenient facility, KVM can report similar information in the kvm_clock
structure.
Provide userspace with a host TSC & realtime pair iff the realtime clock
is based on the TSC. If userspace provides KVM_SET_CLOCK with a valid
realtime value, advance the KVM clock by the amount of elapsed time. Do
not step the KVM clock backwards, though, as it is a monotonic
oscillator.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210916181538.968978-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This is a new warning in clang top-of-tree (will be clang 14):
In file included from arch/x86/kvm/mmu/mmu.c:27:
arch/x86/kvm/mmu/spte.h:318:9: error: use of bitwise '|' with boolean operands [-Werror,-Wbitwise-instead-of-logical]
return __is_bad_mt_xwr(rsvd_check, spte) |
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
||
arch/x86/kvm/mmu/spte.h:318:9: note: cast one or both operands to int to silence this warning
The code is fine, but change it anyway to shut up this clever clogs
of a compiler.
Reported-by: torvic9@mailbox.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
If allocation of rmaps fails, but some of the pointers have already been written,
those pointers can be cleaned up when the memslot is freed, or even reused later
for another attempt at allocating the rmaps. Therefore there is no need to
WARN, as done for example in memslot_rmap_alloc, but the allocation *must* be
skipped lest KVM will overwrite the previous pointer and will indeed leak memory.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
* kvm-arm64/pkvm/fixed-features: (22 commits)
: .
: Add the pKVM fixed feature that allows a bunch of exceptions
: to either be forbidden or be easily handled at EL2.
: .
KVM: arm64: pkvm: Give priority to standard traps over pvm handling
KVM: arm64: pkvm: Pass vpcu instead of kvm to kvm_get_exit_handler_array()
KVM: arm64: pkvm: Move kvm_handle_pvm_restricted around
KVM: arm64: pkvm: Consolidate include files
KVM: arm64: pkvm: Preserve pending SError on exit from AArch32
KVM: arm64: pkvm: Handle GICv3 traps as required
KVM: arm64: pkvm: Drop sysregs that should never be routed to the host
KVM: arm64: pkvm: Drop AArch32-specific registers
KVM: arm64: pkvm: Make the ERR/ERX*_EL1 registers RAZ/WI
KVM: arm64: pkvm: Use a single function to expose all id-regs
KVM: arm64: Fix early exit ptrauth handling
KVM: arm64: Handle protected guests at 32 bits
KVM: arm64: Trap access to pVM restricted features
KVM: arm64: Move sanitized copies of CPU features
KVM: arm64: Initialize trap registers for protected VMs
KVM: arm64: Add handlers for protected VM System Registers
KVM: arm64: Simplify masking out MTE in feature id reg
KVM: arm64: Add missing field descriptor for MDCR_EL2
KVM: arm64: Pass struct kvm to per-EC handlers
KVM: arm64: Move early handlers to per-EC handlers
...
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Checking for pvm handling first means that we cannot handle ptrauth
traps or apply any of the workarounds (GICv3 or TX2 #219).
Flip the order around.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-12-maz@kernel.org
|
|
Passing a VM pointer around is odd, and results in extra work on
VHE. Follow the rest of the design that uses the vcpu instead, and
let the nVHE code look into the struct kvm as required.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-11-maz@kernel.org
|
|
Place kvm_handle_pvm_restricted() next to its little friends such
as kvm_handle_pvm_sysreg().
This allows to make inject_undef64() static.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-10-maz@kernel.org
|
|
kvm_fixed_config.h is pkvm specific, and would be better placed
near its users. At the same time, include/nvhe/sys_regs.h is now
almost empty.
Merge the two into arch/arm64/kvm/hyp/include/nvhe/fixed_config.h.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-9-maz@kernel.org
|
|
Don't drop a potential SError when a guest gets caught red-handed
running AArch32 code.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-8-maz@kernel.org
|
|
Forward accesses to the ICV_*SGI*_EL1 registers to EL1, and
emulate ICV_SRE_EL1 by returning a fixed value.
