Age | Commit message (Collapse) | Author |
|
Multiplying block_num and mtd->erasesize may potentially overflow
as they are both unsigned ints and so the multiplication is evaluated
in unsigned int arithmetic. Cast block_adr to off_t to ensure
multiplication is off_t sized to avoid any potential overflow.
Detected by CoverityScan, CID#1461264 ("Unintentional integer overflow")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: Andrea Adami <andrea.adami@gmail.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
The mtd_check_oob_ops() helper verifies if the operation defined by the
user is correct.
Fix the check that verifies if the entire requested area exists. This
check is too restrictive and will fail anytime the last data byte of the
very last page is included in an operation.
Fixes: 5cdd929da53d ("mtd: Add sanity checks in mtd_write/read_oob()")
Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
The call to spi_sync() can fail.
Check the return value and propagate it.
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
Don't populate the read-only array 'name' on the stack but instead
make it static and constify it. Makes the object code smaller by 35
bytes:
Before:
text data bss dec hex filename
26304 4444 352 31100 797c drivers/mtd/mtdswap.o
After:
text data bss dec hex filename
26205 4508 352 31065 7959 drivers/mtd/mtdswap.o
(gcc version 7.2.0 x86_64)
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
Introduce a new interface to instruct NAND controllers to send specific
NAND operations. The new interface takes the form of a single method
called ->exec_op(). This method is designed to replace ->cmd_ctrl(),
->cmdfunc() and ->read/write_byte/word/buf() hooks.
->exec_op() is passed a set of instructions describing the operation
to execute. Each instruction has a type (ADDR, CMD, DATA, WAITRDY)
and delay. The delay is here to help simple controllers wait enough
time between each instruction, advanced controllers with integrated
timings control can ignore these delays.
Controllers that natively support complex operations (operations
formed of several instructions) can use the NAND op parser
infrastructure. This infrastructure allows controller drivers to
describe the sequence of instructions they support (called
nand_op_pattern) and a hook for each of these supported sequences. The
core then tries to find the best match for a given NAND operation, and
calls the associated hook.
Various other helpers are also added to ease NAND controller drivers
writing.
This new interface should ease support of vendor specific operations
in that NAND manufacturer drivers now have a way to check if the
controller they are connected to supports a specific operation, and
complain or refuse to probe the NAND chip when that's not the case.
Suggested-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
Fixes a copy/paste error in commit f3d0d8d938b4d ("mtd: nand: gpio:
Convert to use GPIO descriptors") which breaks gpio-nand driver
Fixes: f3d0d8d938b4d ("mtd: nand: gpio: Convert to use GPIO descriptors")
Cc: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Richard Weinberger <richard@nod.at>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
A negative return value of brcmstb_nand_verify_erased_page() indicates a
real bitflip error of an erased page, and other return values (>= 0) show
the corrected bitflip number. Zero return value means no bitflip, but the
current driver code treats it as an error, and eventually leads to
falsely reported ECC error.
Fixes: 02b88eea9f9c ("mtd: brcmnand: Add check for erased page bitflip")
Signed-off-by: Albert Hsieh <wen.hsieh@broadcom.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
When erased subpages are read then the BCH decoder returns STATUS_ERASED
if they are all empty, or STATUS_UNCORRECTABLE if there are bitflips.
When there are bitflips, we have to set these bits again to show the
upper layers a completely erased page. When a bitflip happens in the
exact byte where the bad block marker is, then this byte is swapped
with another byte in block_mark_swapping(). The correction code then
detects a bitflip in another subpage and no longer corrects the bitflip
where it really happens.
Correct this behaviour by calling block_mark_swapping() after the
bitflips have been corrected.
In our case UBIFS failed with this bug because it expects erased
pages to be really empty:
UBIFS error (pid 187): ubifs_scan: corrupt empty space at LEB 36:118735
UBIFS error (pid 187): ubifs_scanned_corruption: corruption at LEB 36:118735
UBIFS error (pid 187): ubifs_scanned_corruption: first 8192 bytes from LEB 36:118735
UBIFS error (pid 187): ubifs_scan: LEB 36 scanning failed
UBIFS error (pid 187): do_commit: commit failed, error -117
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
Reviewed-by: Richard Weinberger <richard@nod.at>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
Samsung NAND chip K9F4G08U0D minimum ECC strength requirement is 1 bit
per 512 bytes. As the chip is not ONFI nor JEDEC and because of the lack
of these values, boards using it fail to probe the NAND controller
driver. Fix this by setting up the default values.
Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
The only users of the ecc->{calc,code}_buf buffers are NAND controller
drivers implementing ecc->calculate() and/or ecc->correct(). Since the
->oobsize can be non-negligle, especially on modern NAND devices, we'd
better allocate it only when it is actually required.
