Age | Commit message (Collapse) | Author |
|
Now that the appropriate ordering is enforced via probe-deferral of
masters in core code, rip it all out and bask in the simplicity.
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
[Sricharan: Rebased on top of ACPI IORT SMMU series]
Signed-off-by: Sricharan R <sricharan@codeaurora.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
This is an equivalent to the DT's handling of the iommu master's probe
with deferred probing when the corrsponding iommu is not probed yet.
The lack of a registered IOMMU can be caused by the lack of a driver for
the IOMMU, the IOMMU device probe not having been performed yet, having
been deferred, or having failed.
The first case occurs when the firmware describes the bus master and
IOMMU topology correctly but no device driver exists for the IOMMU yet
or the device driver has not been compiled in. Return NULL, the caller
will configure the device without an IOMMU.
The second and third cases are handled by deferring the probe of the bus
master device which will eventually get reprobed after the IOMMU.
The last case is currently handled by deferring the probe of the bus
master device as well. A mechanism to either configure the bus master
device without an IOMMU or to fail the bus master device probe depending
on whether the IOMMU is optional or mandatory would be a good
enhancement.
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
[Lorenzo: Added fixes for dma_coherent_mask overflow, acpi_dma_configure
called multiple times for same device]
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Sricharan R <sricharan@codeaurora.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
Failures to look up an IOMMU when parsing the DT iommus property need to
be handled separately from the .of_xlate() failures to support deferred
probing.
The lack of a registered IOMMU can be caused by the lack of a driver for
the IOMMU, the IOMMU device probe not having been performed yet, having
been deferred, or having failed.
The first case occurs when the device tree describes the bus master and
IOMMU topology correctly but no device driver exists for the IOMMU yet
or the device driver has not been compiled in. Return NULL, the caller
will configure the device without an IOMMU.
The second and third cases are handled by deferring the probe of the bus
master device which will eventually get reprobed after the IOMMU.
The last case is currently handled by deferring the probe of the bus
master device as well. A mechanism to either configure the bus master
device without an IOMMU or to fail the bus master device probe depending
on whether the IOMMU is optional or mandatory would be a good
enhancement.
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Laurent Pichart <laurent.pinchart+renesas@ideasonboard.com>
Signed-off-by: Sricharan R <sricharan@codeaurora.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
devices
Configuring DMA ops at probe time will allow deferring device probe when
the IOMMU isn't available yet. The dma_configure for the device is
now called from the generic device_attach callback just before the
bus/driver probe is called. This way, configuring the DMA ops for the
device would be called at the same place for all bus_types, hence the
deferred probing mechanism should work for all buses as well.
pci_bus_add_devices (platform/amba)(_device_create/driver_register)
| |
pci_bus_add_device (device_add/driver_register)
| |
device_attach device_initial_probe
| |
__device_attach_driver __device_attach_driver
|
driver_probe_device
|
really_probe
|
dma_configure
Similarly on the device/driver_unregister path __device_release_driver is
called which inturn calls dma_deconfigure.
This patch changes the dma ops configuration to probe time for
both OF and ACPI based platform/amba/pci bus devices.
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Rob Herring <robh@kernel.org>
Acked-by: Bjorn Helgaas <bhelgaas@google.com> (drivers/pci part)
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sricharan R <sricharan@codeaurora.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
Size of the dma-range is calculated as coherent_dma_mask + 1
and passed to arch_setup_dma_ops further. It overflows when
the coherent_dma_mask is set for full 64 bits 0xFFFFFFFFFFFFFFFF,
resulting in size getting passed as 0 wrongly. Fix this by
passsing in max(mask, mask + 1). Note that in this case
when the mask is set to full 64bits, we will be passing the mask
itself to arch_setup_dma_ops instead of the size. The real fix
for this should be to make arch_setup_dma_ops receive the
mask and handle it, to be done in the future.
