Age | Commit message (Collapse) | Author |
|
Some variants of the Arm Cortex-55 cores (r0p0, r0p1, r1p0) suffer
from an erratum 1024718, which causes incorrect updates when DBM/AP
bits in a page table entry is modified without a break-before-make
sequence. The work around is to skip enabling the hardware DBM feature
on the affected cores. The hardware Access Flag management features
is not affected. There are some other cores suffering from this
errata, which could be added to the midr_list to trigger the work
around.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: ckadabi@codeaurora.org
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
We enable hardware DBM bit in a capable CPU, very early in the
boot via __cpu_setup. This doesn't give us a flexibility of
optionally disable the feature, as the clearing the bit
is a bit costly as the TLB can cache the settings. Instead,
we delay enabling the feature until the CPU is brought up
into the kernel. We use the feature capability mechanism
to handle it.
The hardware DBM is a non-conflicting feature. i.e, the kernel
can safely run with a mix of CPUs with some using the feature
and the others don't. So, it is safe for a late CPU to have
this capability and enable it, even if the active CPUs don't.
To get this handled properly by the infrastructure, we
unconditionally set the capability and only enable it
on CPUs which really have the feature. Also, we print the
feature detection from the "matches" call back to make sure
we don't mislead the user when none of the CPUs could use the
feature.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Update the MIDR encodings for the Cortex-A55 and Cortex-A35
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Some capabilities have different criteria for detection and associated
actions based on the matching criteria, even though they all share the
same capability bit. So far we have used multiple entries with the same
capability bit to handle this. This is prone to errors, as the
cpu_enable is invoked for each entry, irrespective of whether the
detection rule applies to the CPU or not. And also this complicates
other helpers, e.g, __this_cpu_has_cap.
This patch adds a wrapper entry to cover all the possible variations
of a capability by maintaining list of matches + cpu_enable callbacks.
To avoid complicating the prototypes for the "matches()", we use
arm64_cpu_capabilities maintain the list and we ignore all the other
fields except the matches & cpu_enable.
This ensures :
1) The capabilitiy is set when at least one of the entry detects
2) Action is only taken for the entries that "matches".
This avoids explicit checks in the cpu_enable() take some action.
The only constraint here is that, all the entries should have the
same "type" (i.e, scope and conflict rules).
If a cpu_enable() method is associated with multiple matches for a
single capability, care should be taken that either the match criteria
are mutually exclusive, or that the method is robust against being
called multiple times.
This also reverts the changes introduced by commit 67948af41f2e6818ed
("arm64: capabilities: Handle duplicate entries for a capability").
Cc: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Add helpers for detecting an errata on list of midr ranges
of affected CPUs, with the same work around.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Add helpers for checking if the given CPU midr falls in a range
of variants/revisions for a given model.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
We are about to introduce generic MIDR range helpers. Clean
up the existing helpers in erratum handling, preparing them
to use generic version.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
We expect all CPUs to be running at the same EL inside the kernel
with or without VHE enabled and we have strict checks to ensure
that any mismatch triggers a kernel panic. If VHE is enabled,
we use the feature based on the boot CPU and all other CPUs
should follow. This makes it a perfect candidate for a capability
based on the boot CPU, which should be matched by all the CPUs
(both when is ON and OFF). This saves us some not-so-pretty
hooks and special code, just for verifying the conflict.
The patch also makes the VHE capability entry depend on
CONFIG_ARM64_VHE.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
The kernel detects and uses some of the features based on the boot
CPU and expects that all the following CPUs conform to it. e.g,
with VHE and the boot CPU running at EL2, the kernel decides to
keep the kernel running at EL2. If another CPU is brought up without
this capability, we use custom hooks (via check_early_cpu_features())
to handle it. To handle such capabilities add support for detecting
and enabling capabilities based on the boot CPU.
A bit is added to indicate if the capability should be detected
early on the boot CPU. The infrastructure then ensures that such
capabilities are probed and "enabled" early on in the boot CPU
and, enabled on the subsequent CPUs.
Cc: Julien Thierry <julien.thierry@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
KPTI is treated as a system wide feature and is only detected if all
the CPUs in the sysetm needs the defense, unless it is forced via kernel
command line. This leaves a system with a mix of CPUs with and without
the defense vulnerable. Also, if a late CPU needs KPTI but KPTI was not
activated at boot time, the CPU is currently allowed to boot, which is a
potential security vulnerability.
