Age | Commit message (Collapse) | Author |
|
Move the ioctl helpers for getting/setting fully in-kernel IRQ chip state
to irq.c, partly to trim down x86.c, but mostly in preparation for adding
a Kconfig to control support for in-kernel I/O APIC, PIC, and PIT
emulation.
No functional change intended.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move the PIT ioctl helpers to i8254.c, i.e. to the file that implements
PIT emulation. Eliminating PIT code in x86.c will allow adding a Kconfig
to control support for in-kernel I/O APIC, PIC, and PIT emulation with
minimal #ifdefs.
Opportunistically make kvm_pit_set_reinject() and kvm_pit_load_count()
local to i8254.c as they were only publicly visible to make them available
to the ioctl helpers.
No functional change intended.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the superfluous kvm_hv_set_sint() and instead wire up ->set() directly
to its final destination, kvm_hv_synic_set_irq(). Keep hv_synic_set_irq()
instead of kvm_hv_set_sint() to provide some amount of consistency in the
->set() helpers, e.g. to match kvm_pic_set_irq() and kvm_ioapic_set_irq().
kvm_set_msi() is arguably the oddball, e.g. kvm_set_msi_irq() should be
something like kvm_msi_to_lapic_irq() so that kvm_set_msi() can instead be
kvm_set_msi_irq(), but that's a future problem to solve.
No functional change intended.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Kai Huang <kai.huang@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the superfluous and confusing kvm_set_ioapic_irq() and instead wire
up ->set() directly to its final destination.
No functional change intended.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the superfluous and confusing kvm_set_pic_irq() => kvm_pic_set_irq()
wrapper, and instead wire up ->set() directly to its final destination.
Opportunistically move the declaration kvm_pic_set_irq() to irq.h to
start gathering more of the in-kernel APIC/IO-APIC logic in irq.{c,h}.
No functional change intended.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Trigger the I/O APIC route rescan that's performed for a split IRQ chip
after userspace updates IRQ routes in kvm_arch_irq_routing_update(), i.e.
before dropping kvm->irq_lock. Calling kvm_make_all_cpus_request() under
a mutex is perfectly safe, and the smp_wmb()+smp_mb__after_atomic() pair
in __kvm_make_request()+kvm_check_request() ensures the new routing is
visible to vCPUs prior to the request being visible to vCPUs.
In all likelihood, commit b053b2aef25d ("KVM: x86: Add EOI exit bitmap
inference") somewhat arbitrarily made the request outside of irq_lock to
avoid holding irq_lock any longer than is strictly necessary. And then
commit abdb080f7ac8 ("kvm/irqchip: kvm_arch_irq_routing_update renaming
split") took the easy route of adding another arch hook instead of risking
a functional change.
Note, the call to synchronize_srcu_expedited() does NOT provide ordering
guarantees with respect to vCPUs scanning the new routing; as above, the
request infrastructure provides the necessary ordering. I.e. there's no
need to wait for kvm_scan_ioapic_routes() to complete if it's actively
running, because regardless of whether it grabs the old or new table, the
vCPU will have another KVM_REQ_SCAN_IOAPIC pending, i.e. will rescan again
and see the new mappings.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250611213557.294358-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move ownership of IRQ bypass token tracking into irqbypass.ko, and
explicitly require callers to pass an eventfd_ctx structure instead of a
completely opaque token. Relying on producers and consumers to set the
token appropriately is error prone, and hiding the fact that the token must
be an eventfd_ctx pointer (for all intents and purposes) unnecessarily
obfuscates the code and makes it more brittle.
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Link: https://lore.kernel.org/r/20250516230734.2564775-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When unmapping a vLPI, WARN if nullifying vCPU affinity fails, not just if
failure occurs when freeing an ITE. If undoing vCPU affinity fails, then
odds are very good that vLPI state tracking has has gotten out of whack,
i.e. that KVM and the GIC disagree on the state of an IRQ/vLPI. At best,
inconsistent state means there is a lurking bug/flaw somewhere. At worst,
the inconsistency could eventually be fatal to the host, e.g. if an ITS
command fails because KVM's view of things doesn't match reality/hardware.
Note, only the call from kvm_arch_irq_bypass_del_producer() by way of
kvm_vgic_v4_unset_forwarding() doesn't already WARN. Common KVM's
kvm_irq_routing_update() WARNs if kvm_arch_update_irqfd_routing() fails.
