Age | Commit message (Collapse) | Author |
|
Whenever a SIGP external call is injected via the SIGP external call
interpretation facility, the VCPU is not kicked. When a VCPU is currently
in the VSIE, the external call might not be processed immediately.
Therefore we have to provoke partial execution exceptions, which leads to a
kick of the VCPU and therefore also kick out of VSIE. This is done by
simulating the WAIT state. This bit has no other side effects.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
As we want to make use of CPUSTAT_WAIT also when a VCPU is not idle but
to force interception of external calls, let's check in the bitmap instead.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Whenever we want to wake up a VCPU (e.g. when injecting an IRQ), we
have to kick it out of vsie, so the request will be handled faster.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
We can avoid one unneeded SIE entry after we reported a fault to g2.
Theoretically, g2 resolves the fault and we can create the shadow mapping
directly, instead of failing again when entering the SIE.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
We can easily enable ibs for guest 2, so he can use it for guest 3.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
We can easily enable cei for guest 2, so he can use it for guest 3.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
We can easily enable intervention bypass for guest 2, so it can use it
for guest 3.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
We can easily forward guest-storage-limit-suppression if available.
One thing to care about is keeping the prefix properly mapped when
gsls in toggled on/off or the mso changes in between. Therefore we better
remap the prefix on any mso changes just like we already do with the
prefix.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
We can easily forward the guest-PER-enhancement facility to guest 2 if
available.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
As we forward the whole SCA provided by guest 2, we can directly forward
SIIF if available.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Let's provide the 64-bit-SCAO facility to guest 2, so he can set up a SCA
for guest 3 that has a 64 bit address. Please note that we already require
the 64 bit SCAO for our vsie implementation, in order to forward the SCA
directly (by pinning the page).
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
As soon as guest 2 is allowed to use run-time-instrumentation (indicated
via via STFLE), it can also enable it for guest 3.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
As soon as guest 2 is allowed to use the vector facility (indicated via
STFLE), it can also enable it for guest 3. We have to take care of the
sattellite block that might be used when not relying on lazy vector
copying (not the case for KVM).
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
As soon as guest 2 is allowed to use transactional execution (indicated via
STFLE), he can also enable it for guest 3.
Active transactional execution requires also the second prefix page to be
mapped. If that page cannot be mapped, a validity icpt has to be presented
to the guest.
We have to take care of tx being toggled on/off, otherwise we might get
wrong prefix validity icpt.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
As soon as message-security-assist extension 3 is enabled for guest 2,
we have to allow key wrapping for guest 3.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Issuing STFLE is extremely rare. Instead of copying 2k on every
VSIE call, let's do this lazily, when a guest 3 tries to execute
STFLE. We can setup the block and retry.
Unfortunately, we can't directly forward that facility list, as
we only have a 31 bit address for the facility list designation.
So let's use a DMA allocation for our vsie_page instead for now.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Introduced with ESOP, therefore available for the guest if it
is allowed to use ESOP.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
If guest 2 is allowed to use edat 1 / edat 2, it can also set it up for
guest 3, so let's properly check and forward the edat cpuflags.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
As soon as we forward an ibc to guest 2 (indicated via
kvm->arch.model.ibc), he can also use it for guest 3. Let's properly round
the ibc up/down, so we avoid any potential validity icpts from the
underlying SIE, if it doesn't simply round the values.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
In order to not always map the prefix, we have to take care of certain
aspects that implicitly unmap the prefix:
- Changes to the prefix address
- Changes to MSO, because the HVA of the prefix is changed
- Changes of the gmap shadow (e.g. unshadowed, asce or edat changes)
By properly handling these cases, we can stop remapping the prefix when
there is no reason to do so.
This also allows us now to not acquire any gmap shadow locks when
rerunning the vsie and still having a valid gmap shadow.
Please note, to detect changing gmap shadows, we have to keep the reference
of the gmap shadow. The address of a gmap shadow does otherwise not
reliably indicate if the gmap shadow has changed (the memory chunk
could get reused).
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
This patch adds basic support for nested virtualization on s390x, called
VSIE (virtual SIE) and allows it to be used by the guest if the necessary
facilities are supported by the hardware and enabled for the guest.
