Age | Commit message (Collapse) | Author |
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-32-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-31-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-30-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-29-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-28-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-27-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-26-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Baruch Siach <baruch@tkos.co.il>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-25-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-24-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Florian Fainelli <florian.fainelli@broadcom.com>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-23-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-22-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-21-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-20-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-19-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-18-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-17-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-16-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-15-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-14-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-13-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Chen-Yu Tsai <wenst@chromium.org>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-12-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-11-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-10-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-9-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-8-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-7-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-6-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-5-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When a serial port is used for kernel console output, then all
modifications to the UART registers which are done from other contexts,
e.g. getty, termios, are interference points for the kernel console.
So far this has been ignored and the printk output is based on the
principle of hope. The rework of the console infrastructure which aims to
support threaded and atomic consoles, requires to mark sections which
modify the UART registers as unsafe. This allows the atomic write function
to make informed decisions and eventually to restore operational state. It
also allows to prevent the regular UART code from modifying UART registers
while printk output is in progress.
All modifications of UART registers are guarded by the UART port lock,
which provides an obvious synchronization point with the console
infrastructure.
To avoid adding this functionality to all UART drivers, wrap the
spin_[un]lock*() invocations for uart_port::lock into helper functions
which just contain the spin_[un]lock*() invocations for now. In a
subsequent step these helpers will gain the console synchronization
mechanisms.
Converted with coccinelle. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20230914183831.587273-4-john.ogness@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
There is a pid leakage:
------------------------------
unreferenced object 0xffff88810c181940 (size 224):
comm "sshd", pid 8191, jiffies 4294946950 (age 524.570s)
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 ad 4e ad de .............N..
ff ff ff ff 6b 6b 6b 6b ff ff ff ff ff ff ff ff ....kkkk........
backtrace:
[<ffffffff814774e6>] kmem_cache_alloc+0x5c6/0x9b0
[<ffffffff81177342>] alloc_pid+0x72/0x570
[<ffffffff81140ac4>] copy_process+0x1374/0x2470
[<ffffffff81141d77>] kernel_clone+0xb7/0x900
[<ffffffff81142645>] __se_sys_clone+0x85/0xb0
[<ffffffff8114269b>] __x64_sys_clone+0x2b/0x30
[<ffffffff83965a72>] do_syscall_64+0x32/0x80
[<ffffffff83a00085>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
It turns out that there is a race condition between disassociate_ctty() and
tty_signal_session_leader(), which caused this leakage.
The pid memleak is triggered by the following race:
task[sshd] task[bash]
----------------------- -----------------------
disassociate_ctty();
spin_lock_irq(¤t->sighand->siglock);
put_pid(current->signal->tty_old_pgrp);
current->signal->tty_old_pgrp = NULL;
tty = tty_kref_get(current->signal->tty);
spin_unlock_irq(¤t->sighand->siglock);
tty_vhangup();
tty_lock(tty);
...
tty_signal_session_leader();
spin_lock_irq(&p->sighand->siglock);
...
if (tty->ctrl.pgrp) //tty->ctrl.pgrp is not NULL
p->signal->tty_old_pgrp = get_pid(tty->ctrl.pgrp); //An extra get
spin_unlock_irq(&p->sighand->siglock);
...
tty_unlock(tty);
if (tty) {
tty_lock(tty);
...
put_pid(tty->ctrl.pgrp);
tty->ctrl.pgrp = NULL; //It's too late
...
tty_unlock(tty);
}
The issue is believed to be introduced by commit c8bcd9c5be24 ("tty:
Fix ->session locking") who moves the unlock of siglock in
disassociate_ctty() above "if (tty)", making a small window allowing
tty_signal_session_leader() to kick in. It can be easily reproduced by
adding a delay before "if (tty)" and at the entrance of
tty_signal_session_leader().
To fix this issue, we move "put_pid(current->signal->tty_old_pgrp)" after
"tty->ctrl.pgrp = NULL".
Fixes: c8bcd9c5be24 ("tty: Fix ->session locking")
Signed-off-by: Yi Yang <yiyang13@huawei.com>
Co-developed-by: GUO Zihua <guozihua@huawei.com>
Signed-off-by: GUO Zihua <guozihua@huawei.com>
Link: https://lore.kernel.org/r/20230831023329.165737-1-yiyang13@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Three of the four entries of imx_uart_devdata[] use .uts_reg =
IMX21_UTS. The difference in the .devtype member isn't relevant, the
only thing that matters is if is equal to IMX1_UART.
So use an entry with .devtype = IMX21_UART on all platforms but i.MX1.
