summaryrefslogtreecommitdiff
path: root/fs
AgeCommit message (Collapse)Author
2024-07-12ubifs: Remove insert_dead_orphan from replaying orphan processZhihao Cheng
UBIFS will do commit at the end of mounting process(rw mode), dead orphans(added by insert_dead_orphan in replaying orphan) are deleted by ubifs_orphan_end_commit(). The only reason why dead orphans are added into orphan list is that old orpans may be lost when powercut happens in ubifs_orphan_end_commit(): ubifs_orphan_end_commit // TNC(updated by orphans) is not written yet if (c->cmt_orphans != 0) commit_orphans consolidate // traverse orphan list write_orph_nodes // rewrite all orphans by ubifs_leb_change // If dead orphans are not in list, they will be lost when powercut // happens, then TNC won't be updated by old orphans in next mounting. Luckily, the condition 'c->cmt_orphans != 0' will never be true in mounting process, there can't be new orphans added into orphan list before mounting returned, but commit will be done at the end of mounting. Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com> Signed-off-by: Richard Weinberger <richard@nod.at>
2024-07-12Revert "ubifs: ubifs_symlink: Fix memleak of inode->i_link in error path"Zhihao Cheng
This reverts commit 6379b44cdcd67f5f5d986b73953e99700591edfa. Commit 1e022216dcd2 ("ubifs: ubifs_symlink: Fix memleak of inode->i_link in error path") is applied again in commit 6379b44cdcd6 ("ubifs: ubifs_symlink: Fix memleak of inode->i_link in error path"), which changed ubifs_mknod (It won't become a real problem). Just revert it. Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com> Signed-off-by: Richard Weinberger <richard@nod.at>
2024-07-12ubifs: Don't add xattr inode into orphan areaZhihao Cheng
Now, the entire inode with its' xattrs are removed while replaying orphan nodes. There is no need to add xattr inodes into orphan area, which is based on the fact that xattr entries won't be cleared from disk before deleting xattr inodes, in another words, current logic can make sure that xattr inode be deleted in any cases even UBIFS not record xattr inode into orphan area. Let's looking for possible paths that could clear xattr entries from disk but leave the xattr inode on TNC: 1. unlink/tmpfile -> ubifs_jnl_update: inode(nlink=0) is written into bud LEB and added into orphan list, then: a. powercut: ubifs_tnc_remove_ino(xattr entry/inode can be found from TNC and being deleted) is invoked in replaying journal. b. commit + powercut: inode is written into orphan area, and ubifs_tnc_remove_ino is invoked in replaying orphan nodes. c. evicting + powercut: xattr inode(nlink=0) is written on disk, xattr is removed from TNC, gc could clear xattr entries from disk. ubifs_tnc_remove_ino will apply on inode and xattr inode in replaying journal, so lost xattr entries will make no influence. d. evicting + commit + powercut: xattr inode/entry are removed from index tree(on disk) by ubifs_jnl_write_inode, xattr inode is cleared from orphan area by ubifs_jnl_write_inode + commit. e. commit + evicting + powercut: inode is written into orphan area, then equivalent to c. 2. remove xattr -> ubifs_jnl_delete_xattr: xattr entry(inum=0) and xattr inode(nlink=0) is written into bud LEB, xattr entry/inode are removed from TNC, then: a. powercut: gc could clear xattr entries from disk, which won't affect deleting xattr entry from TNC. ubifs_tnc_remove_ino will apply on xattr inode in replaying journal, ubifs_tnc_remove_nm will apply on xattr entry in replaying journal. b. commit + powercut: xattr entry/inode are removed from index tree (on disk). Tracking xattr inode in orphan list is imported by commit 988bec41318f3f ("ubifs: orphan: Handle xattrs like files"), it aims to fix the similar problem described in commit 7959cf3a7506d4a ("ubifs: journal: Handle xattrs like files"). Actually, the problem only exist in journal case but not the orphan case. So, we can remove the orphan tracking for xattr inodes. Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com> Signed-off-by: Richard Weinberger <richard@nod.at>
2024-07-12ubifs: Fix unattached xattr inode if powercut happens after deletingZhihao Cheng