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Sricharan R <sricharan@codeaurora.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
The IOMMU probe deferral implementation requires a mechanism to detect
if drivers for SMMU components are built-in in the kernel to detect
whether IOMMU configuration for a given device should be deferred (ie
SMMU drivers present but still not probed) or not (drivers not present).
Add a simple function to IORT to detect if SMMU drivers for SMMU
components managed by IORT are built-in in the kernel.
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Cc: Sricharan R <sricharan@codeaurora.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
As part of moving DMA initializing to probe time the
of_dma_deconfigure() function will need to be called from different
source files. Make it public and move it to drivers/of/device.c where
the of_dma_configure() function is.
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
IOMMU configuration represents unchanging properties of the hardware,
and as such should only need happen once in a device's lifetime, but
the necessary interaction with the IOMMU device and driver complicates
exactly when that point should be.
Since the only reasonable tool available for handling the inter-device
dependency is probe deferral, we need to prepare of_iommu_configure()
to run later than it is currently called (i.e. at driver probe rather
than device creation), to handle being retried, and to tell whether a
not-yet present IOMMU should be waited for or skipped (by virtue of
having declared a built-in driver or not).
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
In preparation for some upcoming cleverness, rework the control flow in
of_iommu_configure() to minimise duplication and improve the propogation
of errors. It's also as good a time as any to switch over from the
now-just-a-compatibility-wrapper of_iommu_get_ops() to using the generic
IOMMU instance interface directly.
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
On an error path in NVM_DEV_CREATE ioctl blk_put_queue is being called
twice: one via blk_cleanup_queue and another via put_disk. Straight fix
seems to remove queue pointer so that disk_release never ends up caling
blk_put_queue again.
[ 391.808827] WARNING: CPU: 1 PID: 1250 at lib/refcount.c:128 refcount_sub_and_test+0x70/0x80
[ 391.808830] refcount_t: underflow; use-after-free.
[ 391.808832] Modules linked in: nf_conntrack_netbios_ns............
[ 391.809052] CPU: 1 PID: 1250 Comm: nvme Not tainted.........
[ 391.809057] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[ 391.809060] Call Trace:
[ 391.809079] dump_stack+0x63/0x86
[ 391.809094] __warn+0xcb/0xf0
[ 391.809103] warn_slowpath_fmt+0x5f/0x80
[ 391.809118] refcount_sub_and_test+0x70/0x80
[ 391.809125] refcount_dec_and_test+0x11/0x20
[ 391.809136] kobject_put+0x1f/0x60
[ 391.809149] blk_put_queue+0x15/0x20
[ 391.809159] disk_release+0xae/0xf0
[ 391.809172] device_release+0x32/0x90
[ 391.809184] kobject_release+0x6a/0x170
[ 391.809196] kobject_put+0x2f/0x60
[ 391.809206] put_disk+0x17/0x20
[ 391.809219] nvm_ioctl_dev_create.isra.16+0x897/0xa30
[ 391.809236] nvm_ctl_ioctl+0x23c/0x4c0
[ 391.809248] do_vfs_ioctl+0xa3/0x5f0
[ 391.809258] SyS_ioctl+0x79/0x90
[ 391.809271] entry_SYSCALL_64_fastpath+0x1a/0xa9
[ 391.809280] RIP: 0033:0x7f5d3ef363c7
[ 391.809286] RSP: 002b:00007ffc72ed8d78 EFLAGS: 00000206 ORIG_RAX: 0000000000000010
[ 391.809296] RAX: ffffffffffffffda RBX: 00007ffc72edb552 RCX: 00007f5d3ef363c7
[ 391.809301] RDX: 00007ffc72ed8d90 RSI: 0000000040804c22 RDI: 0000000000000003
[ 391.809306] RBP: 0000000000000001 R08: 0000000000000020 R09: 0000000000000001
[ 391.809311] R10: 000000000000053f R11: 0000000000000206 R12: 0000000000000000
[ 391.809316] R13: 0000000000000000 R14: 00007ffc72edb58d R15: 00007ffc72edb581
Signed-off-by: Rakesh Pandit <rakesh@tuxera.com>
Reviewed-by: Matias Bjørling <matias@cnexlabs.com>
Fixes: 7d1ef2f408ab "lightnvm: fix cleanup order of disk on init error"
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Commit 4cfffcfa5106 ("irqchip/mips-gic: Fix local interrupts") fixed
local interrupts by creating virq mappings for them all at startup.
