summaryrefslogtreecommitdiff
path: root/drivers/firmware/efi/libstub/zboot.c
AgeCommit message (Collapse)Author
2022-11-09efi: libstub: Merge zboot decompressor with the ordinary stubArd Biesheuvel
Even though our EFI zboot decompressor is pedantically spec compliant and idiomatic for EFI image loaders, calling LoadImage() and StartImage() for the nested image is a bit of a burden. Not only does it create workflow issues for the distros (as both the inner and outer PE/COFF images need to be signed for secure boot), it also copies the image around in memory numerous times: - first, the image is decompressed into a buffer; - the buffer is consumed by LoadImage(), which copies the sections into a newly allocated memory region to hold the executable image; - once the EFI stub is invoked by StartImage(), it will also move the image in memory in case of KASLR, mirrored memory or if the image must execute from a certain a priori defined address. There are only two EFI spec compliant ways to load code into memory and execute it: - use LoadImage() and StartImage(), - call ExitBootServices() and take ownership of the entire system, after which anything goes. Given that the EFI zboot decompressor always invokes the EFI stub, and given that both are built from the same set of objects, let's merge the two, so that we can avoid LoadImage()/StartImage but still load our image into memory without breaking the above rules. This also means we can decompress the image directly into its final location, which could be randomized or meet other platform specific constraints that LoadImage() does not know how to adhere to. It also means that, even if the encapsulated image still has the EFI stub incorporated as well, it does not need to be signed for secure boot when wrapping it in the EFI zboot decompressor. In the future, we might decide to retire the EFI stub attached to the decompressed image, but for the time being, they can happily coexist. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09efi: libstub: Enable efi_printk() in zboot decompressorArd Biesheuvel
Split the efi_printk() routine into its own source file, and provide local implementations of strlen() and strnlen() so that the standalone zboot app can efi_err and efi_info etc. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09efi: libstub: Clone memcmp() into the stubArd Biesheuvel
We will no longer be able to call into the kernel image once we merge the decompressor with the EFI stub, so we need our own implementation of memcmp(). Let's add the one from lib/string.c and simplify it. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-09-27efi: zboot: create MemoryMapped() device path for the parent if neededArd Biesheuvel
LoadImage() is supposed to install an instance of the protocol EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL onto the loaded image's handle so that the program can figure out where it was loaded from. The reference implementation even does this (with a NULL protocol pointer) if the call to LoadImage() used the source buffer and size arguments, and passed NULL for the image device path. Hand rolled implementations of LoadImage may behave differently, though, and so it is better to tolerate situations where the protocol is missing. And actually, concatenating an Offset() node to a NULL device path (as we do currently) is not great either. So in cases where the protocol is absent, or when it points to NULL, construct a MemoryMapped() device node as the base node that describes the parent image's footprint in memory. Cc: Daan De Meyer <daandemeyer@fb.com> Cc: Jeremy Linton <jeremy.linton@arm.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-09-20efi/libstub: implement generic EFI zbootArd Biesheuvel
Implement a minimal EFI app that decompresses the real kernel image and launches it using the firmware's LoadImage and StartImage boot services. This removes the need for any arch-specific hacks. Note that on systems that have UEFI secure boot policies enabled, LoadImage/StartImage require images to be signed, or their hashes known a priori, in order to be permitted to boot. There are various possible strategies to work around this requirement, but they all rely either on overriding internal PI/DXE protocols (which are not part of the EFI spec) or omitting the firmware provided LoadImage() and StartImage() boot services, which is also undesirable, given that they encapsulate platform specific policies related to secure boot and measured boot, but also related to memory permissions (whether or not and which types of heap allocations have both write and execute permissions.) The only generic and truly portable way around this is to simply sign both the inner and the outer image with the same key/cert pair, so this is what is implemented here. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>