Make ecc->{calc,code}_buf allocation dependent on the presence of
ecc->calculate() or ecc->correct().
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
ECC bytes are contiguous in the ->oob_poi buffer, which means we don't
have to copy them into ->code_buf (here used as a temporary buffer)
before passing them to the nand_check_erased_ecc_chunk() function.
This change will allow us to allocate ecc->{code,calc}_buf only when
ecc->calculate() or ecc->correct() is specified.
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
Add tables to support MT7622 NAND flash controller.
Signed-off-by: RogerCC Lin <rogercc.lin@mediatek.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
MT7622 uses an MTK's earlier NAND flash controller IP which support
different sector size, max spare size per sector and paraity bits...,
some register's offset and definition also been changed in the NAND
flash controller, this patch is the preparation to support MT7622
NAND flash controller.
MT7622 NFC and ECC engine are similar to MT2701's, except below
differences:
(1)MT7622 NFC's max sector size(ECC data size) is 512 bytes, and
MT2701's is 1024, and MT7622's max sector number is 8.
(2)The parity bit of MT7622 is 13, MT2701 is 14.
(3)MT7622 ECC supports less ECC strength, max to 16 bit ecc strength.
(4)MT7622 supports less spare size per sector, max spare size per
sector is 28 bytes.
(5)Some register's offset are different, include ECC_ENCIRQ_EN,
ECC_ENCIRQ_STA, ECC_DECDONE, ECC_DECIRQ_EN and ECC_DECIRQ_STA.
(6)ENC_MODE of ECC_ENCCNFG register is moved from bit 5-6 to bit 4-5.
Signed-off-by: RogerCC Lin <rogercc.lin@mediatek.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
Samsung website no longer host information about OneNAND,
delete it.
Signed-off-by: Ladislav Michl <ladis@linux-mips.org>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
Use macros from <linux/kernel.h> to make the code readable.
The compiler warning will be kept suppressed.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
struct nand_buffers is malloc'ed in nand_scan_tail() just for
containing three pointers. Squash this struct into nand_chip.
Move and rename as follows:
chip->buffers->ecccalc -> chip->ecc.calc_buf
chip->buffers->ecccode -> chip->ecc.code_buf
chip->buffers->databuf -> chip->data_buf
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
The last/only user of NAND_OWN_BUFFERS (cafe_nand.c) has been reworked.
This flag is no longer needed.
Suggested-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
This driver is the last/only user of NAND_OWN_BUFFERS. Boris suggested
to remove this flag.
Taking a closer look at this driver, it calls dma_alloc_coherent() for
the concatenated area for the DMA bounce buffer + struct nand_buffers,
but the latter does not need to be DMA-coherent; cafe_{write,read}_buf
simply do memcpy() between buffers when usedma==1.
Let's do dma_alloc_coherent() for the DMA bounce buffer in the front,
and leave the nand_buffers allocation to nand_scan_tail(), then rip off
NAND_OWN_BUFFERS.
The magic number, 2112, is still mysterious (hard-coded writesize +
oobsize ?), but this is not our main interest. I am keeping it.
Suggested-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
Right now, the chip->data_interface field is populated in
nand_scan_tail(), so after the whole NAND detection has taken place.
This is fine because these timings are not yet used by the core so
early in the probe process, but the situation is about to change with
the introduction of ->exec_op().
Also, by convention, nand_scan_ident() is not supposed to allocate
resources, only nand_scan_tail() can, so this prevent us from
allocating and initializing the data_interface object in
nand_scan_ident().
In order to solve this problem, directly embed a data_interface object
in nand_chip so that we don't have to allocate it, and initialize it to
ONFI SDR mode 0 at the very beginning of nand_scan_ident().
Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
The core currently send the READ0 and SEQIN+PAGEPROG commands in
nand_do_read/write_ops(). This is inconsistent with
->read/write_oob[_raw]() hooks behavior which are expected to send
these commands.
There's already a flag (NAND_ECC_CUSTOM_PAGE_ACCESS) to inform the core
that a specific controller wants to send the READ/SEQIN+PAGEPROG
commands on its own, but it's an opt-in flag, and existing drivers are
unlikely to be updated to pass it.
Moreover, some controllers cannot dissociate the READ/PAGEPROG commands
from the associated data transfer and ECC engine activation, and
developers have to hack things in their ->cmdfunc() implementation to
handle such complex cases, or have to accept the perf penalty of sending
twice the same command.
To address this problem we are planning on adding a new interface which
is passed all information about a NAND operation (including the amount
of data to transfer) and replacing all calls to ->cmdfunc() to calls to
this new ->exec_op() hook. But, in order to do that, we need to have all
->cmdfunc() calls placed near their associated ->read/write_buf/byte()
calls.