Unfortunately this change broke legacy IRQ controllers in the same
system, such as the i8259 on the Malta platform, as it allocates virq
numbers that were expected to be available for the legacy controller.
Instead of creating the mappings statically when the GIC is probed,
re-introduce the irq domain .map function, removed by commit e875bd66dfb
("irqchip/mips-gic: Fix local interrupts") and use it to set up the irq
handler and chip. Since a good deal of the required functionality is
already implemented by gic_irq_domain_alloc, repurpose that function for
gic_irq_domain_map and add a new gic_irq_domain_alloc which wraps
gic_irq_domain_map with the necessary conversion.
This change fixes the legacy interrupt controller of the Malta platform
without breaking the perf interrupt fixed by commit e875bd66dfb
("irqchip/mips-gic: Fix local interrupts").
Signed-off-by: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Link: http://lkml.kernel.org/r/1492679256-14513-4-git-send-email-matt.redfearn@imgtec.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
In commit c98c1822ee13 ("irqchip/mips-gic: Add device hierarchy domain")
Qais indicates that he felt having a separate device IRQ domain was
cleaner, but along with everyone else I'm aware of touching this driver
I disagree.
Remove the separate device IRQ domain so that we simply have the main
GIC IRQ domain used for devices, and an IPI IRQ domain as a child. The
logic for handling the device interrupts & IPIs is cleanly separated
into the appropriate domain ops, making it much easier to reason about
what the driver is doing than the previous approach where the 2 child
domains had to call up to their parent, which had to handle both types
of interrupt & had all sorts of weird & wonderful duplication or
outright clobbering of setup performed by multiple domains.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Signed-off-by: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Link: http://lkml.kernel.org/r/1492679256-14513-3-git-send-email-matt.redfearn@imgtec.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Since commit 2af70a962070 ("irqchip/mips-gic: Add a IPI hierarchy
domain") introduced the GIC IPI IRQ domain we have tracked both
reservation of interrupts & their use with a single bitmap - ipi_resrv.
If an interrupt is reserved for use as an IPI but not actually in use
then the appropriate bit is set in ipi_resrv. If an interrupt is either
not reserved for use as an IPI or has been allocated as one then the
appropriate bit is clear in ipi_resrv.
Unfortunately this means that checking whether a bit is set in ipi_resrv
to prevent IPI interrupts being allocated for use with a device is
broken, because if the interrupt has been allocated as an IPI first then
its bit will be clear.
Fix this by separating the tracking of IPI reservation & usage,
introducing a separate ipi_available bitmap for the latter. This means
that ipi_resrv will now always have bits set corresponding to all
interrupts reserved for use as IPIs, whether or not they have been
allocated yet, and therefore that checking it when allocating device
interrupts works as expected.
Fixes: 2af70a962070 ("irqchip/mips-gic: Add a IPI hierarchy domain")
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Signed-off-by: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Link: http://lkml.kernel.org/r/1492679256-14513-2-git-send-email-matt.redfearn@imgtec.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Pick up upstream fixes to avoid conflicts with pending patches.
|
|
Instead of copy & pasting and old version of the code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
The 82599 quirk contained an outdated copy of the FLR code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Currently we opencode the FLR sequence in lots of place; export a core
helper instead. We split out the probing for FLR support as all the
non-core callers already know their hardware.