There is no need to have the dev types in an array, so split them up in
two separate variables.
The fsl,imx53-uart devinfo can go away because in the binding and also
the dts files all fsl,imx53-uart devices also are compatible to
fsl,imx21-uart. That's not the case for fsl,imx6q-uart (which is a bit
strange IMHO), so the fsl,imx6q-uart must stay around.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20230911085451.628798-1-u.kleine-koenig@pengutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Replace 740/750/760 with generic terms like 74x/75x/76x to account for
variants like 741, 752 and 762.
Signed-off-by: Hugo Villeneuve <hvilleneuve@dimonoff.com>
Reviewed-by: Lech Perczak <lech.perczak@camlingroup.com>
Link: https://lore.kernel.org/r/20230905151300.15365-1-hugo@hugovil.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
linflex_probe()
The platform_get_irq might be failed and return a negative result. So
there should have an error handling code.
Fixed this by adding an error handling code.
Signed-off-by: Zhang Shurong <zhang_shurong@foxmail.com>
Link: https://lore.kernel.org/r/tencent_234B0AACD06350E10D7548C2E086A9166305@qq.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Sort drivers in alphabetic order in Makefile to make it easier to find
the correct line. In case the CONFIG and filenames disagree, sort using
the filename (ignore 8250 prefix while sorting).
In addition, place 8250_early separately above the drivers.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20230912103558.20123-2-ilpo.jarvinen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Sort drivers in alphabetic order in Makefile to make it easier to find
the correct line. In case the CONFIG and filenames disagree, sort using
the filename (but ignoring "serial" prefixes).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20230912103558.20123-1-ilpo.jarvinen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
8250_exar includes linux/8250_pci.h and depends on SERIAL_8250_PCI.
Neither is necessary so this patch removes the include and changes
the depends on to SERIAL_8250 && PCI (taken from SERIAL_8250_PCI).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20230915094336.13278-2-ilpo.jarvinen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
8250_mid uses FL_*BASE* from linux/8250_pci.h and nothing else. The
code can be simplified by directly defining BARs within the driver
instead.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20230915094336.13278-1-ilpo.jarvinen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The probe process may generate EPROBE_DEFER. In this case
dev_err_probe() can still record err information. Otherwise
it may pollute logs on that occasion.
This also helps simplifing code and standardizing the error output.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20230912165607.402580-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The probe process may generate EPROBE_DEFER. In this case
dev_err_probe() can still record err information. Otherwise
it may pollute logs on that occasion.
This also helps simplifing code and standardizing the error output.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20230912165540.402504-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The UART_IIR_64BYTE_FIFO is always being used in conjunction with
UART_IIR_FIFO_ENABLED. Introduce a joined UART_IIR_FIFO_ENABLED_16750
definition and use it.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20230911144308.4169752-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Add check for the return value of kstrdup() and return the error, if it
fails in order to avoid NULL pointer dereference.
Signed-off-by: Yi Yang <yiyang13@huawei.com>
Reviewed-by: Jiri Slaby <jirislaby@kernel.org>
Link: https://lore.kernel.org/r/20230904035220.48164-1-yiyang13@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Add support for break control to the stm32 serial driver.
Signed-off-by: Erwan Le Ray <erwan.leray@foss.st.com>
Signed-off-by: Valentin Caron <valentin.caron@foss.st.com>
Reviewed-by: Jiri Slaby <jirislaby@kernel.org>
Link: https://lore.kernel.org/r/20230906151547.840302-1-valentin.caron@foss.st.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The local variable vdev in hvcs_destruct_port() is set
but not used. Remove the variable and related code.
Signed-off-by: Bo Liu <liubo03@inspur.com>
Reviewed-by: Jiri Slaby <jirislaby@kernel.org>
Link: https://lore.kernel.org/r/20230908061726.2641-1-liubo03@inspur.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This macro is not used anywhere.
Signed-off-by: Hugo Villeneuve <hvilleneuve@dimonoff.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20230905181649.134720-1-hugo@hugovil.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Add check for ioremap() and return the error if it fails in order to
guarantee the success of ioremap().
Signed-off-by: Chen Ni <nichen@iscas.ac.cn>
Acked-by: Jacky Huang <ychuang3@nuvoton.com>
Link: https://lore.kernel.org/r/20230915071106.3347-1-nichen@iscas.ac.cn
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This reverts commit 9b9c8195f3f0d74a826077fc1c01b9ee74907239.
