summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand
AgeCommit message (Collapse)Author
2021-12-17mtd: rawnand: gpmi: remove unneeded variableMinghao Chi
Return status directly from function called. Reported-by: Zeal Robot <zealci@zte.com.cn> Signed-off-by: Minghao Chi <chi.minghao@zte.com.cn> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211213112627.436745-1-chi.minghao@zte.com.cn
2021-12-17mtd: rawnand: omap2: drop unused variableRoger Quadros
devsize is not used anywhere in code. Drop it. Signed-off-by: Roger Quadros <rogerq@kernel.org> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211209090458.24830-7-rogerq@kernel.org
2021-12-17mtd: rawnand: omap2: fix force_8bit flag behaviour for DMA modeRoger Quadros
In DMA mode we were not considering the force_8bit flag. Fix it by using regular non-DMA 8-bit I/O if force_8bit flag is set. Signed-off-by: Roger Quadros <rogerq@kernel.org> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211209090458.24830-6-rogerq@kernel.org
2021-12-17mtd: rawnand: omap2: Add compatible for AM64 SoCRoger Quadros
AM64 SoC contains the GPMC NAND controller. Add compatible for it. Signed-off-by: Roger Quadros <rogerq@kernel.org> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211209090458.24830-5-rogerq@kernel.org
2021-12-17mtd: rawnand: omap2: move to exec_op interfaceRoger Quadros
Stop using legacy interface and move to the exec_op interface. Signed-off-by: Roger Quadros <rogerq@kernel.org> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211209090458.24830-4-rogerq@kernel.org
2021-12-17mtd: rawnand: omap2: Allow build on K3 platformsRoger Quadros
K3 platforms come with GPMC. Enable GPMC build for K3 platforms. Signed-off-by: Roger Quadros <rogerq@kernel.org> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211209090458.24830-3-rogerq@kernel.org
2021-12-17dmaengine: qcom-adm: stop abusing slave_id configArnd Bergmann
The slave_id was previously used to pick one DMA slave instead of another, but this is now done through the DMA descriptors in device tree. For the qcom_adm driver, the configuration is documented in the DT binding to contain a tuple of device identifier and a "crci" field, but the implementation ends up using only a single cell for identifying the slave, with the crci getting passed in nonstandard properties of the device, and passed through the dma driver using the old slave_id field. Part of the problem apparently is that the nand driver ends up using only a single DMA request ID, but requires distinct values for "crci" depending on the type of transfer. Change both the dmaengine driver and the two slave drivers to allow the documented binding to work in addition to the ad-hoc passing of crci values. In order to no longer abuse the slave_id field, pass the data using the "peripheral_config" mechanism instead. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20211122222203.4103644-9-arnd@kernel.org Signed-off-by: Vinod Koul <vkoul@kernel.org>
2021-12-16mtd: rawnand: tegra: Add runtime PM and OPP supportDmitry Osipenko
The NAND on Tegra belongs to the core power domain and we're going to enable GENPD support for the core domain. Now NAND must be resumed using runtime PM API in order to initialize the NAND power state. Add runtime PM and OPP support to the NAND driver. Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Acked-by: Miquel Raynal <miquel.raynal@bootlin.com> Signed-off-by: Dmitry Osipenko <digetx@gmail.com> Signed-off-by: Thierry Reding <treding@nvidia.com>
2021-12-09mtd: Introduce an expert mode for forensics and debugging purposesMiquel Raynal
When developping NAND controller drivers or when debugging filesystem corruptions, it is quite common to need hacking locally into the MTD/NAND core in order to get access to the content of the bad blocks. Instead of having multiple implementations out there let's provide a simple yet effective specific MTD-wide debugfs entry to fully disable these checks on purpose. A warning is added to inform the user when this mode gets enabled. Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211118114659.1282855-1-miquel.raynal@bootlin.com
2021-12-09mtd: onenand: remove redundant variable ooblenColin Ian King
Variable ooblen is being initialized with a value that is never read. The variable is never used after this, so it is redundant and can be removed. Signed-off-by: Colin Ian King <colin.i.king@gmail.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211205230729.79337-1-colin.i.king@gmail.com
2021-12-03mtd: rawnand: mpc5121: Remove unused variable in ads5121_select_chip()Geert Uytterhoeven
drivers/mtd/nand/raw/mpc5121_nfc.c: In function ‘ads5121_select_chip’: drivers/mtd/nand/raw/mpc5121_nfc.c:294:19: warning: unused variable ‘mtd’ [-Wunused-variable] 294 | struct mtd_info *mtd = nand_to_mtd(nand); | ^~~ Fixes: 758b56f58b66bebc ("mtd: rawnand: Pass a nand_chip object to chip->select_chip()") Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211122132138.3899138-1-geert@linux-m68k.org
2021-12-03mtd: rawnand: fsmc: Fix timing computationHerve Codina