This should be enough to support GICv3 in a protected guest.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-7-maz@kernel.org
|
|
A bunch of system registers (most of them MM related) should never
trap to the host under any circumstance. Keep them close to our chest.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-6-maz@kernel.org
|
|
All the SYS_*32_EL2 registers are AArch32-specific. Since we forbid
AArch32, there is no need to handle those in any way.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-5-maz@kernel.org
|
|
The ERR*/ERX* registers should be handled as RAZ/WI, and there
should be no need to involve EL1 for that.
Add a helper that handles such registers, and repaint the sysreg
table to declare these registers as RAZ/WI.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-4-maz@kernel.org
|
|
Rather than exposing a whole set of helper functions to retrieve
individual ID registers, use the existing decoding tree and expose
a single helper instead.
This allow a number of functions to be made static, and we now
have a single entry point to maintain.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-3-maz@kernel.org
|
|
The previous rework of the early exit code to provide an EC-based
decoding tree missed the fact that we have two trap paths for
ptrauth: the instructions (EC_PAC) and the sysregs (EC_SYS64).
Rework the handlers to call the ptrauth handling code on both
paths.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-2-maz@kernel.org
|
|
This looks like a typo in 8f32d5e563cb. This change didn't intend to do
any functional changes.
The problem was caught by gVisor tests.
Fixes: 8f32d5e563cb ("KVM: x86/mmu: allow kvm_faultin_pfn to return page fault handling code")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Message-Id: <20211015163221.472508-1-avagin@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
* kvm-arm64/memory-accounting:
: .
: Sprinkle a bunch of GFP_KERNEL_ACCOUNT all over the code base
: to better track memory allocation made on behalf of a VM.
: .
KVM: arm64: Add memcg accounting to KVM allocations
KVM: arm64: vgic: Add memcg accounting to vgic allocations
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Inspired by commit 254272ce6505 ("kvm: x86: Add memcg accounting to KVM
allocations"), it would be better to make arm64 KVM consistent with
common kvm codes.
The memory allocations of VM scope should be charged into VM process
cgroup, hence change GFP_KERNEL to GFP_KERNEL_ACCOUNT.
There remain a few cases since these allocations are global, not in VM
scope.
Signed-off-by: Jia He <justin.he@arm.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210907123112.10232-3-justin.he@arm.com
|
|
Inspired by commit 254272ce6505 ("kvm: x86: Add memcg accounting to KVM
allocations"), it would be better to make arm64 vgic consistent with
common kvm codes.
The memory allocations of VM scope should be charged into VM process
cgroup, hence change GFP_KERNEL to GFP_KERNEL_ACCOUNT.
There remain a few cases since these allocations are global, not in VM
scope.
Signed-off-by: Jia He <justin.he@arm.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210907123112.10232-2-justin.he@arm.com
|
|
* kvm-arm64/vgic-fixes-5.16:
: .
: Multiple updates to the GICv3 emulation in order to better support
: the dreadful Apple M1 that only implements half of it, and in a
: broken way...
: .
KVM: arm64: vgic-v3: Align emulated cpuif LPI state machine with the pseudocode
KVM: arm64: vgic-v3: Don't advertise ICC_CTLR_EL1.SEIS
KVM: arm64: vgic-v3: Reduce common group trapping to ICV_DIR_EL1 when possible
KVM: arm64: vgic-v3: Work around GICv3 locally generated SErrors
KVM: arm64: Force ID_AA64PFR0_EL1.GIC=1 when exposing a virtual GICv3
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Having realised that a virtual LPI does transition through an active
state that does not exist on bare metal, align the CPU interface
emulation with the behaviour specified in the architecture pseudocode.
The LPIs now transition to active on IAR read, and to inactive on
EOI write. Special care is taken not to increment the EOIcount for
an LPI that isn't present in the LRs.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010150910.2911495-6-maz@kernel.org
|
|
Since we are trapping all sysreg accesses when ICH_VTR_EL2.SEIS
is set, and that we never deliver an SError when emulating
any of the GICv3 sysregs, don't advertise ICC_CTLR_EL1.SEIS.