This patch ensures that the KPTI is turned on if at least one CPU detects
the capability (i.e, change scope to SCOPE_LOCAL_CPU). Also rejetcs a late
CPU, if it requires the defense, when the system hasn't enabled it,
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Now that we have the flexibility of defining system features based
on individual CPUs, introduce CPU feature type that can be detected
on a local SCOPE and ignores the conflict on late CPUs. This is
applicable for ARM64_HAS_NO_HW_PREFETCH, where it is fine for
the system to have CPUs without hardware prefetch turning up
later. We only suffer a performance penalty, nothing fatal.
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Now that the features and errata workarounds have the same
rules and flow, group the handling of the tables.
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
So far we have treated the feature capabilities as system wide
and this wouldn't help with features that could be detected locally
on one or more CPUs (e.g, KPTI, Software prefetch). This patch
splits the feature detection to two phases :
1) Local CPU features are checked on all boot time active CPUs.
2) System wide features are checked only once after all CPUs are
active.
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Right now we run through the errata workarounds check on all boot
active CPUs, with SCOPE_ALL. This wouldn't help for detecting erratum
workarounds with a SYSTEM_SCOPE. There are none yet, but we plan to
introduce some: let us clean this up so that such workarounds can be
detected and enabled correctly.
So, we run the checks with SCOPE_LOCAL_CPU on all CPUs and SCOPE_SYSTEM
checks are run only once after all the boot time CPUs are active.
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
We are about to group the handling of all capabilities (features
and errata workarounds). This patch open codes the wrapper routines
to make it easier to merge the handling.
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
While processing the list of capabilities, it is useful to
filter out some of the entries based on the given mask for the
scope of the capabilities to allow better control. This can be
used later for handling LOCAL vs SYSTEM wide capabilities and more.
All capabilities should have their scope set to either LOCAL_CPU or
SYSTEM. No functional/flow change.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Now that each capability describes how to treat the conflicts
of CPU cap state vs System wide cap state, we can unify the
verification logic to a single place.
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
When a CPU is brought up, it is checked against the caps that are
known to be enabled on the system (via verify_local_cpu_capabilities()).
Based on the state of the capability on the CPU vs. that of System we
could have the following combinations of conflict.
x-----------------------------x
| Type | System | Late CPU |
|-----------------------------|
| a | y | n |
|-----------------------------|
| b | n | y |
x-----------------------------x
Case (a) is not permitted for caps which are system features, which the
system expects all the CPUs to have (e.g VHE). While (a) is ignored for
all errata work arounds. However, there could be exceptions to the plain
filtering approach. e.g, KPTI is an optional feature for a late CPU as
long as the system already enables it.
Case (b) is not permitted for errata work arounds that cannot be activated
after the kernel has finished booting.And we ignore (b) for features. Here,
yet again, KPTI is an exception, where if a late CPU needs KPTI we are too
late to enable it (because we change the allocation of ASIDs etc).
Add two different flags to indicate how the conflict should be handled.
ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - CPUs may have the capability
ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - CPUs may not have the cappability.
Now that we have the flags to describe the behavior of the errata and
the features, as we treat them, define types for ERRATUM and FEATURE.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
We use arm64_cpu_capabilities to represent CPU ELF HWCAPs exposed
to the userspace and the CPU hwcaps used by the kernel, which
include cpu features and CPU errata work arounds. Capabilities
have some properties that decide how they should be treated :
1) Detection, i.e scope : A cap could be "detected" either :
- if it is present on at least one CPU (SCOPE_LOCAL_CPU)
Or
- if it is present on all the CPUs (SCOPE_SYSTEM)
2) When is it enabled ? - A cap is treated as "enabled" when the
system takes some action based on whether the capability is detected or
not. e.g, setting some control register, patching the kernel code.
Right now, we treat all caps are enabled at boot-time, after all
the CPUs are brought up by the kernel. But there are certain caps,
which are enabled early during the boot (e.g, VHE, GIC_CPUIF for NMI)
and kernel starts using them, even before the secondary CPUs are brought
up. We would need a way to describe this for each capability.
3) Conflict on a late CPU - When a CPU is brought up, it is checked
against the caps that are known to be enabled on the system (via
verify_local_cpu_capabilities()). Based on the state of the capability
on the CPU vs. that of System we could have the following combinations
of conflict.
x-----------------------------x
| Type | System | Late CPU |
------------------------------|
| a | y | n |
------------------------------|
| b | n | y |
x-----------------------------x
Case (a) is not permitted for caps which are system features, which the
system expects all the CPUs to have (e.g VHE). While (a) is ignored for
all errata work arounds. However, there could be exceptions to the plain
filtering approach. e.g, KPTI is an optional feature for a late CPU as
long as the system already enables it.