Under certain circumstances, the timing settings calculated by the FSMC NAND controller driver were inaccurate. These settings led to incorrect data reads or fallback to timing mode 0 depending on the NAND chip used. The timing computation did not take into account the following constraint given in SPEAr3xx reference manual: twait >= tCEA - (tset * TCLK) + TOUTDEL + TINDEL Enhance the timings calculation by taking into account this additional constraint. This change has no impact on slow timing modes such as mode 0. Indeed, on mode 0, computed values are the same with and without the patch. NANDs which previously stayed in mode 0 because of fallback to mode 0 can now work at higher speeds and NANDs which were not working at all because of the corrupted data work at high speeds without troubles. Overall improvement on a Micron/MT29F1G08 (flash_speed tool): mode0 mode3 eraseblock write speed 3220 KiB/s 4511 KiB/s eraseblock read speed 4491 KiB/s 7529 KiB/s Fixes: d9fb079571833 ("mtd: nand: fsmc: add support for SDR timings") Signed-off-by: Herve Codina <herve.codina@bootlin.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211119150316.43080-5-herve.codina@bootlin.com
2021-12-03mtd: rawnand: fsmc: Take instruction delay into accountHerve Codina
The FSMC NAND controller should apply a delay after the instruction has been issued on the bus. The FSMC NAND controller driver did not handle this delay. Add this waiting delay in the FSMC NAND controller driver. Fixes: 4da712e70294 ("mtd: nand: fsmc: use ->exec_op()") Signed-off-by: Herve Codina <herve.codina@bootlin.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211119150316.43080-4-herve.codina@bootlin.com
2021-12-03mtd: rawnand: Fix nand_choose_best_timings() on unsupported interfaceHerve Codina
When the NV-DDR interface is not supported by the NAND chip, the value of onfi->nvddr_timing_modes is 0. In this case, the best_mode variable value in nand_choose_best_nvddr_timings() is -1. The last for-loop is skipped and the function returns an uninitialized value. If this returned value is 0, the nand_choose_best_sdr_timings() is not executed and no 'best timing' are set. This leads the host controller and the NAND chip working at default mode 0 timing even if a better timing can be used. Fix this uninitialized returned value. nand_choose_best_sdr_timings() is pretty similar to nand_choose_best_nvddr_timings(). Even if onfi->sdr_timing_modes should never be seen as 0, nand_choose_best_sdr_timings() returned value is fixed. Fixes: a9ecc8c814e9 ("mtd: rawnand: Choose the best timings, NV-DDR included") Signed-off-by: Herve Codina <herve.codina@bootlin.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211119150316.43080-3-herve.codina@bootlin.com
2021-12-03mtd: rawnand: Fix nand_erase_op delayHerve Codina
NAND_OP_CMD() expects a delay parameter in nanoseconds. The delay value is wrongly given in milliseconds. Fix the conversion macro used in order to set this delay in nanoseconds. Fixes: d7a773e8812b ("mtd: rawnand: Access SDR and NV-DDR timings through a common macro") Signed-off-by: Herve Codina <herve.codina@bootlin.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211119150316.43080-2-herve.codina@bootlin.com
2021-12-03mtd: rawnand: denali: Add the dependency on HAS_IOMEMCai Huoqing
The helper function devm_platform_ioremap_resource_xxx() needs HAS_IOMEM enabled, so add the dependency on HAS_IOMEM. Fixes: 5f14a8ca1b49 ("mtd: rawnand: denali: Make use of the helper function devm_platform_ioremap_resource_byname()") Signed-off-by: Cai Huoqing <caihuoqing@baidu.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211109134758.417-1-caihuoqing@baidu.com
2021-11-19mtd: rawnand: gpmi: Add ERR007117 protection for nfc_apply_timingsChristian Eggers
gpmi_io clock needs to be gated off when changing the parent/dividers of enfc_clk_root (i.MX6Q/i.MX6UL) respectively qspi2_clk_root (i.MX6SX). Otherwise this rate change can lead to an unresponsive GPMI core which results in DMA timeouts and failed driver probe: [ 4.072318] gpmi-nand 112000.gpmi-nand: DMA timeout, last DMA ... [ 4.370355] gpmi-nand 112000.gpmi-nand: Chip: 0, Error -110 ... [ 4.375988] gpmi-nand 112000.gpmi-nand: Chip: 0, Error -22 [ 4.381524] gpmi-nand 112000.gpmi-nand: Error in ECC-based read: -22 [ 4.387988] gpmi-nand 112000.gpmi-nand: Chip: 0, Error -22 [ 4.393535] gpmi-nand 112000.gpmi-nand: Chip: 0, Error -22 ... Other than stated in i.MX 6 erratum ERR007117, it should be sufficient to gate only gpmi_io because all other bch/nand clocks are derived from different clock roots. The i.MX6 reference manuals state that changing clock muxers can cause glitches but are silent about changing dividers. But tests showed that these glitches can definitely happen on i.MX6ULL. For i.MX7D/8MM in turn, the manual guarantees that no glitches can happen when changing dividers. Co-developed-by: Stefan Riedmueller <s.riedmueller@phytec.de> Signed-off-by: Stefan Riedmueller <s.riedmueller@phytec.de> Signed-off-by: Christian Eggers <ceggers@arri.de> Cc: stable@vger.kernel.org Acked-by: Han Xu <han.xu@nxp.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211102202022.15551-2-ceggers@arri.de
2021-11-19mtd: rawnand: gpmi: Remove explicit default gpmi clock setting for i.MX6Stefan Riedmueller
There is no need to explicitly set the default gpmi clock rate during boot for the i.MX 6 since this is done during nand_detect anyway. Signed-off-by: Stefan Riedmueller <s.riedmueller@phytec.de> Cc: stable@vger.kernel.org Acked-by: Han Xu <han.xu@nxp.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211102202022.15551-1-ceggers@arri.de
2021-11-19mtd: rawnand: ingenic: JZ4740 needs 'oob_first' read page functionPaul Cercueil
The ECC engine on the JZ4740 SoC requires the ECC data to be read before the page; using the default page reading function does not work. Indeed, the old JZ4740 NAND driver (removed in 5.4) did use the 'OOB first' flag that existed back then. Use the newly created nand_read_page_hwecc_oob_first() to address this issue. This issue was not found when the new ingenic-nand driver was developed, most likely because the Device Tree used had the nand-ecc-mode set to "hw_oob_first", which seems to not be supported anymore. Cc: <stable@vger.kernel.org> # v5.2 Fixes: a0ac778eb82c ("mtd: rawnand: ingenic: Add support for the JZ4740") Signed-off-by: Paul Cercueil <paul@crapouillou.net> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211016132228.40254-5-paul@crapouillou.net