Modify the core and relevant drivers to make NAND_ECC_CUSTOM_PAGE_ACCESS
the default case, and remove this flag.
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
[miquel.raynal@free-electrons.com: tested, fixed and rebased on nand/next]
Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com>
Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
This is part of the process of removing direct calls to ->cmdfunc()
outside of the core in order to introduce a better interface to execute
NAND operations.
Here we provide several helpers and make use of them to remove all
direct calls to ->cmdfunc(). This way, we can easily modify those
helpers to make use of the new ->exec_op() interface when available.
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
[miquel.raynal@free-electrons.com: rebased and fixed some conflicts]
Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com>
Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
|
|
Restore the status to be compatible with legacy devices.
Take Freescale eSPI boot for example, it copies (in 3 Byte
addressing mode) the RCW and bootloader images from SPI flash
without firing a reset signal previously, so the reboot command
will fail without resetting the addressing mode of SPI flash.
This patch implements .shutdown function to restore the status
in reboot process, and add the same operation to the .remove
function.
Signed-off-by: Hou Zhiqiang <Zhiqiang.Hou@nxp.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
Add this API to restore the status of SPI flash chip to the default
such as addressing mode, whenever detach the driver from device or
reboot the system.
Signed-off-by: Hou Zhiqiang <Zhiqiang.Hou@nxp.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
Previously, the lock and unlock functions returned success even if the
BP bits were not actually updated in the status register due to
hardware write protection. Introduce write_sr_and_check() to write and
read back the status register to ensure the desired BP bits are
actually set as requested.
Signed-off-by: Joe Schultz <jschultz@xes-inc.com>
Signed-off-by: Aaron Sierra <asierra@xes-inc.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
For Micron spi nor device, when erase/program operation
fails, especially the failure results from intending to
modify protected space, spi-nor upper layers still get
the return which shows the operation succeeds. This is
because current spi_nor_fsr_ready() only uses FSR bit.7
(flag status register) to check device whether ready.
This patch fixes this issue by checking relevant error
bits in FSR.
The FSR is a powerful tool to investigate the status of
device, checking information regarding what the memory is
actually doing and detecting possible error conditions.
Signed-off-by: beanhuo <beanhuo@micron.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
Add support for ISSI is25lp128 spi nor flash.
Signed-off-by: Angelo Dureghello <angelo@sysam.it>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
Avoid using specific defined values for checking returned status of the
->erase() hook. Instead, use usual negative error values on failure,
zero otherwise.
Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com>
Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
The "dma_buf" is not used for a DMA bounce buffer, but for arranging
the transferred data for the syndrome page layout. In fact, it is
used in the PIO mode as well, so "dma_buf" is a misleading name.
Rename it to "tmp_buf".
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
'extern' is not necessary for function declarations.
scripts/checkpatch.pl with --strict option reports the following:
CHECK: extern prototypes should be avoided in .h files
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
Bufnum mask is used to calculate page position in the internal SRAM.
As IFC version 2.0.0 has 16KB of internal SRAM as compared to older
versions which had 8KB. Hence bufnum mask needs to be updated.
Signed-off-by: Jagdish Gediya <jagdish.gediya@nxp.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar.kushwaha@nxp.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
This change resolves a new compile-time warning
when built as a loadable module:
WARNING: modpost: missing MODULE_LICENSE() in drivers/mtd/nand/denali_pci.o
see include/linux/module.h for more information
This adds the license as "GPL v2", which matches the header of the file.
MODULE_DESCRIPTION and MODULE_AUTHOR are also added.
Signed-off-by: Jesse Chan <jc@linux.com>
Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
The GPMI nand Kconfig help texts mentions that the GPMI nand driver
might conflict with SD cards. The only conflict there might really
be is that both controllers use the same pins, but this is resolved
by the pincontroller setup in the device tree. In any way the GPMI
driver can safely be enabled, the text is just wrong. Remove it.
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
Reviewed-by: Fabio Estevam <fabio.estevam@nxp.com>
Acked-by: Han Xu <han.xu@nxp.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
Setting read-retry parameters has no impact on the R/B pin, so waiting
for the chip to be ready is useless.
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
Some drivers (like nand_hynix.c) call ->cmdfunc() with NAND_CMD_NONE
and a column address and expect the controller to only send address
cycles. Right now, the default ->cmdfunc() implementations provided by
the core do not filter out the command cycle in this case and forwards
the request to the controller driver through the ->cmd_ctrl() method.