Case (b) is not permitted for errata work arounds which requires some
work around, which cannot be delayed. And we ignore (b) for features.
Here, yet again, KPTI is an exception, where if a late CPU needs KPTI we
are too late to enable it (because we change the allocation of ASIDs
etc).
So this calls for a lot more fine grained behavior for each capability.
And if we define all the attributes to control their behavior properly,
we may be able to use a single table for the CPU hwcaps (which cover
errata and features, not the ELF HWCAPs). This is a prepartory step
to get there. More bits would be added for the properties listed above.
We are going to use a bit-mask to encode all the properties of a
capabilities. This patch encodes the "SCOPE" of the capability.
As such there is no change in how the capabilities are treated.
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
We have errata work around processing code in cpu_errata.c,
which calls back into helpers defined in cpufeature.c. Now
that we are going to make the handling of capabilities
generic, by adding the information to each capability,
move the errata work around specific processing code.
No functional changes.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
We trigger CPU errata work around check on the boot CPU from
smp_prepare_boot_cpu() to make sure that we run the checks only
after the CPU feature infrastructure is initialised. While this
is correct, we can also do this from init_cpu_features() which
initilises the infrastructure, and is called only on the
Boot CPU. This helps to consolidate the CPU capability handling
to cpufeature.c. No functional changes.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
We issue the enable() call back for all CPU hwcaps capabilities
available on the system, on all the CPUs. So far we have ignored
the argument passed to the call back, which had a prototype to
accept a "void *" for use with on_each_cpu() and later with
stop_machine(). However, with commit 0a0d111d40fd1
("arm64: cpufeature: Pass capability structure to ->enable callback"),
there are some users of the argument who wants the matching capability
struct pointer where there are multiple matching criteria for a single
capability. Clean up the declaration of the call back to make it clear.
1) Renamed to cpu_enable(), to imply taking necessary actions on the
called CPU for the entry.
2) Pass const pointer to the capability, to allow the call back to
check the entry. (e.,g to check if any action is needed on the CPU)
3) We don't care about the result of the call back, turning this to
a void.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: James Morse <james.morse@arm.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Dave Martin <dave.martin@arm.com>
[suzuki: convert more users, rename call back and drop results]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Add support for format 3 channel path descriptors and use them to
gather utility strings.
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Rename struct channel_path_desc to struct channel_path_desc_fmt0
to fit the scheme. Provide a macro for the function wrappers that
gather this and related data from firmware.
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Current x86 Device Tree implementation does not support multiprocessing.
Use new DT bindings to describe the processors.
Signed-off-by: Ivan Gorinov <ivan.gorinov@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Frank Rowand <frowand.list@gmail.com>
Link: https://lkml.kernel.org/r/c291fb2cef51b730b59916d7745be0eaa4378c6c.1521753738.git.ivan.gorinov@intel.com
|
|
This code works fine. The comment is misleading so remove it.
Tested-by: Stan Johnson <userm57@yahoo.com>
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
|
According to Apple's Developer Notes, all of the early PowerBook models
have their RTC connected to VIA1. Use the VIA clock ops as appropriate.
This was tested on a PowerBook 170.
Don't use the VIA ops when not appropriate. Calling unimplemented clock
or PRAM getter or setter ops can now result in an error instead of
failing silently.
Tested-by: Stan Johnson <userm57@yahoo.com>
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
|
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
|
Use of SVE by EL2 and below requires explicit support in the
firmware. There is no means to hide the presence of SVE from EL2,
so a kernel configured with CONFIG_ARM64_SVE=y will typically not
work correctly on SVE capable hardware unless the firmware does
include the appropriate support.
This is not expected to pose a problem in the wild, since platform
integrators are responsible for ensuring that they ship up-to-date
firmware to support their hardware. However, developers may hit
the issue when using mismatched compoments.
In order to draw attention to the issue and how to solve it, this
patch adds some Kconfig text giving a brief explanation and details
of compatible firmware versions.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Re-sync the defconfig by doing:
make savedefconfig
cp defconfig arch/arm/configs/mxs_defconfig
So keep it in sync to help further changes in defconfig.