The commit above is reverted as it did not solve the original issue.
gsm_cleanup_mux() tries to free up the virtual ttys by calling
gsm_dlci_release() for each available DLCI. There, dlci_put() is called to
decrease the reference counter for the DLCI via tty_port_put() which
finally calls gsm_dlci_free(). This already clears the pointer which is
being checked in gsm_cleanup_mux() before calling gsm_dlci_release().
Therefore, it is not necessary to clear this pointer in gsm_cleanup_mux()
as done in the reverted commit. The commit introduces a null pointer
dereference:
<TASK>
? __die+0x1f/0x70
? page_fault_oops+0x156/0x420
? search_exception_tables+0x37/0x50
? fixup_exception+0x21/0x310
? exc_page_fault+0x69/0x150
? asm_exc_page_fault+0x26/0x30
? tty_port_put+0x19/0xa0
gsmtty_cleanup+0x29/0x80 [n_gsm]
release_one_tty+0x37/0xe0
process_one_work+0x1e6/0x3e0
worker_thread+0x4c/0x3d0
? __pfx_worker_thread+0x10/0x10
kthread+0xe1/0x110
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2f/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The actual issue is that nothing guards dlci_put() from being called
multiple times while the tty driver was triggered but did not yet finished
calling gsm_dlci_free().
Fixes: 9b9c8195f3f0 ("tty: n_gsm: fix UAF in gsm_cleanup_mux")
Cc: stable <stable@kernel.org>
Signed-off-by: Daniel Starke <daniel.starke@siemens.com>
Link: https://lore.kernel.org/r/20230914051507.3240-1-daniel.starke@siemens.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
In case the leaf driver wants to use IRQ polling (irq = 0) and
IIR register shows that an interrupt happened in the 8250 hardware
the IRQ data can be NULL. In such a case we need to skip the wake
event as we came to this path from the timer interrupt and quite
likely system is already awake.
Without this fix we have got an Oops:
serial8250: ttyS0 at I/O 0x3f8 (irq = 0, base_baud = 115200) is a 16550A
...
BUG: kernel NULL pointer dereference, address: 0000000000000010
RIP: 0010:serial8250_handle_irq+0x7c/0x240
Call Trace:
? serial8250_handle_irq+0x7c/0x240
? __pfx_serial8250_timeout+0x10/0x10
Fixes: 0ba9e3a13c6a ("serial: 8250: Add missing wakeup event reporting")
Cc: stable <stable@kernel.org>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Florian Fainelli <florian.fainelli@broadcom.com>
Link: https://lore.kernel.org/r/20230831222555.614426-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The Itanium architecture is obsolete, and an informal survey [0] reveals
that any residual use of Itanium hardware in production is mostly HP-UX
or OpenVMS based. The use of Linux on Itanium appears to be limited to
enthusiasts that occasionally boot a fresh Linux kernel to see whether
things are still working as intended, and perhaps to churn out some
distro packages that are rarely used in practice.
None of the original companies behind Itanium still produce or support
any hardware or software for the architecture, and it is listed as
'Orphaned' in the MAINTAINERS file, as apparently, none of the engineers
that contributed on behalf of those companies (nor anyone else, for that
matter) have been willing to support or maintain the architecture
upstream or even be responsible for applying the odd fix. The Intel
firmware team removed all IA-64 support from the Tianocore/EDK2
reference implementation of EFI in 2018. (Itanium is the original
architecture for which EFI was developed, and the way Linux supports it
deviates significantly from other architectures.) Some distros, such as
Debian and Gentoo, still maintain [unofficial] ia64 ports, but many have
dropped support years ago.
While the argument is being made [1] that there is a 'for the common
good' angle to being able to build and run existing projects such as the
Grid Community Toolkit [2] on Itanium for interoperability testing, the
fact remains that none of those projects are known to be deployed on
Linux/ia64, and very few people actually have access to such a system in
the first place. Even if there were ways imaginable in which Linux/ia64
could be put to good use today, what matters is whether anyone is
actually doing that, and this does not appear to be the case.
There are no emulators widely available, and so boot testing Itanium is
generally infeasible for ordinary contributors. GCC still supports IA-64
but its compile farm [3] no longer has any IA-64 machines. GLIBC would
like to get rid of IA-64 [4] too because it would permit some overdue
code cleanups. In summary, the benefits to the ecosystem of having IA-64
be part of it are mostly theoretical, whereas the maintenance overhead
of keeping it supported is real.
So let's rip off the band aid, and remove the IA-64 arch code entirely.
This follows the timeline proposed by the Debian/ia64 maintainer [5],
which removes support in a controlled manner, leaving IA-64 in a known
good state in the most recent LTS release. Other projects will follow
once the kernel support is removed.