2021-11-19mtd: rawnand: Export nand_read_page_hwecc_oob_first()Paul Cercueil
Move the function nand_read_page_hwecc_oob_first() (previously nand_davinci_read_page_hwecc_oob_first()) to nand_base.c, and export it as a GPL symbol, so that it can be used by more modules. Cc: <stable@vger.kernel.org> # v5.2 Fixes: a0ac778eb82c ("mtd: rawnand: ingenic: Add support for the JZ4740") Signed-off-by: Paul Cercueil <paul@crapouillou.net> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211016132228.40254-4-paul@crapouillou.net
2021-11-19mtd: rawnand: davinci: Rewrite function descriptionPaul Cercueil
The original comment that describes the function nand_davinci_read_page_hwecc_oob_first() is very obscure and it is hard to understand what it is for. Cc: <stable@vger.kernel.org> # v5.2 Fixes: a0ac778eb82c ("mtd: rawnand: ingenic: Add support for the JZ4740") Signed-off-by: Paul Cercueil <paul@crapouillou.net> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211016132228.40254-3-paul@crapouillou.net
2021-11-19mtd: rawnand: davinci: Avoid duplicated page readPaul Cercueil
The function nand_davinci_read_page_hwecc_oob_first() first reads the OOB data, extracts the ECC information, programs the ECC hardware before reading the actual data in a loop. Right after the OOB data was read, it called nand_read_page_op() to reset the read cursor to the beginning of the page. This caused the first page to be read twice: in that call, and later in the loop. Address that issue by changing the call to nand_read_page_op() to nand_change_read_column_op(), which will only reset the read cursor. Cc: <stable@vger.kernel.org> # v5.2 Fixes: a0ac778eb82c ("mtd: rawnand: ingenic: Add support for the JZ4740") Signed-off-by: Paul Cercueil <paul@crapouillou.net> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211016132228.40254-2-paul@crapouillou.net
2021-11-19mtd: rawnand: davinci: Don't calculate ECC when reading pagePaul Cercueil
The function nand_davinci_read_page_hwecc_oob_first() does read the ECC data from the OOB area. Therefore it does not need to calculate the ECC as it is already available. Cc: <stable@vger.kernel.org> # v5.2 Fixes: a0ac778eb82c ("mtd: rawnand: ingenic: Add support for the JZ4740") Signed-off-by: Paul Cercueil <paul@crapouillou.net> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211016132228.40254-1-paul@crapouillou.net
2021-11-08Merge tag 'mtd/for-5.16' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux Pull mtd updates from Miquel Raynal: "Core: - Remove obsolete macros only used by the old nand_ecclayout struct - Don't remove debugfs directory if device is in use - MAINTAINERS: - Add entry for Qualcomm NAND controller driver - Update the devicetree documentation path of hyperbus MTD devices: - block2mtd: - Add support for an optional custom MTD label - Minor refactor to avoid hard coded constant - mtdswap: Remove redundant assignment of pointer eb CFI: - Fixup CFI on ixp4xx Raw NAND controller drivers: - Arasan: - Prevent an unsupported configuration - Xway, Socrates: plat_nand, Pasemi, Orion, mpc5121, GPIO, Au1550nd, AMS-Delta: - Keep the driver compatible with on-die ECC engines - cs553x, lpc32xx_slc, ndfc, sharpsl, tmio, txx9ndfmc: - Revert the commits: "Fix external use of SW Hamming ECC helper" - And let callers use the bare Hamming helpers - Fsmc: Fix use of SM ORDER - Intel: - Fix potential buffer overflow in probe - xway, vf610, txx9ndfm, tegra, stm32, plat_nand, oxnas, omap, mtk, hisi504, gpmi, gpio, denali, bcm6368, atmel: - Make use of the helper function devm_platform_ioremap_resource{,byname}() Onenand drivers: - Samsung: Drop Exynos4 and describe driver in KConfig Raw NAND chip drivers: - Hynix: Add support for H27UCG8T2ETR-BC MLC NAND SPI NOR core: - Add spi-nor device tree binding under SPI NOR maintainers SPI NOR manufacturer drivers: - Enable locking for n25q128a13 SPI NOR controller drivers: - Use devm_platform_ioremap_resource_byname()" * tag 'mtd/for-5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux: (50 commits) mtd: core: don't remove debugfs directory if device is in use MAINTAINERS: Update the devicetree documentation path of hyperbus mtd: block2mtd: add support for an optional custom MTD label mtd: block2mtd: minor refactor to avoid hard coded constant mtd: fixup CFI on ixp4xx mtd: rawnand: arasan: Prevent an unsupported configuration MAINTAINERS: Add entry for Qualcomm NAND controller driver mtd: rawnand: hynix: Add support for H27UCG8T2ETR-BC MLC NAND mtd: rawnand: xway: Keep the driver compatible with on-die ECC engines mtd: rawnand: socrates: Keep the driver compatible with on-die ECC engines mtd: rawnand: plat_nand: Keep the driver compatible with on-die ECC engines mtd: rawnand: pasemi: Keep the driver compatible with on-die ECC engines mtd: rawnand: orion: Keep the driver compatible with on-die ECC engines mtd: rawnand: mpc5121: Keep the driver compatible with on-die ECC engines mtd: rawnand: gpio: Keep the driver compatible with on-die ECC engines mtd: rawnand: au1550nd: Keep the driver compatible with on-die ECC engines mtd: rawnand: ams-delta: Keep the driver compatible with on-die ECC engines Revert "mtd: rawnand: cs553x: Fix external use of SW Hamming ECC helper" Revert "mtd: rawnand: lpc32xx_slc: Fix external use of SW Hamming ECC helper" Revert "mtd: rawnand: ndfc: Fix external use of SW Hamming ECC helper" ...