In order to make this work, we have to shadow the sie control block
provided by guest 2. In order to gain some performance, we have to
reuse the same shadow blocks as good as possible. For now, we allow
as many shadow blocks as we have VCPUs (that way, every VCPU can run the
VSIE concurrently).
We have to watch out for the prefix getting unmapped out of our shadow
gmap and properly get the VCPU out of VSIE in that case, to fault the
prefix pages back in. We use the PROG_REQUEST bit for that purpose.
This patch is based on an initial prototype by Tobias Elpelt.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Adds the cache nodes and next-level-cache property for the
cacheinfo to work.
Signed-off-by: Li Yang <leoyang.li@nxp.com>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
|
|
Adds the cache nodes and next-level-cache property for the
cacheinfo to work.
Signed-off-by: Li Yang <leoyang.li@nxp.com>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
|
|
The Linux AMBA bus framework probes the peripheral IDs when adding the
AMBA devices very early on the boot. Generally they are on APB bus and
just require APB clocks to be on even when most of the core logic of the
IP is powered down.
However on Juno, the entire debugsys domain needs to be ON to access
even the coresight components' CID/PID registers and hence broken by
design. Accessing those while debugsys power domain is off will lead to
the bridge stalling the transactions instead of returning the slave error.
Further, the AMBA framework can't deal with !CONFIG_PM_GENERIC_DOMAINS
case: it ignores the error and proceeds to access the device region.
It was suggested to always enable CONFIG_PM{,_GENERIC_DOMAINS} in order
to handle above explained scenario.
Cc: Arnd Bergmann <arnd@arndb.de>
Suggested-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Olof Johansson <olof@lixom.net>
|
|
We're initializing "IODA1" and "IODA2" PHBs though they are IODA2
and NPU PHBs as below kernel log indicates.
Initializing IODA1 OPAL PHB /pciex@3fffe40700000
Initializing IODA2 OPAL PHB /pciex@3fff000400000
This fixes the PHB names. After it's applied, we get:
Initializing IODA2 PHB (/pciex@3fffe40700000)
Initializing NPU PHB (/pciex@3fff000400000)
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This exports 4 functions, which base on the corresponding OPAL
APIs to get/set PCI slot status. Those functions are going to
be used by PowerNV PCI hotplug driver:
pnv_pci_get_device_tree() opal_get_device_tree()
pnv_pci_get_presence_state() opal_pci_get_presence_state()
pnv_pci_get_power_state() opal_pci_get_power_state()
pnv_pci_set_power_state() opal_pci_set_power_state()
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This introduces pnv_pci_get_slot_id() to get the hotpluggable PCI
slot ID from the corresponding device node. It will be used by
hotplug driver.
Requested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The (OPAL) firmware might provide the PCI slot reset capability
which is identified by property "ibm,reset-by-firmware" on the
PCI slot associated device node.
This routes the reset request to firmware if "ibm,reset-by-firmware"
exists in the PCI slot device node. Otherwise, the reset is done
inside kernel as before.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The reset and poll functionality from (OPAL) firmware supports
PHB and PCI slot at same time. They are identified by ID. This
supports PCI slot ID by:
* Rename the argument name for opal_pci_reset() and opal_pci_poll()
accordingly
* Rename pnv_eeh_phb_poll() to pnv_eeh_poll() and adjust its argument
name.
* One macro is added to produce PCI slot ID.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The pdn (struct pci_dn) instances are allocated from memblock or
bootmem when creating PCI controller (hoses) in setup_arch(). PCI
hotplug, which will be supported by proceeding patches, releases
PCI device nodes and their corresponding pdn on unplugging event.
The memory chunks for pdn instances allocated from memblock or
bootmem are hard to reused after being released.
This delays creating pdn by pci_devs_phb_init() from setup_arch()
to core_initcall() so that they are allocated from slab. The memory
consumed by pdn can be released to system without problem during
PCI unplugging time. It indicates that pci_dn is unavailable in
setup_arch() and the the fixup on pdn (like AGP's) can't be carried
out that time. We have to do that in pcibios_root_bridge_prepare()
on maple/pasemi/powermac platforms where/when the pdn is available.
pcibios_root_bridge_prepare is called from subsys_initcall() which
is executed after core_initcall() so the code flow does not change.