The thing is, NAND controller drivers can get this wrong and send a
command cycle with a NAND_CMD_NONE opcode and since NAND_CMD_NONE is
-1, and the command field is usually casted to an u8, we end up sending
the 0xFF command which is actually a RESET operation.
Add conditions in nand_command[_lp]() functions to sending the initial
command cycle when command == NAND_CMD_NONE.
Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
Make use of the swap macro and remove unnecessary variables swap.
This makes the code easier to read and maintain.
This code was detected with the help of Coccinelle.
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Acked-by: Han Xu <han.xu@nxp.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
Previously, we only select chips and then send reset command to a NAND
device during resuming nand driver. There is a lack of deselecting chips.
It is advised to reset and initialize a NAND device using nand_reset().
Signed-off-by: Xiaolei Li <xiaolei.li@mediatek.com>
Reviewed-by: Matthias Brugger <matthias.bgg@gmail.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
This is a pure automated search-and-replace of the internal kernel
superblock flags.
The s_flags are now called SB_*, with the names and the values for the
moment mirroring the MS_* flags that they're equivalent to.
Note how the MS_xyz flags are the ones passed to the mount system call,
while the SB_xyz flags are what we then use in sb->s_flags.
The script to do this was:
# places to look in; re security/*: it generally should *not* be
# touched (that stuff parses mount(2) arguments directly), but
# there are two places where we really deal with superblock flags.
FILES="drivers/mtd drivers/staging/lustre fs ipc mm \
include/linux/fs.h include/uapi/linux/bfs_fs.h \
security/apparmor/apparmorfs.c security/apparmor/include/lib.h"
# the list of MS_... constants
SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \
DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \
POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \
I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \
ACTIVE NOUSER"
SED_PROG=
for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done
# we want files that contain at least one of MS_...,
# with fs/namespace.c and fs/pnode.c excluded.
L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c')
for f in $L; do sed -i $f $SED_PROG; done
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
- The final conversion of timer wheel timers to timer_setup().
A few manual conversions and a large coccinelle assisted sweep and
the removal of the old initialization mechanisms and the related
code.
- Remove the now unused VSYSCALL update code
- Fix permissions of /proc/timer_list. I still need to get rid of that
file completely
- Rename a misnomed clocksource function and remove a stale declaration
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
m68k/macboing: Fix missed timer callback assignment
treewide: Remove TIMER_FUNC_TYPE and TIMER_DATA_TYPE casts
timer: Remove redundant __setup_timer*() macros
timer: Pass function down to initialization routines
timer: Remove unused data arguments from macros
timer: Switch callback prototype to take struct timer_list * argument
timer: Pass timer_list pointer to callbacks unconditionally
Coccinelle: Remove setup_timer.cocci
timer: Remove setup_*timer() interface
timer: Remove init_timer() interface
treewide: setup_timer() -> timer_setup() (2 field)
treewide: setup_timer() -> timer_setup()
treewide: init_timer() -> setup_timer()
treewide: Switch DEFINE_TIMER callbacks to struct timer_list *
s390: cmm: Convert timers to use timer_setup()
lightnvm: Convert timers to use timer_setup()
drivers/net: cris: Convert timers to use timer_setup()
drm/vc4: Convert timers to use timer_setup()
block/laptop_mode: Convert timers to use timer_setup()
net/atm/mpc: Avoid open-coded assignment of timer callback function
...
|
|
Pull MTD updates from Richard Weinberger:
"General changes:
- Unconfuse get_unmapped_area and point/unpoint driver methods
- New partition parser: sharpslpart
- Kill GENERIC_IO
- Various fixes
NAND changes:
- Add a flag to mark NANDs that require 3 address cycles to encode a
page address
- Set a default ECC/free layout when NAND_ECC_NONE is requested
- Fix a bug in panic_nand_write()
- Another batch of cleanups for the denali driver
- Fix PM support in the atmel driver
- Remove support for platform data in the omap driver
- Fix subpage write in the omap driver
- Fix irq handling in the mtk driver
- Change link order of mtk_ecc and mtk_nand drivers to speed up boot
time
- Change log level of ECC error messages in the mxc driver
- Patch the pxa3xx driver to support Armada 8k platforms
- Add BAM DMA support to the qcom driver
- Convert gpio-nand to the GPIO desc API
- Fix ECC handling in the mt29f driver
SPI-NOR changes:
- Introduce system power management support
- New mechanism to select the proper .quad_enable() hook by JEDEC
ID, when needed, instead of only by manufacturer ID
- Add support to new memory parts from Gigadevice, Winbond, Macronix
and Everspin
- Maintainance for Cadence, Intel, Mediatek and STM32 drivers"
* tag 'for-linus-20171120' of git://git.infradead.org/linux-mtd: (85 commits)
mtd: Avoid probe failures when mtd->dbg.dfs_dir is invalid
mtd: sharpslpart: Add sharpslpart partition parser
mtd: Add sanity checks in mtd_write/read_oob()
mtd: remove the get_unmapped_area method
mtd: implement mtd_get_unmapped_area() using the point method
mtd: chips/map_rom.c: implement point and unpoint methods
mtd: chips/map_ram.c: implement point and unpoint methods
mtd: mtdram: properly handle the phys argument in the point method
mtd: mtdswap: fix spelling mistake: 'TRESHOLD' -> 'THRESHOLD'
mtd: slram: use memremap() instead of ioremap()
kconfig: kill off GENERIC_IO option
mtd: Fix C++ comment in include/linux/mtd/mtd.h
mtd: constify mtd_partition
mtd: plat-ram: Replace manual resource management by devm
mtd: nand: Fix writing mtdoops to nand flash.