For that path, if its_unmap_vlpi() fails in kvm_vgic_v4_unset_forwarding(),
the only possible causes are that the GIC doesn't have a v4 ITS (from
its_irq_set_vcpu_affinity()):
/* Need a v4 ITS */
if (!is_v4(its_dev->its))
return -EINVAL;
guard(raw_spinlock)(&its_dev->event_map.vlpi_lock);
/* Unmap request? */
if (!info)
return its_vlpi_unmap(d);
or that KVM has gotten out of sync with the GIC/ITS (from its_vlpi_unmap()):
if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
return -EINVAL;
All of the above failure scenarios are warnable offences, as they should
never occur absent a kernel/KVM bug.
Acked-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/all/aFWY2LTVIxz5rfhh@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
KVM currently returns -EINVAL when it attempts to create an SNP guest if
the SINGLE_SOCKET guest policy bit is set. The reason for this action is
that KVM would need specific support (SNP_ACTIVATE_EX command support) to
achieve this when running on a system with more than one socket. However,
the SEV firmware will make the proper check and return POLICY_FAILURE
during SNP_ACTIVATE if the single socket guest policy bit is set and the
system has more than one socket:
- System with one socket
- Guest policy SINGLE_SOCKET == 0 ==> SNP_ACTIVATE succeeds
- Guest policy SINGLE_SOCKET == 1 ==> SNP_ACTIVATE succeeds
- System with more than one socket
- Guest policy SINGLE_SOCKET == 0 ==> SNP_ACTIVATE succeeds
- Guest policy SINGLE_SOCKET == 1 ==> SNP_ACTIVATE fails with
POLICY_FAILURE
Remove the check for the SINGLE_SOCKET policy bit from snp_launch_start()
and allow the firmware to perform the proper checking.
This does have the effect of allowing an SNP guest with the SINGLE_SOCKET
policy bit set to run on a single socket system, but fail when run on a
system with more than one socket. However, this should not affect existing
SNP guests as setting the SINGLE_SOCKET policy bit is not allowed today.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/4c51018dd3e4f2c543935134d2c4f47076f109f6.1748553480.git.thomas.lendacky@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
KVM currently returns -EINVAL when it attempts to create an SNP guest if
the SMT guest policy bit is not set. However, there is no reason to check
this, as there is no specific support in KVM that is required to support
this. The SEV firmware will determine if SMT has been enabled or disabled
in the BIOS and process the policy in the proper way:
- SMT enabled in BIOS
- Guest policy SMT == 0 ==> SNP_LAUNCH_START fails with POLICY_FAILURE
- Guest policy SMT == 1 ==> SNP_LAUNCH_START succeeds
- SMT disabled in BIOS
- Guest policy SMT == 0 ==> SNP_LAUNCH_START succeeds
- Guest policy SMT == 1 ==> SNP_LAUNCH_START succeeds
Remove the check for the SMT policy bit from snp_launch_start() and allow
the firmware to perform the proper checking.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/71043abdd9ef23b6f98fffa9c5c6045ac3a50187.1748553480.git.thomas.lendacky@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move TDX hardware setup to tdx.c, as the code is obviously TDX specific,
co-locating the setup with tdx_bringup() makes it easier to see and
document the success_disable_tdx "error" path, and configuring the TDX
specific hooks in tdx.c reduces the number of globally visible TDX symbols.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20250523001138.3182794-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Exempt nested EPT shadow pages tables from the CR0.WP=0 handling of
supervisor writes, as EPT doesn't have a U/S bit and isn't affected by
CR0.WP (or CR4.SMEP in the exception to the exception).
Opportunistically refresh the comment to explain what KVM is doing, as
the only record of why KVM shoves in WRITE and drops USER is buried in
years-old changelogs.
Cc: Jon Kohler <jon@nutanix.com>
Cc: Sergey Dyasli <sergey.dyasli@nutanix.com>
Reviewed-by: Jon Kohler <jon@nutanix.com>
Reviewed-by: Sergey Dyasli <sergey.dyasli@nutanix.com>
Link: https://lore.kernel.org/r/20250602234851.54573-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Convert the incoming mp_state to INIT_RECIEVED instead of manually calling
kvm_set_mp_state() to make it more obvious that the SIPI_RECEIVED logic is
translating the incoming state to KVM's internal tracking, as opposed to
being some entirely unique flow.