The explanation for removing the Kconfig symbols:
CONFIG_FHANDLE=y: verified that it is still selected
selected
CONFIG_DEVPTS_MULTIPLE_INSTANCES=y: does not exist anymore
CONFIG_NVMEM=y: verified that it is still selected
CONFIG_LOCKUP_DETECTOR=y: need to select CONFIG_SOFTLOCKUP_DETECTOR now
CONFIG_TIMER_STATS=y: does not exist anymore
Boot tested on a imx28evk.
Signed-off-by: Fabio Estevam <fabio.estevam@nxp.com>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
|
|
fsl-asoc-card machine driver also supports sgtl5000, so use it favor
of the imx-sgtl5000 machine driver, which will be probably be removed
in the future.
Tested on a imx25-pdk board.
Signed-off-by: Fabio Estevam <fabio.estevam@nxp.com>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
|
|
Re-sync the defconfig by doing:
make savedefconfig
cp defconfig arch/arm/configs/imx_v4_v5_defconfig
So keep it in sync to help further changes in defconfig.
Signed-off-by: Fabio Estevam <fabio.estevam@nxp.com>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
|
|
The options USB_EHCI_ATH79 and USB_OHCI_ATH79 only enable the
generic EHCI and OHCI platform drivers, and have been marked as
deprecated since 2012.
These can be safely removed if we make sure that USB_EHCI_ROOT_HUB_TT
still get enabled for the EHCI driver. This is now done be selecting
this option when the EHCI platform driver is enabled on the ATH79
platform.
Signed-off-by: Alban Bedel <albeu@free.fr>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Some functions definitions have either the initial open brace and/or
the closing brace outside of column 1.
Move those braces to column 1.
This allows various function analyzers like gnu complexity to work
properly for these modified functions.
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Acked-by: Paul Moore <paul@paul-moore.com>
Acked-by: Alex Deucher <alexander.deucher@amd.com>
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Acked-by: Takashi Iwai <tiwai@suse.de>
Acked-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Nicolin Chen <nicoleotsuka@gmail.com>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
The ->cpu_mask_to_apicid() and ->vector_allocation_domain() callbacks are
now unused, so remove them.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: baab1e84b112 ("x86/apic: Remove unused callbacks")
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1803251403540.80485@chino.kir.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The SLB bad address handler's trap number fixup does not preserve the
low bit that indicates nonvolatile GPRs have not been saved. This
leads save_nvgprs to skip saving them, and subsequent functions and
return from interrupt will think they are saved.
This causes kernel branch-to-garbage debugging to not have correct
registers, can also cause userspace to have its registers clobbered
after a segfault.
Fixes: f0f558b131db ("powerpc/mm: Preserve CFAR value on SLB miss caused by access to bogus address")
Cc: stable@vger.kernel.org # v4.9+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 and PTI fixes from Ingo Molnar:
"Misc fixes:
- fix EFI pagetables freeing
- fix vsyscall pagetable setting on Xen PV guests
- remove ancient CONFIG_X86_PPRO_FENCE=y - x86 is TSO again
- fix two binutils (ld) development version related incompatibilities
- clean up breakpoint handling
- fix an x86 self-test"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/entry/64: Don't use IST entry for #BP stack
x86/efi: Free efi_pgd with free_pages()
x86/vsyscall/64: Use proper accessor to update P4D entry
x86/cpu: Remove the CONFIG_X86_PPRO_FENCE=y quirk
x86/boot/64: Verify alignment of the LOAD segment
x86/build/64: Force the linker to use 2MB page size
selftests/x86/ptrace_syscall: Fix for yet more glibc interference
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
"Misc kernel side fixes.
Generic:
- cgroup events counting fix
x86:
- Intel PMU truncated-parameter fix
- RDPMC fix
- API naming fix/rename
- uncore driver big-hardware PCI enumeration fix
- uncore driver filter constraint fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/cgroup: Fix child event counting bug
perf/x86/intel/uncore: Fix multi-domain PCI CHA enumeration bug on Skylake servers
perf/x86/intel: Rename confusing 'freerunning PEBS' API and implementation to 'large PEBS'
perf/x86/intel/uncore: Add missing filter constraint for SKX CHA event
perf/x86/intel: Don't accidentally clear high bits in bdw_limit_period()
perf/x86/intel: Disable userspace RDPMC usage for large PEBS
|
|
stat(1) is not standardized and different implementations have their own
(conflicting) flags for querying the size of a file.
ls(1) provides the same information (value of st.st_size) in the 5th
column, except when the file is a character or block device. This output
is standardized[0]. The -n option turns on -l, which writes lines
formatted like
"%s %u %s %s %u %s %s\n", <file mode>, <number of links>,
<owner name>, <group name>, <size>, <date and time>,
<pathname>
but instead of writing the <owner name> and <group name>, it writes the
numeric owner and group IDs (this avoids /etc/passwd and /etc/group
lookups as well as potential field splitting issues).