At the mean while, the EEH device is created when pdn is populated,
meaning pdn and EEH device have same life cycle. In turn, we needn't
call eeh_dev_init() to create EEH device explicitly.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
On the PCI plugging event, PCI slot's subordinate devices are
scanned and their (IO and MMIO) resources are assigned. Platform
dependent resources (PE#, IO/MMIO/DMA windows) are allocated or
created on updating windows of the slot's upstream bridge.
This updates the windows of the hot plugged slot's upstream bridge
in pcibios_finish_adding_to_bus() so that the platform resources
(PE#, IO/MMIO/DMA segments) are allocated or created accordingly.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This supports releasing PEs dynamically. A reference count is
introduced to PE representing number of PCI devices associated
with the PE. The reference count is increased when PCI device
joins the PE and decreased when PCI device leaves the PE in
pnv_pci_release_device(). When the count becomes zero, the PE
and its consumed resources are released. Note that the count
is accessed concurrently. So a counter with "int" type is enough
here.
In order to release the sources consumed by the PE, couple of
helper functions are introduced as below:
* pnv_pci_ioda1_unset_window() - Unset IODA1 DMA32 window
* pnv_pci_ioda1_release_dma_pe() - Release IODA1 DMA32 segments
* pnv_pci_ioda2_release_dma_pe() - Release IODA2 DMA resource
* pnv_ioda_release_pe_seg() - Unmap IO/M32/M64 segments
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
pnv_ioda_deconfigure_pe() is visible only when CONFIG_PCI_IOV is
enabled. The function will be used to tear down PE's associated
mapping in PCI hotplug path that doesn't depend on CONFIG_PCI_IOV.
This makes pnv_ioda_deconfigure_pe() visible and not depend on
CONFIG_PCI_IOV.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The PCI slots are associated with root port or downstream ports
of the PCIe switch connected to root port. When adapter is hot
added to the PCI slot, it usually requests more IO or memory
resource from the directly connected parent bridge (port) and
update the bridge's windows accordingly. The resource windows
of upstream bridges can't be updated automatically. It possibly
leads to unbalanced resource across the bridges: The window of
downstream bridge is overruning that of upstream bridge. The
IO or MMIO path won't work.
This resolves the above issue by extending bridge windows of
root port and upstream port of the PCIe switch connected to
the root port to PHB's windows.
The windows of root port and bridge behind that are extended to
the PHB's windows to accomodate the PCI hotplug happening in
future. The PHB's 64KB 32-bits MSI region is included in bridge's
M32 windows (in hardware) though it's excluded in the corresponding
resource, as the bridge's M32 windows have 1MB as their minimal
alignment. We observed EEH error during system boot when the MSI
region is included in bridge's M32 window.
This excludes top 1MB (including 64KB 32-bits MSI region) region
from bridge's M32 windows when extending them.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
There is no parent bridge for root bus, meaning pcibios_setup_bridge()
isn't invoked for root bus. The PE for root bus is the ancestor of
other PEs in PELTV. It means we need PE for root bus populated before
all others.
This populates the PE for root bus in pcibios_setup_bridge() path
if it's not populated yet. The PE number next to the reserved one
is used as the PE# to avoid holes in continuous M64 space.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Currently, the PEs and their associated resources are assigned in
ppc_md.pcibios_fixup() except those used by SRIOV VFs. The function
is called for once after PCI probing and resources assignment is
completed. So it's obviously not hotplug friendly.
This creates PEs dynamically in pcibios_setup_bridge() that is
called for the event during system bootup and PCI hotplug: updating
PCI bridge's windows after resource assignment/reassignment are done.
In partial hotplug case, not all PCI devices included to one particular
PE are unplugged and plugged again, we just need unbinding/binding the
hot added PCI devices with the corresponding PE without creating new
one. The change is applied to IODA1 and IODA2 PHBs only. The behaviour
on NPU PHBs aren't changed. There are no PCI bridges on NPU PHBs,
meaning pcibios_setup_bridge() won't be invoked there. We have to use
old path (pnv_pci_ioda_fixup()) to setup PEs on NPU PHBs.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
PE number for one particular PE can be allocated dynamically or
reserved according to the consumed M64 (64-bits prefetchable)
segments of the PE. The M64 segment can't be remapped to arbitrary
PE, meaning the PE number is determined according to the index
of the consumed M64 segment. As below figure shows, M64 resource
grows from low to high end, meaning the PE (number) reserved
according to M64 segment grows from low to high end as well,
so does the dynamically allocated PE number. It will lead to
conflict: PE number (M64 segment) reserved by dynamic allocation
is required by hot added PCI adapter at later point. It fails
the PCI hotplug because of the PE number can't be reserved
based on the index of the consumed M64 segment.