Note that in the new pci_has_flr() function the quirk check has been moved
before the capability check as there is no point in reading the capability
in this case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Sometimes it is not desirable to bind SR-IOV VFs to drivers. This can save
host side resource usage by VF instances that will be assigned to VMs.
Add a new PCI sysfs interface "sriov_drivers_autoprobe" to control that
from the PF. To modify it, echo 0/n/N (disable probe) or 1/y/Y (enable
probe) to:
/sys/bus/pci/devices/<DOMAIN:BUS:DEVICE.FUNCTION>/sriov_drivers_autoprobe
Note that this must be done before enabling VFs. The change will not take
effect if VFs are already enabled. Simply, one can disable VFs by setting
sriov_numvfs to 0, choose whether to probe or not, and then re-enable the
VFs by restoring sriov_numvfs.
[bhelgaas: changelog, ABI doc]
Signed-off-by: Bodong Wang <bodong@mellanox.com>
Signed-off-by: Eli Cohen <eli@mellanox.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
|
|
This will need to call into an arch-provided pci_iobar_pfn() function.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Starting to leave behind the legacy of the pci_mmap_page_range() interface
which takes "user-visible" BAR addresses. This takes just the resource and
offset.
For now, both APIs coexist and depending on the platform, one is
implemented as a wrapper around the other.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
In all cases we know which BAR it is. Passing it in means that arch code
(or generic code; watch this space) won't have to go looking for it again.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
We store the pointer, and then on *every* use of it we loop over the
device's resources to find out the index. That's kind of silly.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
In some rare randconfig builds, we end up with two functions being entirely
unused:
drivers/clocksource/arm_arch_timer.c:342:12: error: 'erratum_set_next_event_tval_phys' defined but not used [-Werror=unused-function]
static int erratum_set_next_event_tval_phys(unsigned long evt,
drivers/clocksource/arm_arch_timer.c:335:12: error: 'erratum_set_next_event_tval_virt' defined but not used [-Werror=unused-function]
static int erratum_set_next_event_tval_virt(unsigned long evt,
We could add an #ifdef around them, but we would already have to check for
several symbols there and there is a chance this would get more complicated
over time, so marking them as __maybe_unused is the simplest way to avoid the
harmless warnings.
Fixes: 01d3e3ff2608 ("arm64: arch_timer: Rework the set_next_event workarounds")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Link: http://lkml.kernel.org/r/20170419173737.3846098-1-arnd@arndb.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Malta was the only platform probing this driver from platform code
without using device tree. With that code removed, gic_clocksource_init
is redundant so remove it.
Signed-off-by: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Link: http://lkml.kernel.org/r/1492604806-23420-2-git-send-email-matt.redfearn@imgtec.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Currently for DDR50 card, it need tuning in default. We meet tuning fail
issue for DDR50 card and some data CRC error when DDR50 sd card works.
This is because the default pad I/O drive strength can't make sure DDR50
card work stable. So increase the pad I/O drive strength for DDR50 card,
and use pins_100mhz.