mtd: intel-spi: Add Intel Lewisburg PCH SPI super SKU PCI ID
mtd: nand: mtk: fix infinite ECC decode IRQ issue
mtd: spi-nor: Add support for mr25h128
mtd: nand: mtk: change the compile sequence of mtk_nand.o and mtk_ecc.o
mtd: spi-nor: enable 4B opcodes for mx66l51235l
...
|
|
This converts all remaining cases of the old setup_timer() API into using
timer_setup(), where the callback argument is the structure already
holding the struct timer_list. These should have no behavioral changes,
since they just change which pointer is passed into the callback with
the same available pointers after conversion. It handles the following
examples, in addition to some other variations.
Casting from unsigned long:
void my_callback(unsigned long data)
{
struct something *ptr = (struct something *)data;
...
}
...
setup_timer(&ptr->my_timer, my_callback, ptr);
and forced object casts:
void my_callback(struct something *ptr)
{
...
}
...
setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr);
become:
void my_callback(struct timer_list *t)
{
struct something *ptr = from_timer(ptr, t, my_timer);
...
}
...
timer_setup(&ptr->my_timer, my_callback, 0);
Direct function assignments:
void my_callback(unsigned long data)
{
struct something *ptr = (struct something *)data;
...
}
...
ptr->my_timer.function = my_callback;
have a temporary cast added, along with converting the args:
void my_callback(struct timer_list *t)
{
struct something *ptr = from_timer(ptr, t, my_timer);
...
}
...
ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback;
And finally, callbacks without a data assignment:
void my_callback(unsigned long data)
{
...
}
...
setup_timer(&ptr->my_timer, my_callback, 0);
have their argument renamed to verify they're unused during conversion:
void my_callback(struct timer_list *unused)
{
...
}
...
timer_setup(&ptr->my_timer, my_callback, 0);
The conversion is done with the following Coccinelle script:
spatch --very-quiet --all-includes --include-headers \
-I ./arch/x86/include -I ./arch/x86/include/generated \
-I ./include -I ./arch/x86/include/uapi \
-I ./arch/x86/include/generated/uapi -I ./include/uapi \
-I ./include/generated/uapi --include ./include/linux/kconfig.h \
--dir . \
--cocci-file ~/src/data/timer_setup.cocci
@fix_address_of@
expression e;
@@
setup_timer(
-&(e)
+&e
, ...)
// Update any raw setup_timer() usages that have a NULL callback, but
// would otherwise match change_timer_function_usage, since the latter
// will update all function assignments done in the face of a NULL
// function initialization in setup_timer().
@change_timer_function_usage_NULL@
expression _E;
identifier _timer;
type _cast_data;
@@
(
-setup_timer(&_E->_timer, NULL, _E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E->_timer, NULL, (_cast_data)_E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, &_E);
+timer_setup(&_E._timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, (_cast_data)&_E);
+timer_setup(&_E._timer, NULL, 0);
)
@change_timer_function_usage@
expression _E;
identifier _timer;
struct timer_list _stl;
identifier _callback;
type _cast_func, _cast_data;
@@
(
-setup_timer(&_E->_timer, _callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
_E->_timer@_stl.function = _callback;
|
_E->_timer@_stl.function = &_callback;
|
_E->_timer@_stl.function = (_cast_func)_callback;
|
_E->_timer@_stl.function = (_cast_func)&_callback;
|
_E._timer@_stl.function = _callback;
|
_E._timer@_stl.function = &_callback;
|
_E._timer@_stl.function = (_cast_func)_callback;
|
_E._timer@_stl.function = (_cast_func)&_callback;
)
// callback(unsigned long arg)
@change_callback_handle_cast
depends on change_timer_function_usage@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
identifier _handle;
@@
void _callback(
-_origtype _origarg
+struct timer_list *t
)
{
(
... when != _origarg
_handletype *_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle;
... when != _handle
_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle;
... when != _handle
_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
)
}
// callback(unsigned long arg) without existing variable
@change_callback_handle_cast_no_arg
depends on change_timer_function_usage &&
!change_callback_handle_cast@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
@@
void _callback(
-_origtype _origarg
+struct timer_list *t
)
{
+ _handletype *_origarg = from_timer(_origarg, t, _timer);
+
... when != _origarg
- (_handletype *)_origarg
+ _origarg
... when != _origarg
}
// Avoid already converted callbacks.