2021-10-15mtd: rawnand: arasan: Prevent an unsupported configurationMiquel Raynal
Under the following conditions: * after rounding up by 4 the number of bytes to transfer (this is related to the controller's internal constraints), * if this (rounded) amount of data is situated beyond the end of the device, * and only in NV-DDR mode, the Arasan NAND controller timeouts. This currently can happen in a particular helper used when picking software ECC algorithms. Let's prevent this situation by refusing to use the NV-DDR interface with software engines. Fixes: 4edde6031458 ("mtd: rawnand: arasan: Support NV-DDR interface") Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20211008163640.1753821-1-miquel.raynal@bootlin.com
2021-10-15mtd: rawnand: hynix: Add support for H27UCG8T2ETR-BC MLC NANDChris Morgan
Add support for the H27UCG8T2ETR-BC MLC NAND. The NAND is used widely in the NTC CHIP, is an MLC type NAND, and is 8GB in size. Neither JEDEC nor ONFI detection identifies it correctly, so the ID is added to the nand_ids.c file. Additionally, per the datasheet this NAND appears to use the same paired pages scheme as the Toshiba TC58TEG5DCLTA00 (dist3), so add support for that to enable use in SLC emulation mode. Tested on a NTC CHIP the device is able to write to a ubifs formatted partition, and then have U-Boot (with proposed patches) boot from a kernel located on that ubifs formatted partition. Signed-off-by: Chris Morgan <macromorgan@hotmail.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210930162402.344-1-macroalpha82@gmail.com
2021-10-15mtd: rawnand: xway: Keep the driver compatible with on-die ECC enginesMiquel Raynal
Following the introduction of the generic ECC engine infrastructure, it was necessary to reorganize the code and move the ECC configuration in the ->attach_chip() hook. Failing to do that properly lead to a first series of fixes supposed to stabilize the situation. Unfortunately, this only fixed the use of software ECC engines, preventing any other kind of engine to be used, including on-die ones. It is now time to (finally) fix the situation by ensuring that we still provide a default (eg. software ECC) but will still support different ECC engines such as on-die ECC engines if properly described in the device tree. There are no changes needed on the core side in order to do this, but we just need to leverage the logic there which allows: 1- a subsystem default (set to Host engines in the raw NAND world) 2- a driver specific default (here set to software ECC engines) 3- any type of engine requested by the user (ie. described in the DT) As the raw NAND subsystem has not yet been fully converted to the ECC engine infrastructure, in order to provide a default ECC engine for this driver we need to set chip->ecc.engine_type *before* calling nand_scan(). During the initialization step, the core will consider this entry as the default engine for this driver. This value may of course be overloaded by the user if the usual DT properties are provided. Fixes: d525914b5bd8 ("mtd: rawnand: xway: Move the ECC initialization to ->attach_chip()") Cc: stable@vger.kernel.org Cc: Jan Hoffmann <jan@3e8.eu> Cc: Kestrel seventyfour <kestrelseventyfour@gmail.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Tested-by: Jan Hoffmann <jan@3e8.eu> Link: https://lore.kernel.org/linux-mtd/20210928222258.199726-10-miquel.raynal@bootlin.com
2021-10-15mtd: rawnand: socrates: Keep the driver compatible with on-die ECC enginesMiquel Raynal
Following the introduction of the generic ECC engine infrastructure, it was necessary to reorganize the code and move the ECC configuration in the ->attach_chip() hook. Failing to do that properly lead to a first series of fixes supposed to stabilize the situation. Unfortunately, this only fixed the use of software ECC engines, preventing any other kind of engine to be used, including on-die ones. It is now time to (finally) fix the situation by ensuring that we still provide a default (eg. software ECC) but will still support different ECC engines such as on-die ECC engines if properly described in the device tree. There are no changes needed on the core side in order to do this, but we just need to leverage the logic there which allows: 1- a subsystem default (set to Host engines in the raw NAND world) 2- a driver specific default (here set to software ECC engines) 3- any type of engine requested by the user (ie. described in the DT) As the raw NAND subsystem has not yet been fully converted to the ECC engine infrastructure, in order to provide a default ECC engine for this driver we need to set chip->ecc.engine_type *before* calling nand_scan(). During the initialization step, the core will consider this entry as the default engine for this driver. This value may of course be overloaded by the user if the usual DT properties are provided. Fixes: b36bf0a0fe5d ("mtd: rawnand: socrates: Move the ECC initialization to ->attach_chip()") Cc: stable@vger.kernel.org Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928222258.199726-9-miquel.raynal@bootlin.com
2021-10-15mtd: rawnand: plat_nand: Keep the driver compatible with on-die ECC enginesMiquel Raynal
Following the introduction of the generic ECC engine infrastructure, it was necessary to reorganize the code and move the ECC configuration in the ->attach_chip() hook. Failing to do that properly lead to a first series of fixes supposed to stabilize the situation. Unfortunately, this only fixed the use of software ECC engines, preventing any other kind of engine to be used, including on-die ones. It is now time to (finally) fix the situation by ensuring that we still provide a default (eg. software ECC) but will still support different ECC engines such as on-die ECC engines if properly described in the device tree. There are no changes needed on the core side in order to do this, but we just need to leverage the logic there which allows: 1- a subsystem default (set to Host engines in the raw NAND world) 2- a driver specific default (here set to software ECC engines) 3- any type of engine requested by the user (ie. described in the DT) As the raw NAND subsystem has not yet been fully converted to the ECC engine infrastructure, in order to provide a default ECC engine for this driver we need to set chip->ecc.engine_type *before* calling nand_scan(). During the initialization step, the core will consider this entry as the default engine for this driver. This value may of course be overloaded by the user if the usual DT properties are provided. Fixes: 612e048e6aab ("mtd: rawnand: plat_nand: Move the ECC initialization to ->attach_chip()") Cc: stable@vger.kernel.org Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928222258.199726-8-miquel.raynal@bootlin.com
2021-10-15mtd: rawnand: pasemi: Keep the driver compatible with on-die ECC enginesMiquel Raynal