Opportunistically add a comment to explain what the code is doing.
No functional change intended.
Link: https://lore.kernel.org/r/20250605195018.539901-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Check for the should-be-impossible scenario of a vCPU being in
Wait-For-SIPI with INIT/SIPI blocked during KVM_RUN instead of trying to
detect and prevent illegal combinations in every ioctl that sets relevant
state. Attempting to handle every possible "set" path is a losing game of
whack-a-mole, and risks breaking userspace. E.g. INIT/SIPI are blocked on
Intel if the vCPU is in VMX Root mode (post-VMXON), and on AMD if GIF=0.
Handling those scenarios would require potentially breaking changes to
{vmx,svm}_set_nested_state().
Moving the check to KVM_RUN fixes a syzkaller-induced splat due to the
aforementioned VMXON case, and in theory should close the hole once and for
all.
Note, kvm_x86_vcpu_pre_run() already handles SIPI_RECEIVED, only the WFS
case needs additional attention.
Reported-by: syzbot+c1cbaedc2613058d5194@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?id=490ae63d8d89cb82c5d462d16962cf371df0e476
Link: https://lore.kernel.org/r/20250605195018.539901-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
WARN if KVM_RUN is reached with a vCPU's mp_state set to SIPI_RECEIVED, as
KVM no longer uses SIPI_RECEIVED internally, and should morph SIPI_RECEIVED
into INIT_RECEIVED with a pending SIPI if userspace forces SIPI_RECEIVED.
See commit 66450a21f996 ("KVM: x86: Rework INIT and SIPI handling") for
more history and details.
Link: https://lore.kernel.org/r/20250605195018.539901-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Allow userspace to set a vCPU's mp_state to INIT_RECEIVED in conjunction
with a pending SMI, as rejecting that combination could result in KVM
disallowing reflecting the output from KVM_GET_VCPU_EVENTS back into KVM
via KVM_SET_VCPU_EVENTS.
At the time the check was added, smi_pending could only be set in the
context of KVM_RUN, with the vCPU in the RUNNABLE state. I.e. it was
impossible for KVM to save vCPU state such that userspace could see a
pending SMI for a vCPU in WFS.
That no longer holds true now that KVM processes requested SMIs during
KVM_GET_VCPU_EVENTS, e.g. if a vCPU receives an SMI while in WFS, and
then userspace saves vCPU state.
Note, this may partially re-open the user-triggerable WARN that was mostly
closed by commit 28bf28887976 ("KVM: x86: fix user triggerable warning in
kvm_apic_accept_events()"), but that WARN can already be triggered in
several other ways, e.g. if userspace stuffs VMXON=1 after putting the
vCPU into WFS. That issue will be addressed in an upcoming commit, in a
more robust fashion (hopefully).
Fixes: 1f7becf1b7e2 ("KVM: x86: get smi pending status correctly")
Link: https://lore.kernel.org/r/20250605195018.539901-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Refactor {svm,vmx}_disable_intercept_for_msr() to simplify the handling of
userspace filters that disallow access to an MSR. The more complicated
logic is no longer needed or justified now that KVM recalculates all MSR
intercepts on a userspace MSR filter change, i.e. now that KVM doesn't
need to also update shadow bitmaps.
No functional change intended.
Suggested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-32-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a helper to allocate and initialize an MSR or I/O permissions map, as
the logic is identical between the two map types, the only difference is
the size of the bitmap. Opportunistically add a comment to explain why
the bitmaps are initialized with 0xff, e.g. instead of the more common
zero-initialized behavior, which is the main motivation for deduplicating
the code.
No functional change intended.
Link: https://lore.kernel.org/r/20250610225737.156318-31-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When merging L0 and L1 MSRPMs as part of nested VMRUN emulation, access
the bitmaps using "unsigned long" chunks, i.e. use 8-byte access for
64-bit kernels instead of arbitrarily working on 4-byte chunks.
Opportunistically rename local variables in nested_svm_merge_msrpm() to
more precisely/accurately reflect their purpose ("offset" in particular is
extremely ambiguous).
Link: https://lore.kernel.org/r/20250610225737.156318-30-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Return -EINVAL instead of MSR_INVALID from svm_msrpm_bit_nr() to indicate
that the MSR isn't covered by one of the (currently) three MSRPM ranges,
and delete the MSR_INVALID macro now that all users are gone.