[0] https://lore.kernel.org/all/CAMj1kXFCMh_578jniKpUtx_j8ByHnt=s7S+yQ+vGbKt9ud7+kQ@mail.gmail.com/
[1] https://lore.kernel.org/all/0075883c-7c51-00f5-2c2d-5119c1820410@web.de/
[2] https://gridcf.org/gct-docs/latest/index.html
[3] https://cfarm.tetaneutral.net/machines/list/
[4] https://lore.kernel.org/all/87bkiilpc4.fsf@mid.deneb.enyo.de/
[5] https://lore.kernel.org/all/ff58a3e76e5102c94bb5946d99187b358def688a.camel@physik.fu-berlin.de/
Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty/serial driver updates from Greg KH:
"Here is the big set of tty and serial driver changes for 6.6-rc1.
Lots of cleanups in here this cycle, and some driver updates. Short
summary is:
- Jiri's continued work to make the tty code and apis be a bit more
sane with regards to modern kernel coding style and types
- cpm_uart driver updates
- n_gsm updates and fixes
- meson driver updates
- sc16is7xx driver updates
- 8250 driver updates for different hardware types
- qcom-geni driver fixes
- tegra serial driver change
- stm32 driver updates
- synclink_gt driver cleanups
- tty structure size reduction
All of these have been in linux-next this week with no reported
issues. The last bit of cleanups from Jiri and the tty structure size
reduction came in last week, a bit late but as they were just style
changes and size reductions, I figured they should get into this merge
cycle so that others can work on top of them with no merge conflicts"
* tag 'tty-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (199 commits)
tty: shrink the size of struct tty_struct by 40 bytes
tty: n_tty: deduplicate copy code in n_tty_receive_buf_real_raw()
tty: n_tty: extract ECHO_OP processing to a separate function
tty: n_tty: unify counts to size_t
tty: n_tty: use u8 for chars and flags
tty: n_tty: simplify chars_in_buffer()
tty: n_tty: remove unsigned char casts from character constants
tty: n_tty: move newline handling to a separate function
tty: n_tty: move canon handling to a separate function
tty: n_tty: use MASK() for masking out size bits
tty: n_tty: make n_tty_data::num_overrun unsigned
tty: n_tty: use time_is_before_jiffies() in n_tty_receive_overrun()
tty: n_tty: use 'num' for writes' counts
tty: n_tty: use output character directly
tty: n_tty: make flow of n_tty_receive_buf_common() a bool
Revert "tty: serial: meson: Add a earlycon for the T7 SoC"
Documentation: devices.txt: Fix minors for ttyCPM*
Documentation: devices.txt: Remove ttySIOC*
Documentation: devices.txt: Remove ttyIOC*
serial: 8250_bcm7271: improve bcm7271 8250 port
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
- An extensive rework of kexec and crash Kconfig from Eric DeVolder
("refactor Kconfig to consolidate KEXEC and CRASH options")
- kernel.h slimming work from Andy Shevchenko ("kernel.h: Split out a
couple of macros to args.h")
- gdb feature work from Kuan-Ying Lee ("Add GDB memory helper
commands")
- vsprintf inclusion rationalization from Andy Shevchenko
("lib/vsprintf: Rework header inclusions")
- Switch the handling of kdump from a udev scheme to in-kernel
handling, by Eric DeVolder ("crash: Kernel handling of CPU and memory
hot un/plug")
- Many singleton patches to various parts of the tree
* tag 'mm-nonmm-stable-2023-08-28-22-48' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (81 commits)
document while_each_thread(), change first_tid() to use for_each_thread()
drivers/char/mem.c: shrink character device's devlist[] array
x86/crash: optimize CPU changes
crash: change crash_prepare_elf64_headers() to for_each_possible_cpu()
crash: hotplug support for kexec_load()
x86/crash: add x86 crash hotplug support
crash: memory and CPU hotplug sysfs attributes
kexec: exclude elfcorehdr from the segment digest
crash: add generic infrastructure for crash hotplug support
crash: move a few code bits to setup support of crash hotplug
kstrtox: consistently use _tolower()
kill do_each_thread()
nilfs2: fix WARNING in mark_buffer_dirty due to discarded buffer reuse
scripts/bloat-o-meter: count weak symbol sizes
treewide: drop CONFIG_EMBEDDED
lockdep: fix static memory detection even more
lib/vsprintf: declare no_hash_pointers in sprintf.h
lib/vsprintf: split out sprintf() and friends
kernel/fork: stop playing lockless games for exe_file replacement
adfs: delete unused "union adfs_dirtail" definition
...
|