Following the introduction of the generic ECC engine infrastructure, it was necessary to reorganize the code and move the ECC configuration in the ->attach_chip() hook. Failing to do that properly lead to a first series of fixes supposed to stabilize the situation. Unfortunately, this only fixed the use of software ECC engines, preventing any other kind of engine to be used, including on-die ones. It is now time to (finally) fix the situation by ensuring that we still provide a default (eg. software ECC) but will still support different ECC engines such as on-die ECC engines if properly described in the device tree. There are no changes needed on the core side in order to do this, but we just need to leverage the logic there which allows: 1- a subsystem default (set to Host engines in the raw NAND world) 2- a driver specific default (here set to software ECC engines) 3- any type of engine requested by the user (ie. described in the DT) As the raw NAND subsystem has not yet been fully converted to the ECC engine infrastructure, in order to provide a default ECC engine for this driver we need to set chip->ecc.engine_type *before* calling nand_scan(). During the initialization step, the core will consider this entry as the default engine for this driver. This value may of course be overloaded by the user if the usual DT properties are provided. Fixes: 8fc6f1f042b2 ("mtd: rawnand: pasemi: Move the ECC initialization to ->attach_chip()") Cc: stable@vger.kernel.org Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928222258.199726-7-miquel.raynal@bootlin.com
2021-10-15mtd: rawnand: orion: Keep the driver compatible with on-die ECC enginesMiquel Raynal
Following the introduction of the generic ECC engine infrastructure, it was necessary to reorganize the code and move the ECC configuration in the ->attach_chip() hook. Failing to do that properly lead to a first series of fixes supposed to stabilize the situation. Unfortunately, this only fixed the use of software ECC engines, preventing any other kind of engine to be used, including on-die ones. It is now time to (finally) fix the situation by ensuring that we still provide a default (eg. software ECC) but will still support different ECC engines such as on-die ECC engines if properly described in the device tree. There are no changes needed on the core side in order to do this, but we just need to leverage the logic there which allows: 1- a subsystem default (set to Host engines in the raw NAND world) 2- a driver specific default (here set to software ECC engines) 3- any type of engine requested by the user (ie. described in the DT) As the raw NAND subsystem has not yet been fully converted to the ECC engine infrastructure, in order to provide a default ECC engine for this driver we need to set chip->ecc.engine_type *before* calling nand_scan(). During the initialization step, the core will consider this entry as the default engine for this driver. This value may of course be overloaded by the user if the usual DT properties are provided. Fixes: 553508cec2e8 ("mtd: rawnand: orion: Move the ECC initialization to ->attach_chip()") Cc: stable@vger.kernel.org Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928222258.199726-6-miquel.raynal@bootlin.com
2021-10-15mtd: rawnand: mpc5121: Keep the driver compatible with on-die ECC enginesMiquel Raynal
Following the introduction of the generic ECC engine infrastructure, it was necessary to reorganize the code and move the ECC configuration in the ->attach_chip() hook. Failing to do that properly lead to a first series of fixes supposed to stabilize the situation. Unfortunately, this only fixed the use of software ECC engines, preventing any other kind of engine to be used, including on-die ones. It is now time to (finally) fix the situation by ensuring that we still provide a default (eg. software ECC) but will still support different ECC engines such as on-die ECC engines if properly described in the device tree. There are no changes needed on the core side in order to do this, but we just need to leverage the logic there which allows: 1- a subsystem default (set to Host engines in the raw NAND world) 2- a driver specific default (here set to software ECC engines) 3- any type of engine requested by the user (ie. described in the DT) As the raw NAND subsystem has not yet been fully converted to the ECC engine infrastructure, in order to provide a default ECC engine for this driver we need to set chip->ecc.engine_type *before* calling nand_scan(). During the initialization step, the core will consider this entry as the default engine for this driver. This value may of course be overloaded by the user if the usual DT properties are provided. Fixes: 6dd09f775b72 ("mtd: rawnand: mpc5121: Move the ECC initialization to ->attach_chip()") Cc: stable@vger.kernel.org Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928222258.199726-5-miquel.raynal@bootlin.com
2021-10-15mtd: rawnand: gpio: Keep the driver compatible with on-die ECC enginesMiquel Raynal
Following the introduction of the generic ECC engine infrastructure, it was necessary to reorganize the code and move the ECC configuration in the ->attach_chip() hook. Failing to do that properly lead to a first series of fixes supposed to stabilize the situation. Unfortunately, this only fixed the use of software ECC engines, preventing any other kind of engine to be used, including on-die ones. It is now time to (finally) fix the situation by ensuring that we still provide a default (eg. software ECC) but will still support different ECC engines such as on-die ECC engines if properly described in the device tree. There are no changes needed on the core side in order to do this, but we just need to leverage the logic there which allows: 1- a subsystem default (set to Host engines in the raw NAND world) 2- a driver specific default (here set to software ECC engines) 3- any type of engine requested by the user (ie. described in the DT) As the raw NAND subsystem has not yet been fully converted to the ECC engine infrastructure, in order to provide a default ECC engine for this driver we need to set chip->ecc.engine_type *before* calling nand_scan(). During the initialization step, the core will consider this entry as the default engine for this driver. This value may of course be overloaded by the user if the usual DT properties are provided. Fixes: f6341f6448e0 ("mtd: rawnand: gpio: Move the ECC initialization to ->attach_chip()") Cc: stable@vger.kernel.org Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928222258.199726-4-miquel.raynal@bootlin.com
2021-10-15mtd: rawnand: au1550nd: Keep the driver compatible with on-die ECC enginesMiquel Raynal
Following the introduction of the generic ECC engine infrastructure, it was necessary to reorganize the code and move the ECC configuration in the ->attach_chip() hook. Failing to do that properly lead to a first series of fixes supposed to stabilize the situation. Unfortunately, this only fixed the use of software ECC engines, preventing any other kind of engine to be used, including on-die ones. It is now time to (finally) fix the situation by ensuring that we still provide a default (eg. software ECC) but will still support different ECC engines such as on-die ECC engines if properly described in the device tree. There are no changes needed on the core side in order to do this, but we just need to leverage the logic there which allows: 1- a subsystem default (set to Host engines in the raw NAND world) 2- a driver specific default (here set to software ECC engines) 3- any type of engine requested by the user (ie. described in the DT) As the raw NAND subsystem has not yet been fully converted to the ECC engine infrastructure, in order to provide a default ECC engine for this driver we need to set chip->ecc.engine_type *before* calling nand_scan(). During the initialization step, the core will consider this entry as the default engine for this driver. This value may of course be overloaded by the user if the usual DT properties are provided. Fixes: dbffc8ccdf3a ("mtd: rawnand: au1550: Move the ECC initialization to ->attach_chip()") Cc: stable@vger.kernel.org Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928222258.199726-3-miquel.raynal@bootlin.com