Link: https://lore.kernel.org/r/20250610225737.156318-29-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Access the MSRPM using u32/4-byte chunks (and appropriately adjusted
offsets) only when merging L0 and L1 bitmaps as part of emulating VMRUN.
The only reason to batch accesses to MSRPMs is to avoid the overhead of
uaccess operations (e.g. STAC/CLAC and bounds checks) when reading L1's
bitmap pointed at by vmcb12. For all other uses, either per-bit accesses
are more than fast enough (no uaccess), or KVM is only accessing a single
bit (nested_svm_exit_handled_msr()) and so there's nothing to batch.
In addition to (hopefully) documenting the uniqueness of the merging code,
restricting chunked access to _just_ the merging code will allow for
increasing the chunk size (to unsigned long) with minimal risk.
Link: https://lore.kernel.org/r/20250610225737.156318-28-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Store KVM's MSRPM pointers as "void *" instead of "u32 *" to guard against
directly accessing the bitmaps outside of code that is explicitly written
to access the bitmaps with a specific type.
Opportunistically use svm_vcpu_free_msrpm() in svm_vcpu_free() instead of
open coding an equivalent.
Link: https://lore.kernel.org/r/20250610225737.156318-27-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move svm_msrpm_offset() from svm.c to nested.c now that all usage of the
u32-index offsets is nested virtualization specific.
No functional change intended.
Link: https://lore.kernel.org/r/20250610225737.156318-26-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Now that msr_write_intercepted() defaults to true, i.e. accurately reflects
hardware behavior for out-of-range MSRs, and doesn't WARN (or BUG) on an
out-of-range MSR, drop sev_es_prevent_msr_access()'s svm_msrpm_offset()
check that guarded against calling msr_write_intercepted() with a "bad"
index.
Opportunistically clean up the helper's formatting.
Link: https://lore.kernel.org/r/20250610225737.156318-25-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Merge svm_recalc_intercepts_after_set_cpuid() and
svm_recalc_instruction_intercepts() such that the "after set CPUID" helper
simply invokes the type-specific helpers (MSRs vs. instructions), i.e.
make svm_recalc_intercepts_after_set_cpuid() a single entry point for all
intercept updates that need to be performed after a CPUID change.
No functional change intended.
Link: https://lore.kernel.org/r/20250610225737.156318-24-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Fold svm_vcpu_init_msrpm() into svm_recalc_msr_intercepts() now that there
is only the one caller (and because the "init" misnomer is even more
misleading than it was in the past).
No functional change intended.
Link: https://lore.kernel.org/r/20250610225737.156318-23-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rename init_vmcb_after_set_cpuid() to svm_recalc_intercepts_after_set_cpuid()
to more precisely describe its role. Strictly speaking, the name isn't
perfect as toggling virtual VM{LOAD,SAVE} is arguably not recalculating an
intercept, but practically speaking it's close enough.
No functional change intended.
Link: https://lore.kernel.org/r/20250610225737.156318-22-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rename msr_filter_changed() to recalc_msr_intercepts() and drop the
trampoline wrapper now that both SVM and VMX use a filter-agnostic recalc
helper to react to the new userspace filter.
No functional change intended.
Reviewed-by: Xin Li (Intel) <xin@zytor.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-21-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
On a userspace MSR filter change, recalculate all MSR intercepts using the
filter-agnostic logic instead of maintaining a "shadow copy" of KVM's
desired intercepts. The shadow bitmaps add yet another point of failure,
are confusing (e.g. what does "handled specially" mean!?!?), an eyesore,
and a maintenance burden.
Given that KVM *must* be able to recalculate the correct intercepts at any
given time, and that MSR filter updates are not hot paths, there is zero
benefit to maintaining the shadow bitmaps.
Opportunistically switch from boot_cpu_has() to cpu_feature_enabled() as
appropriate.
Link: https://lore.kernel.org/all/aCdPbZiYmtni4Bjs@google.com
Link: https://lore.kernel.org/all/20241126180253.GAZ0YNTdXH1UGeqsu6@fat_crate.local
Cc: Francesco Lavra <francescolavra.fl@gmail.com>
Link: https://lore.kernel.org/r/20250610225737.156318-20-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
On a userspace MSR filter change, recalculate all MSR intercepts using the
filter-agnostic logic instead of maintaining a "shadow copy" of KVM's
desired intercepts. The shadow bitmaps add yet another point of failure,
are confusing (e.g. what does "handled specially" mean!?!?), an eyesore,
and a maintenance burden.