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010150910.2911495-5-maz@kernel.org
|
|
On systems that advertise ICH_VTR_EL2.SEIS, we trap all GICv3 sysreg
accesses from the guest. From a performance perspective, this is OK
as long as the guest doesn't hammer the GICv3 CPU interface.
In most cases, this is fine, unless the guest actively uses
priorities and switches PMR_EL1 very often. Which is exactly what
happens when a Linux guest runs with irqchip.gicv3_pseudo_nmi=1.
In these condition, the performance plumets as we hit PMR each time
we mask/unmask interrupts. Not good.
There is however an opportunity for improvement. Careful reading
of the architecture specification indicates that the only GICv3
sysreg belonging to the common group (which contains the SGI
registers, PMR, DIR, CTLR and RPR) that is allowed to generate
a SError is DIR. Everything else is safe.
It is thus possible to substitute the trapping of all the common
group with just that of DIR if it supported by the implementation.
Yes, that's yet another optional bit of the architecture.
So let's just do that, as it leads to some impressive result on
the M1:
Without this change:
bash-5.1# /host/home/maz/hackbench 100 process 1000
Running with 100*40 (== 4000) tasks.
Time: 56.596
With this change:
bash-5.1# /host/home/maz/hackbench 100 process 1000
Running with 100*40 (== 4000) tasks.
Time: 8.649
which is a pretty convincing result.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Link: https://lore.kernel.org/r/20211010150910.2911495-4-maz@kernel.org
|
|
The infamous M1 has a feature nobody else ever implemented,
in the form of the "GIC locally generated SError interrupts",
also known as SEIS for short.
These SErrors are generated when a guest does something that violates
the GIC state machine. It would have been simpler to just *ignore*
the damned thing, but that's not what this HW does. Oh well.
This part of of the architecture is also amazingly under-specified.
There is a whole 10 lines that describe the feature in a spec that
is 930 pages long, and some of these lines are factually wrong.
Oh, and it is deprecated, so the insentive to clarify it is low.
Now, the spec says that this should be a *virtual* SError when
HCR_EL2.AMO is set. As it turns out, that's not always the case
on this CPU, and the SError sometimes fires on the host as a
physical SError. Goodbye, cruel world. This clearly is a HW bug,
and it means that a guest can easily take the host down, on demand.
Thankfully, we have seen systems that were just as broken in the
past, and we have the perfect vaccine for it.
Apple M1, please meet the Cavium ThunderX workaround. All your
GIC accesses will be trapped, sanitised, and emulated. Only the
signalling aspect of the HW will be used. It won't be super speedy,
but it will at least be safe. You're most welcome.
Given that this has only ever been seen on this single implementation,
that the spec is unclear at best and that we cannot trust it to ever
be implemented correctly, gate the workaround solely on ICH_VTR_EL2.SEIS
being set.
Tested-by: Joey Gouly <joey.gouly@arm.com>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010150910.2911495-3-maz@kernel.org
|
|
Until now, we always let ID_AA64PFR0_EL1.GIC reflect the value
visible on the host, even if we were running a GICv2-enabled VM
on a GICv3+compat host.
That's fine, but we also now have the case of a host that does not
expose ID_AA64PFR0_EL1.GIC==1 despite having a vGIC. Yes, this is
confusing. Thank you M1.
Let's go back to first principles and expose ID_AA64PFR0_EL1.GIC=1
when a GICv3 is exposed to the guest. This also hides a GICv4.1
CPU interface from the guest which has no business knowing about
the v4.1 extension.
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010150910.2911495-2-maz@kernel.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 5.15, take #2
- Properly refcount pages used as a concatenated stage-2 PGD
- Fix missing unlock when detecting the use of MTE+VM_SHARED
|
|
The size of the data in the scratch buffer is not divided by the size of
each port I/O operation, so vcpu->arch.pio.count ends up being larger
than it should be by a factor of size.