2021-10-15mtd: rawnand: ams-delta: Keep the driver compatible with on-die ECC enginesMiquel Raynal
Following the introduction of the generic ECC engine infrastructure, it was necessary to reorganize the code and move the ECC configuration in the ->attach_chip() hook. Failing to do that properly lead to a first series of fixes supposed to stabilize the situation. Unfortunately, this only fixed the use of software ECC engines, preventing any other kind of engine to be used, including on-die ones. It is now time to (finally) fix the situation by ensuring that we still provide a default (eg. software ECC) but will still support different ECC engines such as on-die ECC engines if properly described in the device tree. There are no changes needed on the core side in order to do this, but we just need to leverage the logic there which allows: 1- a subsystem default (set to Host engines in the raw NAND world) 2- a driver specific default (here set to software ECC engines) 3- any type of engine requested by the user (ie. described in the DT) As the raw NAND subsystem has not yet been fully converted to the ECC engine infrastructure, in order to provide a default ECC engine for this driver we need to set chip->ecc.engine_type *before* calling nand_scan(). During the initialization step, the core will consider this entry as the default engine for this driver. This value may of course be overloaded by the user if the usual DT properties are provided. Fixes: 59d93473323a ("mtd: rawnand: ams-delta: Move the ECC initialization to ->attach_chip()") Cc: stable@vger.kernel.org Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928222258.199726-2-miquel.raynal@bootlin.com
2021-10-15Revert "mtd: rawnand: cs553x: Fix external use of SW Hamming ECC helper"Miquel Raynal
This reverts commit 56a8d3fd1f342d10ee7b27e9ac0f4d00b5fbb91c. Before the introduction of the ECC framework infrastructure, many drivers used the ->calculate/correct() Hamming helpers directly. The point of this framework was to avoid this kind of hackish calls and use a proper and generic API but it is true that in certain cases, drivers still need to use these helpers in order to do ECC computations on behalf of their limited hardware. Right after the introduction of the ECC engine core introduction, it was spotted that it was not possible to use the shiny rawnand software ECC helpers so easily because an ECC engine object should have been allocated and initialized first. While this works well in most cases, for these drivers just leveraging the power of a single helper in conjunction with some pretty old and limited hardware, it did not fit. The idea back then was to declare intermediate helpers which would make use of the exported software ECC engine bare functions while keeping the rawnand layer compatibility. As there was already functions with the rawnand_sw_hamming_ prefix it was decided to declare new local helpers for this purpose in each driver needing one. Besides being far from optimal, this design choice was blamed by Linus when he pulled the "fixes" pull request [1] so that is why now it is time to clean this mess up. The implementation of the rawnand_ecc_sw_* helpers has now been enhanced to support both cases, when the ECC object is instantiated and when it is not. This way, we can still use the existing and exported rawnand helpers while avoiding the need for each driver to declare its own helper, thus this fix from [2] can now be safely reverted. [1] https://lore.kernel.org/lkml/CAHk-=wh_ZHF685Fni8V9is17mj=pFisUaZ_0=gq6nbK+ZcyQmg@mail.gmail.com/ [2] https://lore.kernel.org/linux-mtd/20210413161840.345208-1-miquel.raynal@bootlin.com Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928221507.199198-9-miquel.raynal@bootlin.com
2021-10-15Revert "mtd: rawnand: lpc32xx_slc: Fix external use of SW Hamming ECC helper"Miquel Raynal
This reverts commit c4b7d7c480d607e4f52d310d9d16b194868d0917. Before the introduction of the ECC framework infrastructure, many drivers used the ->calculate/correct() Hamming helpers directly. The point of this framework was to avoid this kind of hackish calls and use a proper and generic API but it is true that in certain cases, drivers still need to use these helpers in order to do ECC computations on behalf of their limited hardware. Right after the introduction of the ECC engine core introduction, it was spotted that it was not possible to use the shiny rawnand software ECC helpers so easily because an ECC engine object should have been allocated and initialized first. While this works well in most cases, for these drivers just leveraging the power of a single helper in conjunction with some pretty old and limited hardware, it did not fit. The idea back then was to declare intermediate helpers which would make use of the exported software ECC engine bare functions while keeping the rawnand layer compatibility. As there was already functions with the rawnand_sw_hamming_ prefix it was decided to declare new local helpers for this purpose in each driver needing one. Besides being far from optimal, this design choice was blamed by Linus when he pulled the "fixes" pull request [1] so that is why now it is time to clean this mess up. The implementation of the rawnand_ecc_sw_* helpers has now been enhanced to support both cases, when the ECC object is instantiated and when it is not. This way, we can still use the existing and exported rawnand helpers while avoiding the need for each driver to declare its own helper, thus this fix from [2] can now be safely reverted. [1] https://lore.kernel.org/lkml/CAHk-=wh_ZHF685Fni8V9is17mj=pFisUaZ_0=gq6nbK+ZcyQmg@mail.gmail.com/ [2] https://lore.kernel.org/linux-mtd/20210413161840.345208-1-miquel.raynal@bootlin.com Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928221507.199198-8-miquel.raynal@bootlin.com
2021-10-15Revert "mtd: rawnand: ndfc: Fix external use of SW Hamming ECC helper"Miquel Raynal