+---+---+---+---+---+--------------------------------+-----+
| 0 | 1 | 2 | 3 | 4 | ....... | 255 |
+---+---+---+---+---+--------------------------------+-----+
PE number for dynamic allocation ----------------->
PE number reserved for M64 segment ----------------->
To resolve above conflicts, this forces the PE number to be
allocated dynamically in reverse order. With this patch applied,
the PE numbers are reserved in ascending order, but allocated
dynamically in reverse order.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Each PHB maintains an array helping to translate 2-bytes Request
ID (RID) to PE# with the assumption that PE# takes one byte, meaning
that we can't have more than 256 PEs. However, pci_dn->pe_number
already had 4-bytes for the PE#.
This extends the PE# capacity for every PHB. After that, the PE number
is represented by 4-bytes value. Then we can reuse IODA_INVALID_PE to
check the PE# in phb->pe_rmap[] is valid or not.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
pnv_pci_ioda_setup_opal_tce_kill() called by pnv_ioda_setup_dma()
to remap the TCE kill regiter. What's done in pnv_ioda_setup_dma()
will be covered in pcibios_setup_bridge() which is invoked on each
PCI bridge. It means we will possibly remap the TCE kill register
for multiple times and it's unnecessary.
This moves pnv_pci_ioda_setup_opal_tce_kill() to where the PHB is
initialized (pnv_pci_init_ioda_phb()) to avoid above issue.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The macro defined in arch/powerpc/platforms/powernv/pci.c isn't
used by anyone. Just remove it.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This overrides pcibios_setup_bridge() that is called to update PCI
bridge windows when PCI resource assignment is completed, to assign
PE and setup various (resource) mapping for the PE in subsequent
patches.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Export cpu_to_core_id(). This will be used by the lpfc driver.
This enables topology_core_id() from <linux/topology.h> (defined
to cpu_to_core_id() in arch/powerpc/include/asm/topology.h) to be
used by (non-builtin) modules.
That is arch-neutral, already used by eg, drivers/base/topology.c,
but it is builtin (obj-y in Makefile) thus didn't need the export.
Since the module uses topology_core_id() and this is defined to
cpu_to_core_id(), it needs the export, otherwise:
ERROR: "cpu_to_core_id" [drivers/scsi/lpfc/lpfc.ko] undefined!
Tested on next-20160601.
Signed-off-by: Mauricio Faria de Oliveira <mauricfo@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This enables new registers, LMRR and LMSER, that can trigger an EBB in
userspace code when a monitored load (via the new ldmx instruction)
loads memory from a monitored space. This facility is controlled by a
new FSCR bit, LM.
This patch disables the FSCR LM control bit on task init and enables
that bit when a load monitor facility unavailable exception is taken
for using it. On context switch, this bit is then used to determine
whether the two relevant registers are saved and restored. This is
done lazily for performance reasons.
Signed-off-by: Jack Miller <jack@codezen.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This fixes a few issues with FSCR init and switching.
In commit 152d523e6307 ("powerpc: Create context switch helpers
save_sprs() and restore_sprs()") we moved the setting of the FSCR
register from inside an CPU_FTR_ARCH_207S section to inside just a
CPU_FTR_ARCH_DSCR section. Hence we are setting FSCR on POWER6/7 where
the FSCR doesn't exist. This is harmless but we shouldn't do it.
Also, we can simplify the FSCR context switch. We don't need to go
through the calculation involving dscr_inherit. We can just restore
what we saved last time.
We also set an initial value in INIT_THREAD, so that pid 1 which is
cloned from that gets a sane value.