The <size> field is specified as "the value that would be returned for
the file in the st_size field of struct stat".
To avoid duplicating logic in several locations in the tree, create
scripts/file-size.sh and update callers to use that instead of stat(1).
[0] http://pubs.opengroup.org/onlinepubs/9699919799/utilities/ls.html#tag_20_73_10
Signed-off-by: Michael Forney <forney@google.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
Incremental linking is gone, so rename built-in.o to built-in.a, which
is the usual extension for archive files.
This patch does two things, first is a simple search/replace:
git grep -l 'built-in\.o' | xargs sed -i 's/built-in\.o/built-in\.a/g'
The second is to invert nesting of nested text manipulations to avoid
filtering built-in.a out from libs-y2:
-libs-y2 := $(filter-out %.a, $(patsubst %/, %/built-in.a, $(libs-y)))
+libs-y2 := $(patsubst %/, %/built-in.a, $(filter-out %.a, $(libs-y)))
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
This removes the old `ld -r` incremental link option, which has not
been selected by any architecture since June 2017.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
KBUILD_CFLAGS
The kernel build system already takes care of generating the dependency
files. Having the additional -MD in KBUILD_CFLAGS leads to stray
.<pid>.d files in the build directory when we call the cc-option macro.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Link: http://lkml.kernel.org/r/alpine.LNX.2.21.1803242219380.30139@titan.int.lan.stealer.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Send nm complaints about broken pipe (when sed exits early) to /dev/null.
All errors should be printed to stderr.
Don't trap on normal exit so the trap can return an error code.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Tested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Define vdso_start, vdso_end as array to avoid compile-time analysis error
for the case of built with CONFIG_FORTIFY_SOURCE.
and, since vdso_start, vdso_end are used in vdso.c only,
move extern-declaration from vdso.h to vdso.c.
If kernel is built with CONFIG_FORTIFY_SOURCE,
compile-time error happens at this code.
- if (memcmp(&vdso_start, "177ELF", 4))
The size of "&vdso_start" is recognized as 1 byte, but n is 4,
So that compile-time error is reported.
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Jinbum Park <jinb.park7@gmail.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Without CONFIG_MMU, this results in a build failure:
./arch/arm/include/asm/memory.h:92:23: error: initializer element is not constant
#define VECTORS_BASE vectors_base
arch/arm/mm/dump.c:32:4: note: in expansion of macro 'VECTORS_BASE'
{ VECTORS_BASE, "Vectors" },
arch/arm/mm/dump.c:71:11: error: 'L_PTE_USER' undeclared here (not in a function); did you mean 'VTIME_USER'?
.mask = L_PTE_USER,
^~~~~~~~~~
Obviously the feature only makes sense with an MMU, so let's add the
dependency here.
Fixes: a8e53c151fe7 ("ARM: 8737/1: mm: dump: add checking for writable and executable")
Acked-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Commit 384b38b66947 ("ARM: 7873/1: vfp: clear vfp_current_hw_state
for dying cpu") fixed the cpu dying notifier by clearing
vfp_current_hw_state[]. However commit e5b61bafe704 ("arm: Convert VFP
hotplug notifiers to state machine") incorrectly used the original
vfp_force_reload() function in the cpu dying notifier.
Fix it by going back to clearing vfp_current_hw_state[].
Fixes: e5b61bafe704 ("arm: Convert VFP hotplug notifiers to state machine")
Cc: linux-stable <stable@vger.kernel.org>
Reported-by: Kohji Okuno <okuno.kohji@jp.panasonic.com>
Signed-off-by: Fabio Estevam <fabio.estevam@nxp.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Switch h3xxx's PCMCIA implementation to use the gpiod APIs where
possible.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Convert Cerf to use the generic CF socket support.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Convert Assabet to use the generic CF socket support.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
Provide the SoC-level infrastructure to support the generic CF sockets.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|