@match_callback_converted
depends on change_timer_function_usage &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier t;
@@
void _callback(struct timer_list *t)
{ ... }
// callback(struct something *handle)
@change_callback_handle_arg
depends on change_timer_function_usage &&
!match_callback_converted &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
@@
void _callback(
-_handletype *_handle
+struct timer_list *t
)
{
+ _handletype *_handle = from_timer(_handle, t, _timer);
...
}
// If change_callback_handle_arg ran on an empty function, remove
// the added handler.
@unchange_callback_handle_arg
depends on change_timer_function_usage &&
change_callback_handle_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
identifier t;
@@
void _callback(struct timer_list *t)
{
- _handletype *_handle = from_timer(_handle, t, _timer);
}
// We only want to refactor the setup_timer() data argument if we've found
// the matching callback. This undoes changes in change_timer_function_usage.
@unchange_timer_function_usage
depends on change_timer_function_usage &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg &&
!change_callback_handle_arg@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type change_timer_function_usage._cast_data;
@@
(
-timer_setup(&_E->_timer, _callback, 0);
+setup_timer(&_E->_timer, _callback, (_cast_data)_E);
|
-timer_setup(&_E._timer, _callback, 0);
+setup_timer(&_E._timer, _callback, (_cast_data)&_E);
)
// If we fixed a callback from a .function assignment, fix the
// assignment cast now.
@change_timer_function_assignment
depends on change_timer_function_usage &&
(change_callback_handle_cast ||
change_callback_handle_cast_no_arg ||
change_callback_handle_arg)@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_func;
typedef TIMER_FUNC_TYPE;
@@
(
_E->_timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-&_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-(_cast_func)_callback;
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-&_callback;
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-(_cast_func)_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
;
)
// Sometimes timer functions are called directly. Replace matched args.
@change_timer_function_calls
depends on change_timer_function_usage &&
(change_callback_handle_cast ||
change_callback_handle_cast_no_arg ||
change_callback_handle_arg)@
expression _E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_data;
@@
_callback(
(
-(_cast_data)_E
+&_E->_timer
|
-(_cast_data)&_E
+&_E._timer
|
-_E
+&_E->_timer
)
)
// If a timer has been configured without a data argument, it can be
// converted without regard to the callback argument, since it is unused.
@match_timer_function_unused_data@
expression _E;
identifier _timer;
identifier _callback;
@@
(
-setup_timer(&_E->_timer, _callback, 0);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0L);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0UL);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0L);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0UL);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0L);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0UL);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0L);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0UL);
+timer_setup(_timer, _callback, 0);
)
@change_callback_unused_data
depends on match_timer_function_unused_data@
identifier match_timer_function_unused_data._callback;
type _origtype;
identifier _origarg;
@@
void _callback(
-_origtype _origarg
+struct timer_list *unused
)
{
... when != _origarg
}
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull compat and uaccess updates from Al Viro:
- {get,put}_compat_sigset() series
- assorted compat ioctl stuff
- more set_fs() elimination
- a few more timespec64 conversions
- several removals of pointless access_ok() in places where it was
followed only by non-__ variants of primitives
* 'misc.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (24 commits)
coredump: call do_unlinkat directly instead of sys_unlink
fs: expose do_unlinkat for built-in callers
ext4: take handling of EXT4_IOC_GROUP_ADD into a helper, get rid of set_fs()
ipmi: get rid of pointless access_ok()
pi433: sanitize ioctl
cxlflash: get rid of pointless access_ok()
mtdchar: get rid of pointless access_ok()
r128: switch compat ioctls to drm_ioctl_kernel()
selection: get rid of field-by-field copyin
VT_RESIZEX: get rid of field-by-field copyin
i2c compat ioctls: move to ->compat_ioctl()
sched_rr_get_interval(): move compat to native, get rid of set_fs()
mips: switch to {get,put}_compat_sigset()
sparc: switch to {get,put}_compat_sigset()
s390: switch to {get,put}_compat_sigset()
ppc: switch to {get,put}_compat_sigset()
parisc: switch to {get,put}_compat_sigset()
get_compat_sigset()
get rid of {get,put}_compat_itimerspec()
io_getevents: Use timespec64 to represent timeouts
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"A bit of a small release, I suspect in part due to me travelling for
KS. But my backlog of patches to review is smaller than usual, so I
think in part folks just didn't send as much this cycle.