This fixes DDR50 card support for IMX since DDR50 tuning was enabled from
commit 9faac7b95ea4 ("mmc: sdhci: enable tuning for DDR50")
Tested-and-reported-by: Tim Harvey <tharvey@gateworks.com>
Signed-off-by: Haibo Chen <haibo.chen@nxp.com>
Cc: stable@vger.kernel.org # v4.4+
Acked-by: Dong Aisheng <aisheng.dong@nxp.com>
Acked-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/watchdog/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
cc: Wim Van Sebroeck <wim@iguana.be>
cc: Zwane Mwaikambo <zwanem@gmail.com>
cc: linux-watchdog@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/video/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
cc: Tomi Valkeinen <tomi.valkeinen@ti.com>
cc: linux-fbdev@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/tty/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
cc: Jiri Slaby <jslaby@suse.com>
cc: linux-serial@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/staging/vme/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Martyn Welch <martyn@welchs.me.uk>
cc: Manohar Vanga <manohar.vanga@gmail.com>
cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
cc: devel@driverdev.osuosl.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/staging/speakup/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
cc: speakup@linux-speakup.org
cc: devel@driverdev.osuosl.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/staging/media/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
cc: linux-media@vger.kernel.org
cc: devel@driverdev.osuosl.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/scsi/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: "Juergen E. Fischer" <fischer@norbit.de>
cc: "James E.J. Bottomley" <jejb@linux.vnet.ibm.com>
cc: "Martin K. Petersen" <martin.petersen@oracle.com>
cc: Dario Ballabio <ballabio_dario@emc.com>
cc: Finn Thain <fthain@telegraphics.com.au>
cc: Michael Schmitz <schmitzmic@gmail.com>
cc: Achim Leubner <achim_leubner@adaptec.com>
cc: linux-scsi@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/pcmcia/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-pcmcia@lists.infradead.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/pci/hotplug/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
cc: Scott Murray <scott@spiteful.org>
cc: linux-pci@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/parport/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/net/wireless/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Kalle Valo <kvalo@codeaurora.org>
cc: linux-wireless@vger.kernel.org
cc: netdev@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/net/wan/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: "Jan \"Yenya\" Kasprzak" <kas@fi.muni.cz>
cc: netdev@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/net/irda/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Samuel Ortiz <samuel@sortiz.org>
cc: netdev@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/net/hamradio/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Thomas Sailer <t.sailer@alumni.ethz.ch>
cc: Joerg Reuter <jreuter@yaina.de>
cc: linux-hams@vger.kernel.org
cc: netdev@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/net/ethernet/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Steffen Klassert <steffen.klassert@secunet.com>
cc: Jaroslav Kysela <perex@perex.cz>
cc: netdev@vger.kernel.org
cc: linux-parisc@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/net/can/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Marc Kleine-Budde <mkl@pengutronix.de>
cc: Wolfgang Grandegger <wg@grandegger.com>
cc: linux-can@vger.kernel.org
cc: netdev@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/net/arcnet/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Michael Grzeschik <m.grzeschik@pengutronix.de>
cc: netdev@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/net/appletalk/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Arnaldo Carvalho de Melo <acme@kernel.org>
cc: netdev@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/mmc/host/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Pierre Ossman <pierre@ossman.eu>
cc: Ulf Hansson <ulf.hansson@linaro.org>
cc: linux-mmc@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/misc/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
cc: Arnd Bergmann <arnd@arndb.de>
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/media/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
cc: mjpeg-users@lists.sourceforge.net
cc: linux-media@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/isdn/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Karsten Keil <isdn@linux-pingi.de>
cc: netdev@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/input/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
cc: linux-input@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/iio/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: William Breathitt Gray <vilhelm.gray@gmail.com>
Acked-by: Jonathan Cameron <jic23@kernel.org>
cc: linux-iio@vger.kernel.org
|
|
When the kernel is running in secure boot mode, we lock down the kernel to
prevent userspace from modifying the running kernel image. Whilst this
includes prohibiting access to things like /dev/mem, it must also prevent
access by means of configuring driver modules in such a way as to cause a
device to access or modify the kernel image.
To this end, annotate module_param* statements that refer to hardware
configuration and indicate for future reference what type of parameter they
specify. The parameter parser in the core sees this information and can
skip such parameters with an error message if the kernel is locked down.
The module initialisation then runs as normal, but just sees whatever the
default values for those parameters is.
Note that we do still need to do the module initialisation because some
drivers have viable defaults set in case parameters aren't specified and
some drivers support automatic configuration (e.g. PNP or PCI) in addition
to manually coded parameters.
This patch annotates drivers in drivers/i2c/.
Suggested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Wolfram Sang <wsa@the-dreams.de>
Acked-by: Jean Delvare <jdelvare@suse.de>
cc: linux-i2c@vger.kernel.org
|