Given that KVM *must* be able to recalculate the correct intercepts at any
given time, and that MSR filter updates are not hot paths, there is zero
benefit to maintaining the shadow bitmaps.
Opportunistically switch from boot_cpu_has() to cpu_feature_enabled() as
appropriate.
Link: https://lore.kernel.org/all/aCdPbZiYmtni4Bjs@google.com
Link: https://lore.kernel.org/all/20241126180253.GAZ0YNTdXH1UGeqsu6@fat_crate.local
Cc: Borislav Petkov <bp@alien8.de>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Xin Li (Intel) <xin@zytor.com>
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-19-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Dedup the definition of X2APIC_MSR and put it in the local APIC code
where it belongs.
No functional change intended.
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-18-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the "always" flag from the array of possible passthrough MSRs, and
instead manually initialize the permissions for the handful of MSRs that
KVM passes through by default. In addition to cutting down on boilerplate
copy+paste code and eliminating a misleading flag (the MSRs aren't always
passed through, e.g. thanks to MSR filters), this will allow for removing
the direct_access_msrs array entirely.
Link: https://lore.kernel.org/r/20250610225737.156318-17-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Disable interception of the GHCB MSR if and only if the VM is an SEV-ES
guest. While the exact behavior is completely undocumented in the APM,
common sense and testing on SEV-ES capable CPUs says that accesses to the
GHCB from non-SEV-ES guests will #GP. I.e. from the guest's perspective,
no functional change intended.
Fixes: 376c6d285017 ("KVM: SVM: Provide support for SEV-ES vCPU creation/loading")
Link: https://lore.kernel.org/r/20250610225737.156318-16-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add and use SVM MSR interception APIs (in most paths) to match VMX's
APIs and nomenclature. Specifically, add SVM variants of:
vmx_disable_intercept_for_msr(vcpu, msr, type)
vmx_enable_intercept_for_msr(vcpu, msr, type)
vmx_set_intercept_for_msr(vcpu, msr, type, intercept)
to eventually replace SVM's single helper:
set_msr_interception(vcpu, msrpm, msr, allow_read, allow_write)
which is awkward to use (in all cases, KVM either applies the same logic
for both reads and writes, or intercepts one of read or write), and is
unintuitive due to using '0' to indicate interception should be *set*.
Keep the guts of the old API for the moment to avoid churning the MSR
filter code, as that mess will be overhauled in the near future. Leave
behind a temporary comment to call out that the shadow bitmaps have
inverted polarity relative to the bitmaps consumed by hardware.
No functional change intended.
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-15-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add macro-built helpers for testing, setting, and clearing MSRPM entries
without relying on precomputed offsets. This sets the stage for eventually
removing general KVM use of precomputed offsets, which are quite confusing
and rather inefficient for the vast majority of KVM's usage.
Outside of merging L0 and L1 bitmaps for nested SVM, using u32-indexed
offsets and accesses is at best unnecessary, and at worst introduces extra
operations to retrieve the individual bit from within the offset u32 value.
And simply calling them "offsets" is very confusing, as the "unit" of the
offset isn't immediately obvious.
Use the new helpers in set_msr_interception_bitmap() and
msr_write_intercepted() to verify the math and operations, but keep the
existing offset-based logic in set_msr_interception_bitmap() to sanity
check the "clear" and "set" operations. Manipulating MSR interceptions
isn't a hot path and no kernel release is ever expected to contain this
specific version of set_msr_interception_bitmap() (it will be removed
entirely in the near future).
Link: https://lore.kernel.org/r/20250610225737.156318-14-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Don't initialize vmcb02's MSRPM with KVM's set of "always passthrough"
MSRs, as KVM always needs to consult L1's intercepts, i.e. needs to merge
vmcb01 with vmcb12 and write the result to vmcb02. This will eventually
allow for the removal of svm_vcpu_init_msrpm().
Note, the bitmaps are truly initialized by svm_vcpu_alloc_msrpm() (default
to intercepting all MSRs), e.g. if there is a bug lurking elsewhere, the
worst case scenario from dropping the call to svm_vcpu_init_msrpm() should
be that KVM would fail to passthrough MSRs to L2.