Non-highlights:
- Five fixes for the >128T address space handling, both to fix bugs
in our implementation and to bring the semantics exactly into line
with x86.
Highlights:
- Support for a new OPAL call on bare metal machines which gives us a
true NMI (ie. is not masked by MSR[EE]=0) for debugging etc.
- Support for Power9 DD2 in the CXL driver.
- Improvements to machine check handling so that uncorrectable errors
can be reported into the generic memory_failure() machinery.
- Some fixes and improvements for VPHN, which is used under PowerVM
to notify the Linux partition of topology changes.
- Plumbing to enable TM (transactional memory) without suspend on
some Power9 processors (PPC_FEATURE2_HTM_NO_SUSPEND).
- Support for emulating vector loads form cache-inhibited memory, on
some Power9 revisions.
- Disable the fast-endian switch "syscall" by default (behind a
CONFIG), we believe it has never had any users.
- A major rework of the API drivers use when initiating and waiting
for long running operations performed by OPAL firmware, and changes
to the powernv_flash driver to use the new API.
- Several fixes for the handling of FP/VMX/VSX while processes are
using transactional memory.
- Optimisations of TLB range flushes when using the radix MMU on
Power9.
- Improvements to the VAS facility used to access coprocessors on
Power9, and related improvements to the way the NX crypto driver
handles requests.
- Implementation of PMEM_API and UACCESS_FLUSHCACHE for 64-bit.
Thanks to: Alexey Kardashevskiy, Alistair Popple, Allen Pais, Andrew
Donnellan, Aneesh Kumar K.V, Arnd Bergmann, Balbir Singh, Benjamin
Herrenschmidt, Breno Leitao, Christophe Leroy, Christophe Lombard,
Cyril Bur, Frederic Barrat, Gautham R. Shenoy, Geert Uytterhoeven,
Guilherme G. Piccoli, Gustavo Romero, Haren Myneni, Joel Stanley,
Kamalesh Babulal, Kautuk Consul, Markus Elfring, Masami Hiramatsu,
Michael Bringmann, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pedro Miraglia
Franco de Carvalho, Philippe Bergheaud, Sandipan Das, Seth Forshee,
Shriya, Stephen Rothwell, Stewart Smith, Sukadev Bhattiprolu, Tyrel
Datwyler, Vaibhav Jain, Vaidyanathan Srinivasan, and William A.
Kennington III"
* tag 'powerpc-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (151 commits)
powerpc/64s: Fix Power9 DD2.0 workarounds by adding DD2.1 feature
powerpc/64s: Fix masking of SRR1 bits on instruction fault
powerpc/64s: mm_context.addr_limit is only used on hash
powerpc/64s/radix: Fix 128TB-512TB virtual address boundary case allocation
powerpc/64s/hash: Allow MAP_FIXED allocations to cross 128TB boundary
powerpc/64s/hash: Fix fork() with 512TB process address space
powerpc/64s/hash: Fix 128TB-512TB virtual address boundary case allocation
powerpc/64s/hash: Fix 512T hint detection to use >= 128T
powerpc: Fix DABR match on hash based systems
powerpc/signal: Properly handle return value from uprobe_deny_signal()
powerpc/fadump: use kstrtoint to handle sysfs store
powerpc/lib: Implement UACCESS_FLUSHCACHE API
powerpc/lib: Implement PMEM API
powerpc/powernv/npu: Don't explicitly flush nmmu tlb
powerpc/powernv/npu: Use flush_all_mm() instead of flush_tlb_mm()
powerpc/powernv/idle: Round up latency and residency values
powerpc/kprobes: refactor kprobe_lookup_name for safer string operations
powerpc/kprobes: Blacklist emulate_update_regs() from kprobes
powerpc/kprobes: Do not disable interrupts for optprobes and kprobes_on_ftrace
powerpc/kprobes: Disable preemption before invoking probe handler for optprobes
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux
Pull module updates from Jessica Yu:
"Summary of modules changes for the 4.15 merge window:
- treewide module_param_call() cleanup, fix up set/get function
prototype mismatches, from Kees Cook
- minor code cleanups"
* tag 'modules-for-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux:
module: Do not paper over type mismatches in module_param_call()
treewide: Fix function prototypes for module_param_call()
module: Prepare to convert all module_param_call() prototypes
kernel/module: Delete an error message for a failed memory allocation in add_module_usage()
|
|
Commit e8e3edb95ce6 ("mtd: create per-device and module-scope debugfs
entries") tried to make MTD related debugfs stuff consistent across the
MTD framework by creating a root <debugfs>/mtd/ directory containing
one directory per MTD device.