This reverts commit 3e09c0252501829b14b10f14e1982aaab77d0b80. Before the introduction of the ECC framework infrastructure, many drivers used the ->calculate/correct() Hamming helpers directly. The point of this framework was to avoid this kind of hackish calls and use a proper and generic API but it is true that in certain cases, drivers still need to use these helpers in order to do ECC computations on behalf of their limited hardware. Right after the introduction of the ECC engine core introduction, it was spotted that it was not possible to use the shiny rawnand software ECC helpers so easily because an ECC engine object should have been allocated and initialized first. While this works well in most cases, for these drivers just leveraging the power of a single helper in conjunction with some pretty old and limited hardware, it did not fit. The idea back then was to declare intermediate helpers which would make use of the exported software ECC engine bare functions while keeping the rawnand layer compatibility. As there was already functions with the rawnand_sw_hamming_ prefix it was decided to declare new local helpers for this purpose in each driver needing one. Besides being far from optimal, this design choice was blamed by Linus when he pulled the "fixes" pull request [1] so that is why now it is time to clean this mess up. The implementation of the rawnand_ecc_sw_* helpers has now been enhanced to support both cases, when the ECC object is instantiated and when it is not. This way, we can still use the existing and exported rawnand helpers while avoiding the need for each driver to declare its own helper, thus this fix from [2] can now be safely reverted. [1] https://lore.kernel.org/lkml/CAHk-=wh_ZHF685Fni8V9is17mj=pFisUaZ_0=gq6nbK+ZcyQmg@mail.gmail.com/ [2] https://lore.kernel.org/linux-mtd/20210413161840.345208-1-miquel.raynal@bootlin.com Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928221507.199198-7-miquel.raynal@bootlin.com
2021-10-15Revert "mtd: rawnand: sharpsl: Fix external use of SW Hamming ECC helper"Miquel Raynal
This reverts commit 46fcb57e6b7283533ebf8ba17a6bd30fa88bdc9f. Before the introduction of the ECC framework infrastructure, many drivers used the ->calculate/correct() Hamming helpers directly. The point of this framework was to avoid this kind of hackish calls and use a proper and generic API but it is true that in certain cases, drivers still need to use these helpers in order to do ECC computations on behalf of their limited hardware. Right after the introduction of the ECC engine core introduction, it was spotted that it was not possible to use the shiny rawnand software ECC helpers so easily because an ECC engine object should have been allocated and initialized first. While this works well in most cases, for these drivers just leveraging the power of a single helper in conjunction with some pretty old and limited hardware, it did not fit. The idea back then was to declare intermediate helpers which would make use of the exported software ECC engine bare functions while keeping the rawnand layer compatibility. As there was already functions with the rawnand_sw_hamming_ prefix it was decided to declare new local helpers for this purpose in each driver needing one. Besides being far from optimal, this design choice was blamed by Linus when he pulled the "fixes" pull request [1] so that is why now it is time to clean this mess up. The implementation of the rawnand_ecc_sw_* helpers has now been enhanced to support both cases, when the ECC object is instantiated and when it is not. This way, we can still use the existing and exported rawnand helpers while avoiding the need for each driver to declare its own helper, thus this fix from [2] can now be safely reverted. [1] https://lore.kernel.org/lkml/CAHk-=wh_ZHF685Fni8V9is17mj=pFisUaZ_0=gq6nbK+ZcyQmg@mail.gmail.com/ [2] https://lore.kernel.org/linux-mtd/20210413161840.345208-1-miquel.raynal@bootlin.com Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928221507.199198-6-miquel.raynal@bootlin.com
2021-10-15Revert "mtd: rawnand: tmio: Fix external use of SW Hamming ECC helper"Miquel Raynal
This reverts commit 6a4c5ada577467a5f79e06f2c5e69c09983c22fb. Before the introduction of the ECC framework infrastructure, many drivers used the ->calculate/correct() Hamming helpers directly. The point of this framework was to avoid this kind of hackish calls and use a proper and generic API but it is true that in certain cases, drivers still need to use these helpers in order to do ECC computations on behalf of their limited hardware. Right after the introduction of the ECC engine core introduction, it was spotted that it was not possible to use the shiny rawnand software ECC helpers so easily because an ECC engine object should have been allocated and initialized first. While this works well in most cases, for these drivers just leveraging the power of a single helper in conjunction with some pretty old and limited hardware, it did not fit. The idea back then was to declare intermediate helpers which would make use of the exported software ECC engine bare functions while keeping the rawnand layer compatibility. As there was already functions with the rawnand_sw_hamming_ prefix it was decided to declare new local helpers for this purpose in each driver needing one. Besides being far from optimal, this design choice was blamed by Linus when he pulled the "fixes" pull request [1] so that is why now it is time to clean this mess up. The implementation of the rawnand_ecc_sw_* helpers has now been enhanced to support both cases, when the ECC object is instantiated and when it is not. This way, we can still use the existing and exported rawnand helpers while avoiding the need for each driver to declare its own helper, thus this fix from [2] can now be safely reverted. [1] https://lore.kernel.org/lkml/CAHk-=wh_ZHF685Fni8V9is17mj=pFisUaZ_0=gq6nbK+ZcyQmg@mail.gmail.com/ [2] https://lore.kernel.org/linux-mtd/20210413161840.345208-1-miquel.raynal@bootlin.com Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928221507.199198-5-miquel.raynal@bootlin.com
2021-10-15Revert "mtd: rawnand: txx9ndfmc: Fix external use of SW Hamming ECC helper"Miquel Raynal
This reverts commit 3d227a0b0ce319edbff6fd0d8af4d66689e477cc. Before the introduction of the ECC framework infrastructure, many drivers used the ->calculate/correct() Hamming helpers directly. The point of this framework was to avoid this kind of hackish calls and use a proper and generic API but it is true that in certain cases, drivers still need to use these helpers in order to do ECC computations on behalf of their limited hardware. Right after the introduction of the ECC engine core introduction, it was spotted that it was not possible to use the shiny rawnand software ECC helpers so easily because an ECC engine object should have been allocated and initialized first. While this works well in most cases, for these drivers just leveraging the power of a single helper in conjunction with some pretty old and limited hardware, it did not fit. The idea back then was to declare intermediate helpers which would make use of the exported software ECC engine bare functions while keeping the rawnand layer compatibility. As there was already functions with the rawnand_sw_hamming_ prefix it was decided to declare new local helpers for this purpose in each driver needing one. Besides being far from optimal, this design choice was blamed by Linus when he pulled the "fixes" pull request [1] so that is why now it is time to clean this mess up. The implementation of the rawnand_ecc_sw_* helpers has now been enhanced to support both cases, when the ECC object is instantiated and when it is not. This way, we can still use the existing and exported rawnand helpers while avoiding the need for each driver to declare its own helper, thus this fix from [2] can now be safely reverted. [1] https://lore.kernel.org/lkml/CAHk-=wh_ZHF685Fni8V9is17mj=pFisUaZ_0=gq6nbK+ZcyQmg@mail.gmail.com/ [2] https://lore.kernel.org/linux-mtd/20210413161840.345208-1-miquel.raynal@bootlin.com Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928221507.199198-4-miquel.raynal@bootlin.com