Link: https://lore.kernel.org/r/20250610225737.156318-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Don't merge bitmaps on nested VMRUN for MSRs that KVM passes through only
for SEV-ES guests. KVM doesn't support nested virtualization for SEV-ES,
and likely never will.
Link: https://lore.kernel.org/r/20250610225737.156318-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Use a dedicated array of MSRPM offsets to merge L0 and L1 bitmaps, i.e. to
merge KVM's vmcb01 bitmap with L1's vmcb12 bitmap. This will eventually
allow for the removal of direct_access_msrs, as the only path where
tracking the offsets is truly justified is the merge for nested SVM, where
merging in chunks is an easy way to batch uaccess reads/writes.
Opportunistically omit the x2APIC MSRs from the merge-specific array
instead of filtering them out at runtime.
Note, disabling interception of DEBUGCTL, XSS, EFER, PAT, GHCB, and
TSC_AUX is mutually exclusive with nested virtualization, as KVM passes
through those MSRs only for SEV-ES guests, and KVM doesn't support nested
virtualization for SEV+ guests. Defer removing those MSRs to a future
cleanup in order to make this refactoring as benign as possible.
Link: https://lore.kernel.org/r/20250610225737.156318-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move SVM's MSR Permissions Map macros to svm.h in anticipation of adding
helpers that are available to SVM code, and opportunistically replace a
variety of open-coded literals with (hopefully) informative macros.
Opportunistically open code ARRAY_SIZE(msrpm_ranges) instead of wrapping
it as NUM_MSR_MAPS, which is an ambiguous name even if it were qualified
with "SVM_MSRPM".
Deliberately leave the ranges as open coded literals, as using macros to
define the ranges actually introduces more potential failure points, since
both the definitions and the usage have to be careful to use the correct
index. The lack of clear intent behind the ranges will be addressed in
future patches.
No functional change intended.
Link: https://lore.kernel.org/r/20250610225737.156318-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rename nested_svm_vmrun_msrpm() to nested_svm_merge_msrpm() to better
capture its role, and opportunistically feed it @vcpu instead of @svm, as
grabbing "svm" only to turn around and grab svm->vcpu is rather silly.
No functional change intended.
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Manipulate the MSR bitmaps using non-atomic bit ops APIs (two underscores),
as the bitmaps are per-vCPU and are only ever accessed while vcpu->mutex is
held.
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
WARN and kill the VM instead of panicking the host if KVM attempts to set
or query MSR interception for an unsupported MSR. Accessing the MSR
interception bitmaps only meaningfully affects post-VMRUN behavior, and
KVM_BUG_ON() is guaranteed to prevent the current vCPU from doing VMRUN,
i.e. there is no need to panic the entire host.
Opportunistically move the sanity checks about their use to index into the
MSRPM, e.g. so that bugs only WARN and terminate the VM, as opposed to
doing that _and_ generating an out-of-bounds load.
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the unnecessary and dangerous value-terminated behavior of
direct_access_msrs, and simply iterate over the actual size of the array.
The use in svm_set_x2apic_msr_interception() is especially sketchy, as it
relies on unused capacity being zero-initialized, and '0' being outside
the range of x2APIC MSRs.
To ensure the array and shadow_msr_intercept stay synchronized, simply
assert that their sizes are identical (note the six 64-bit-only MSRs).
Note, direct_access_msrs will soon be removed entirely; keeping the assert
synchronized with the array isn't expected to be along-term maintenance
burden.
Reviewed-by: Chao Gao <chao.gao@intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Tag init_msrpm_offsets() and add_msr_offset() with __init, as they're used
only during hardware setup to map potential passthrough MSRs to offsets in
the bitmap.
Reviewed-by: Chao Gao <chao.gao@intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
WARN and reject module loading if there is a problem with KVM's MSR
interception bitmaps. Panicking the host in this situation is inexcusable
since it is trivially easy to propagate the error up the stack.
Link: https://lore.kernel.org/r/20250610225737.156318-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Allocate pages for the IOPM after initial setup has been completed in
svm_hardware_setup(), so that sanity checks can be added in the setup flow
without needing to free the IOPM pages. The IOPM is only referenced (via
iopm_base) in init_vmcb() and svm_hardware_unsetup(), so there's no need
to allocate it early on.
No functional change intended (beyond the obvious ordering differences,
e.g. if the allocation fails).