Cc: stable@vger.kernel.org
Fixes: 7ed9abfe8e9f ("KVM: SVM: Support string IO operations for an SEV-ES guest")
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
* kvm-arm64/misc-5.16:
: .
: - Allow KVM to be disabled from the command-line
: - Clean up CONFIG_KVM vs CONFIG_HAVE_KVM
: - Fix endianess evaluation on MMIO access from EL0
: .
KVM: arm64: Fix reporting of endianess when the access originates at EL0
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
We currently check SCTLR_EL1.EE when computing the address of
a faulting guest access. However, the fault could have occured at
EL0, in which case the right bit to check would be SCTLR_EL1.E0E.
This is pretty unlikely to cause any issue in practice: You'd have
to have a guest with a LE EL1 and a BE EL0 (or the other way around),
and have mapped a device into the EL0 page tables.
Good luck with that!
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Link: https://lore.kernel.org/r/20211012112312.1247467-1-maz@kernel.org
|
|
Protected KVM does not support protected AArch32 guests. However,
it is possible for the guest to force run AArch32, potentially
causing problems. Add an extra check so that if the hypervisor
catches the guest doing that, it can prevent the guest from
running again by resetting vcpu->arch.target and returning
ARM_EXCEPTION_IL.
If this were to happen, The VMM can try and fix it by re-
initializing the vcpu with KVM_ARM_VCPU_INIT, however, this is
likely not possible for protected VMs.
Adapted from commit 22f553842b14 ("KVM: arm64: Handle Asymmetric
AArch32 systems")
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010145636.1950948-12-tabba@google.com
|
|
Trap accesses to restricted features for VMs running in protected
mode.
Access to feature registers are emulated, and only supported
features are exposed to protected VMs.
Accesses to restricted registers as well as restricted
instructions are trapped, and an undefined exception is injected
into the protected guests, i.e., with EC = 0x0 (unknown reason).
This EC is the one used, according to the Arm Architecture
Reference Manual, for unallocated or undefined system registers
or instructions.
Only affects the functionality of protected VMs. Otherwise,
should not affect non-protected VMs when KVM is running in
protected mode.
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010145636.1950948-11-tabba@google.com
|
|
Move the sanitized copies of the CPU feature registers to the
recently created sys_regs.c. This consolidates all copies in a
more relevant file.
No functional change intended.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010145636.1950948-10-tabba@google.com
|
|
Protected VMs have more restricted features that need to be
trapped. Moreover, the host should not be trusted to set the
appropriate trapping registers and their values.
Initialize the trapping registers, i.e., hcr_el2, mdcr_el2, and
cptr_el2 at EL2 for protected guests, based on the values of the
guest's feature id registers.
No functional change intended as trap handlers introduced in the
previous patch are still not hooked in to the guest exit
handlers.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010145636.1950948-9-tabba@google.com
|
|
Add system register handlers for protected VMs. These cover Sys64
registers (including feature id registers), and debug.
No functional change intended as these are not hooked in yet to
the guest exit handlers introduced earlier. So when trapping is
triggered, the exit handlers let the host handle it, as before.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010145636.1950948-8-tabba@google.com
|
|
Simplify code for hiding MTE support in feature id register when
MTE is not enabled/supported by KVM.
No functional change intended.
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010145636.1950948-7-tabba@google.com
|
|
It's not currently used. Added for completeness.
No functional change intended.
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010145636.1950948-6-tabba@google.com
|
|
We need struct kvm to check for protected VMs to be able to pick
the right handlers for them in subsequent patches.
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010145636.1950948-5-tabba@google.com
|
|
Simplify the early exception handling by slicing the gigantic decoding
tree into a more manageable set of functions, similar to what we have
in handle_exit.c.
This will also make the structure reusable for pKVM's own early exit
handling.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211010145636.1950948-4-tabba@google.com
|
|
hyp-main.c includes switch.h while it only requires adjust-pc.h.
Fix it to remove an unnecessary dependency.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211010145636.1950948-3-tabba@google.com
|