2021-10-15mtd: rawnand: Let callers use the bare Hamming helpersMiquel Raynal
Before the introduction of the ECC framework infrastructure, many drivers used the ->calculate/correct() Hamming helpers directly. The point of this framework was to avoid this kind of hackish calls and use a proper and generic API but it is true that in certain cases, drivers still need to use these helpers in order to do ECC computations on behalf of their limited hardware. Right after the introduction of the ECC engine core introduction, it was spotted that it was not possible to use the shiny rawnand software ECC helpers so easily because an ECC engine object should have been allocated and initialized first. While this works well in most cases, for these drivers just leveraging the power of a single helper in conjunction with some pretty old and limited hardware, it did not fit. The idea back then was to declare intermediate helpers which would make use of the exported software ECC engine bare functions while keeping the rawnand layer compatibility. As there was already functions with the rawnand_sw_hamming_ prefix it was decided to declare new local helpers for this purpose in each driver needing one. Besides being far from optimal, this design choice was blamed by Linus when he pulled the "fixes" pull request [1] so that is why now it is time to clean this mess up. Enhancing the implementation of the rawnand_ecc_sw_* helpers to support both cases, when the ECC object is instantiated and when it is not is a quite elegant way to solve this situation. This way, we can still use the existing and exported rawnand helpers while avoiding the need for each driver to declare its own helper. Following this change, most of the fixes sent in [2] can now be safely reverted. Only the fsmc fix will need to be kept because there is actually something specific to the driver to do in its ->correct() helper. [1] https://lore.kernel.org/lkml/CAHk-=wh_ZHF685Fni8V9is17mj=pFisUaZ_0=gq6nbK+ZcyQmg@mail.gmail.com/ [2] https://lore.kernel.org/linux-mtd/20210413161840.345208-1-miquel.raynal@bootlin.com/ Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928221507.199198-3-miquel.raynal@bootlin.com
2021-10-15mtd: rawnand: fsmc: Fix use of SM ORDERMiquel Raynal
The introduction of the generic ECC engine API lead to a number of changes in various drivers which broke some of them. Here is a typical example: I expected the SM_ORDER option to be handled by the Hamming ECC engine internals. Problem: the fsmc driver does not instantiate (yet) a real ECC engine object so we had to use a 'bare' ECC helper instead of the shiny rawnand functions. However, when not intializing this engine properly and using the bare helpers, we do not get the SM ORDER feature handled automatically. It looks like this was lost in the process so let's ensure we use the right SM ORDER now. Fixes: ad9ffdce4539 ("mtd: rawnand: fsmc: Fix external use of SW Hamming ECC helper") Cc: stable@vger.kernel.org Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210928221507.199198-2-miquel.raynal@bootlin.com
2021-09-29mtd: onenand: samsung: drop Exynos4 and describe driver in KConfigKrzysztof Kozlowski
None of supported Samsung Exynos4 SoCs (Exynos4210, Exynos4412) seem to use OneNAND driver so drop it. Describe better which driver applies to which SoC, to make configuring kernel for Samsung SoC easier. Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210924133223.111930-1-krzysztof.kozlowski@canonical.com
2021-09-14mtd: rawnand: qcom: Update code word value for raw readMd Sadre Alam
From QPIC V2 onwards there is a separate register to read last code word "QPIC_NAND_READ_LOCATION_LAST_CW_n". qcom_nandc_read_cw_raw() is used to read only one code word at a time. If we will configure number of code words to 1 in in QPIC_NAND_DEV0_CFG0 register then QPIC controller thinks its reading the last code word, since from QPIC V2 onwards we are having separate register to read the last code word, we have to configure "QPIC_NAND_READ_LOCATION_LAST_CW_n" register to fetch data from controller buffer to system memory. Fixes: 503ee5aad430 ("mtd: rawnand: qcom: update last code word register") Cc: stable@kernel.org Signed-off-by: Md Sadre Alam <mdalam@codeaurora.org> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/1630998357-1359-1-git-send-email-mdalam@codeaurora.org
2021-09-14mtd: rawnand: intel: Fix potential buffer overflow in probeEvgeny Novikov
ebu_nand_probe() read the value of u32 variable "cs" from the device firmware description and used it as the index for array ebu_host->cs that can contain MAX_CS (2) elements at most. That could result in a buffer overflow and various bad consequences later. Fix the potential buffer overflow by restricting values of "cs" with MAX_CS in probe. Found by Linux Driver Verification project (linuxtesting.org). Fixes: 0b1039f016e8 ("mtd: rawnand: Add NAND controller support on Intel LGM SoC") Signed-off-by: Evgeny Novikov <novikov@ispras.ru> Co-developed-by: Kirill Shilimanov <kirill.shilimanov@huawei.com> Signed-off-by: Kirill Shilimanov <kirill.shilimanov@huawei.com> Co-developed-by: Anton Vasilyev <vasilyev@ispras.ru> Signed-off-by: Anton Vasilyev <vasilyev@ispras.ru> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210903082653.16441-1-novikov@ispras.ru
2021-09-14mtd: rawnand: xway: Make use of the helper function ↵Cai Huoqing
devm_platform_ioremap_resource() Use the devm_platform_ioremap_resource() helper instead of calling platform_get_resource() and devm_ioremap_resource() separately Signed-off-by: Cai Huoqing <caihuoqing@baidu.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210901074252.9633-1-caihuoqing@baidu.com
2021-09-14mtd: rawnand: vf610: Make use of the helper function ↵Cai Huoqing
devm_platform_ioremap_resource() Use the devm_platform_ioremap_resource() helper instead of calling platform_get_resource() and devm_ioremap_resource() separately Signed-off-by: Cai Huoqing <caihuoqing@baidu.com> Acked-by: Stefan Agner <stefan@agner.ch> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210901074245.9583-1-caihuoqing@baidu.com
2021-09-14mtd: rawnand: txx9ndfm: Make use of the helper function ↵Cai Huoqing
devm_platform_ioremap_resource() Use the devm_platform_ioremap_resource() helper instead of calling platform_get_resource() and devm_ioremap_resource() separately Signed-off-by: Cai Huoqing <caihuoqing@baidu.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210901074237.9533-1-caihuoqing@baidu.com
2021-09-14mtd: rawnand: tegra: Make use of the helper function ↵Cai Huoqing
devm_platform_ioremap_resource() Use the devm_platform_ioremap_resource() helper instead of calling platform_get_resource() and devm_ioremap_resource() separately Signed-off-by: Cai Huoqing <caihuoqing@baidu.com> Acked-by: Stefan Agner <stefan@agner.ch> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20210901074230.9483-1-caihuoqing@baidu.com