Link: https://lore.kernel.org/r/20250610225737.156318-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Disable interception of SPEC_CTRL when the CPU virtualizes (i.e. context
switches) SPEC_CTRL if and only if the MSR exists according to the vCPU's
CPUID model. Letting the guest access SPEC_CTRL is generally benign, but
the guest would see inconsistent behavior if KVM happened to emulate an
access to the MSR.
Fixes: d00b99c514b3 ("KVM: SVM: Add support for Virtual SPEC_CTRL")
Reported-by: Chao Gao <chao.gao@intel.com>
Link: https://lore.kernel.org/r/20250610225737.156318-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Set/clear DEBUGCTLMSR_FREEZE_IN_SMM in GUEST_IA32_DEBUGCTL based on the
host's pre-VM-Enter value, i.e. preserve the host's FREEZE_IN_SMM setting
while running the guest. When running with the "default treatment of SMIs"
in effect (the only mode KVM supports), SMIs do not generate a VM-Exit that
is visible to host (non-SMM) software, and instead transitions directly
from VMX non-root to SMM. And critically, DEBUGCTL isn't context switched
by hardware on SMI or RSM, i.e. SMM will run with whatever value was
resident in hardware at the time of the SMI.
Failure to preserve FREEZE_IN_SMM results in the PMU unexpectedly counting
events while the CPU is executing in SMM, which can pollute profiling and
potentially leak information into the guest.
Check for changes in FREEZE_IN_SMM prior to every entry into KVM's inner
run loop, as the bit can be toggled in IRQ context via IPI callback (SMP
function call), by way of /sys/devices/cpu/freeze_on_smi.
Add a field in kvm_x86_ops to communicate which DEBUGCTL bits need to be
preserved, as FREEZE_IN_SMM is only supported and defined for Intel CPUs,
i.e. explicitly checking FREEZE_IN_SMM in common x86 is at best weird, and
at worst could lead to undesirable behavior in the future if AMD CPUs ever
happened to pick up a collision with the bit.
Exempt TDX vCPUs, i.e. protected guests, from the check, as the TDX Module
owns and controls GUEST_IA32_DEBUGCTL.
WARN in SVM if KVM_RUN_LOAD_DEBUGCTL is set, mostly to document that the
lack of handling isn't a KVM bug (TDX already WARNs on any run_flag).
Lastly, explicitly reload GUEST_IA32_DEBUGCTL on a VM-Fail that is missed
by KVM but detected by hardware, i.e. in nested_vmx_restore_host_state().
Doing so avoids the need to track host_debugctl on a per-VMCS basis, as
GUEST_IA32_DEBUGCTL is unconditionally written by prepare_vmcs02() and
load_vmcs12_host_state(). For the VM-Fail case, even though KVM won't
have actually entered the guest, vcpu_enter_guest() will have run with
vmcs02 active and thus could result in vmcs01 being run with a stale value.
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20250610232010.162191-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Introduce vmx_guest_debugctl_{read,write}() to handle all accesses to
vmcs.GUEST_IA32_DEBUGCTL. This will allow stuffing FREEZE_IN_SMM into
GUEST_IA32_DEBUGCTL based on the host setting without bleeding the state
into the guest, and without needing to copy+paste the FREEZE_IN_SMM
logic into every patch that accesses GUEST_IA32_DEBUGCTL.
No functional change intended.
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
[sean: massage changelog, make inline, use in all prepare_vmcs02() cases]
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20250610232010.162191-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a consistency check for L2's guest_ia32_debugctl, as KVM only supports
a subset of hardware functionality, i.e. KVM can't rely on hardware to
detect illegal/unsupported values. Failure to check the vmcs12 value
would allow the guest to load any harware-supported value while running L2.
Take care to exempt BTF and LBR from the validity check in order to match
KVM's behavior for writes via WRMSR, but without clobbering vmcs12. Even
if VM_EXIT_SAVE_DEBUG_CONTROLS is set in vmcs12, L1 can reasonably expect
that vmcs12->guest_ia32_debugctl will not be modified if writes to the MSR
are being intercepted.
Arguably, KVM _should_ update vmcs12 if VM_EXIT_SAVE_DEBUG_CONTROLS is set
*and* writes to MSR_IA32_DEBUGCTLMSR are not being intercepted by L1, but
that would incur non-trivial complexity and wouldn't change the fact that
KVM's handling of DEBUGCTL is blatantly broken. I.e. the extra complexity
is not worth carrying.
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20250610232010.162191-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|