The problem is that, by default, the MTD layer only registers the
master device if no partitions are defined for this master. This
behavior breaks all drivers that expect mtd->dbg.dfs_dir to be filled
correctly after calling mtd_device_register() in order to add their own
debugfs entries.
The only way we can force all MTD masters to be registered no matter if
they expose partitions or not is by enabling the
CONFIG_MTD_PARTITIONED_MASTER option.
In such situations, there's no other solution but to accept skipping
debugfs initialization when dbg.dfs_dir is invalid, and when this
happens, inform the user that he should consider enabling
CONFIG_MTD_PARTITIONED_MASTER.
Fixes: e8e3edb95ce6 ("mtd: create per-device and module-scope debugfs entries")
Cc: <stable@vger.kernel.org>
Cc: Mario J. Rugiero <mrugiero@gmail.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Reported-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
The Sharp SL Series (Zaurus) PXA handhelds have 16/64/128M of NAND flash
and share the same layout of the first 7M partition, managed by Sharp FTL.
GPL 2.4 sources: http://support.ezaurus.com/developer/source/source_dl.asp
The purpose of this self-contained patch is to add a common parser and
remove the hardcoded sizes in the board files (these devices are not yet
converted to devicetree).
Users will have benefits because the mtdparts= tag will not be necessary
anymore and they will be free to repartition the little sized flash.
The obsolete bootloader can not pass the partitioning info to modern
kernels anymore so it has to be read from flash at known logical addresses.
(see http://www.h5.dion.ne.jp/~rimemoon/zaurus/memo_006.htm )
In kernel, under arch/arm/mach-pxa we have already 8 machines:
MACH_POODLE, MACH_CORGI, MACH_SHEPERD, MACH_HUSKY, MACH_AKITA, MACH_SPITZ,
MACH_BORZOI, MACH_TOSA.
Lost after the 2.4 vendor kernel are MACH_BOXER and MACH_TERRIER.
Almost every model has different factory partitioning: add to this the
units can be repartitioned by users with userspace tools (nandlogical)
and installers for popular (back then) linux distributions.
The Parameter Area in the first (boot) partition extends from 0x00040000 to
0x0007bfff (176k) and contains two copies of the partition table:
...
0x00060000: Partition Info1 16k
0x00064000: Partition Info2 16k
0x00668000: Model 16k
...
The first 7M partition is managed by the Sharp FTL reserving 5% + 1 blocks
for wear-leveling: some blocks are remapped and one layer of translation
(logical to physical) is necessary.
There isn't much documentation about this FTL in the 2.4 sources, just the
MTD methods for reading and writing using logical addresses and the block
management (wear-leveling, use counter).
It seems this FTL was tailored with 16KiB eraesize in mind so to fit one
param block exactly, to have two copies of the partition table on two
blocks.
Later pxa27x devices have same size but 128KiB erasesize and less blocks
(56 vs. 448) but the same schema was adopted, even if the two tables are
now in the same eraseblock.
For the purpose of the MTD parser only the read part of the code was taken.
The NAND drivers that can use this parser are sharpsl.c and tmio_nand.c.
Signed-off-by: Andrea Adami <andrea.adami@gmail.com>
Reviewed-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
Unlike what's done in mtd_read/write(), there are no checks to make sure
the parameters passed to mtd_read/write_oob() are consistent, which
forces implementers of ->_read/write_oob() to do it, which in turn leads
to code duplication and possibly errors in the logic.
Do general sanity checks, like ops fields consistency and range checking.
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Cc: Peter Pan <peterpandong@micron.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
It is now unused.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Reviewed-by: Richard Weinberger <richard@nod.at>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Tested-by: Chris Brandt <chris.brandt@renesas.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
The mtd->_point method is a superset of mtd->_get_unmapped_area.
Especially in the NOR flash case, the point method ensures the flash
memory is in array (data) mode and that it will stay that way which
is precisely what callers of mtd_get_unmapped_area() would expect.
Implement mtd_get_unmapped_area() in terms of mtd->_point now that all
drivers that provided a _get_unmapped_area method also have the _point
method implemented.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Reviewed-by: Richard Weinberger <richard@nod.at>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
This will allow for the removal of the get_unmapped_area method later.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Tested-by: Chris Brandt <chris.brandt@renesas.com>
[rw: fixed build]
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
This will allow for the removal of the get_unmapped_area method later.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Reviewed-by: Richard Weinberger <richard@nod.at>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|