Based on patch by Jack Miller.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Current comment in the early_setup_secondary() for paca->soft_enabled
update is misleading. Comment should say to Mark interrupts "disabled"
instead of "enabled". Fix the typo.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Fixes the following testsuite failure:
$ sudo ./perf test -v kallsyms
1: vmlinux symtab matches kallsyms :
--- start ---
test child forked, pid 12489
Using /proc/kcore for kernel object code
Looking at the vmlinux_path (8 entries long)
Using /boot/vmlinux for symbols
0xc00000000003d300: diff name v: .kretprobe_trampoline_holder k: kretprobe_trampoline
Maps only in vmlinux:
c00000000086ca38-c000000000879b6c 87ca38 [kernel].text.unlikely
c000000000879b6c-c000000000bf0000 889b6c [kernel].meminit.text
c000000000bf0000-c000000000c53264 c00000 [kernel].init.text
c000000000c53264-d000000004250000 c63264 [kernel].exit.text
d000000004250000-d000000004450000 0 [libcrc32c]
d000000004450000-d000000004620000 0 [xfs]
d000000004620000-d000000004680000 0 [autofs4]
d000000004680000-d0000000046e0000 0 [x_tables]
d0000000046e0000-d000000004780000 0 [ip_tables]
d000000004780000-d0000000047e0000 0 [rng_core]
d0000000047e0000-ffffffffffffffff 0 [pseries_rng]
Maps in vmlinux with a different name in kallsyms:
Maps only in kallsyms:
d000000000000000-f000000000000000 1000000000010000 [kernel.kallsyms]
f000000000000000-ffffffffffffffff 3000000000010000 [kernel.kallsyms]
test child finished with -1
---- end ----
vmlinux symtab matches kallsyms: FAILED!
The problem is that the kretprobe_trampoline symbol looks like this:
$ eu-readelf -s /boot/vmlinux G kretprobe_trampoline
2431: c000000001302368 24 NOTYPE LOCAL DEFAULT 37 kretprobe_trampoline_holder
2432: c00000000003d300 8 FUNC LOCAL DEFAULT 1 .kretprobe_trampoline_holder
97543: c00000000003d300 0 NOTYPE GLOBAL DEFAULT 1 kretprobe_trampoline
Its type is NOTYPE, and its size is 0, and this is a problem because
symbol-elf.c:dso__load_sym skips function symbols that are not STT_FUNC
or STT_GNU_IFUNC (this is determined by elf_sym__is_function). Even
if the type is changed to STT_FUNC, when dso__load_sym calls
symbols__fixup_duplicate, the kretprobe_trampoline symbol is dropped in
favour of .kretprobe_trampoline_holder because the latter has non-zero
size (as determined by choose_best_symbol).
With this patch, all vmlinux symbols match /proc/kallsyms and the
testcase passes.
Commit c1c355ce14c0 ("x86/kprobes: Get rid of
kretprobe_trampoline_holder()") gets rid of kretprobe_trampoline_holder
altogether on x86. This commit does the same on powerpc. This change
introduces no regressions on the perf and ftracetest testsuite results.
Reviewed-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/sudeep.holla/linux into next/cleanup
ARMv7 VExpress fixes for v4.8
Few fixes to remove build warnings with W=1
* tag 'vexpress-fixes-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/sudeep.holla/linux:
power: vexpress: make dev_attr_active static
ARM: vexpress/spc: fix missing include of spc.h
ARM: versatile: fix missing <plat/platsmp.h> include
ARM: vexpress/hotplug: fix missing core.h include
ARM: vexpress/spc: remove unused variable perf_stat_reg
Signed-off-by: Olof Johansson <olof@lixom.net>
|
|
Export cpuidle functions needed by fec driver to fix the issue below
seen with fec module build.
ERROR: "imx6q_cpuidle_fec_irqs_unused" [drivers/net/ethernet/freescale/fec.ko] undefined!
ERROR: "imx6q_cpuidle_fec_irqs_used" [drivers/net/ethernet/freescale/fec.ko] undefined!
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
|
|
Node qmlclk has no consumer, so remove it.
Signed-off-by: Duc Dang <dhdang@apm.com>
|
|
Correct X-Gene 2 timer interrupt polarity as low-level triggered.
Signed-off-by: Duc Dang <dhdang@apm.com>
|