When powercut happens after deleting file, the xattr inode could be alone existing in TNC but its' xattr entry cannot be found in TNC. File inode and xattr inode are added into orphan list after deleting file, file inode's nlink is 0 but xattr inode's nlink is not 0 (PS: zero nlink xattr inode is written on disk in evicting process by ubifs_jnl_write_inode). So, following process could happen: 1. touch file 2. setxattr(file) 3. unlink file // inode(nlink=0), xattr inode(nlink=1) are added into orphan list 4. commit // write inode inum and xattr inum into orphan area 5. powercut 6. mount do_kill_orphans // inode(nlink=0) is deleted from TNC by ubifs_tnc_remove_range, // xattr entry is deleted too. // xattr inode(nlink=1) is not deleted from TNC Finally we could see following error while debugging UBIFS: UBIFS error (ubi0:0 pid 1093): dbg_check_filesystem [ubifs]: inode 66 nlink is 1, but calculated nlink is 0 UBIFS (ubi0:0): dump of the inode 66 sitting in LEB 12:2128 node_type 0 (inode node) group_type 1 (in node group) len 197 key (66, inode) size 37 nlink 1 flags 0x20 xattr_cnt 0 xattr_size 0 xattr_names 0 data len 37 Fix it by removing entire inode with it's xattrs while replaying orphan, just replace function ubifs_tnc_remove_range by ubifs_tnc_remove_ino. Fixes: ee1438ce5dc4 ("ubifs: Check link count of inodes when killing orphans.") Link: https://bugzilla.kernel.org/show_bug.cgi?id=218661 Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com> Signed-off-by: Richard Weinberger <richard@nod.at>
2024-07-12Merge tag 'for-6.10-rc7-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "Fix a regression in extent map shrinker behaviour. In the past weeks we got reports from users that there are huge latency spikes or freezes. This was bisected to newly added shrinker of extent maps (it was added to fix a build up of the structures in memory). I'm assuming that the freezes would happen to many users after release so I'd like to get it merged now so it's in 6.10. Although the diff size is not small the changes are relatively straightforward, the reporters verified the fixes and we did testing on our side. The fixes: - adjust behaviour under memory pressure and check lock or scheduling conditions, bail out if needed - synchronize tracking of the scanning progress so inode ranges are not skipped or work duplicated - do a delayed iput when scanning a root so evicting an inode does not slow things down in case of lots of dirty data, also fix lockdep warning, a deadlock could happen when writing the dirty data would need to start a transaction" * tag 'for-6.10-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: avoid races when tracking progress for extent map shrinking btrfs: stop extent map shrinker if reschedule is needed btrfs: use delayed iput during extent map shrinking
2024-07-12nfsd: nfsd_file_lease_notifier_call gets a file_lease as an argumentJeff Layton
"data" actually refers to a file_lease and not a file_lock. Both structs have their file_lock_core as the first field though, so this bug should be harmless without struct randomization in play. Reported-by: Florian Evers <florian-evers@gmx.de> Closes: https://bugzilla.kernel.org/show_bug.cgi?id=219008 Fixes: 05580bbfc6bc ("nfsd: adapt to breakup of struct file_lock") Signed-off-by: Jeff Layton <jlayton@kernel.org> Tested-by: Florian Evers <florian-evers@gmx.de> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2024-07-12nfs: do not extend writes to the entire folioChristoph Hellwig
nfs_update_folio has code to extend a write to the entire page under certain conditions. With the support for large folios this now suddenly extents to the variable sized and potentially much larger folio. Add code to limit the extension to the page boundaries of the start and end of the write, which matches the historic expecation and the code comments. Fixes: b73fe2dd6cd5 ("nfs: add support for large folios") Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Sagi Grimberg <sagi@grimberg.me> Reviewed-by: Benjamin Coddington <bcodding@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2024-07-12nfs/blocklayout: add support for NVMeChristoph Hellwig
Look for the udev generated persistent device name for NVMe devices in addition to the SCSI ones and the Redhat-specific device mapper name. This is the client side implementation of RFC 9561 "Using the Parallel NFS (pNFS) SCSI Layout to Access Non-Volatile Memory Express (NVMe) Storage Devices". Note that the udev rules for nvme are a bit of a mess and udev will only create a link for the uuid if the NVMe namespace has one, and not the NGUID. As the current RFCs don't support UUID based identifications this means the layout can't be used on such namespaces out of the box. A small tweak to the udev rules can work around it, and as the real fix I will submit a draft to the IETF NFSv4 working group to support UUID-based identifiers for SCSI and NVMe. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Sagi Grimberg <sagi@grimberg.me> Reviewed-by: Benjamin Coddington <bcodding@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2024-07-12Merge tag 'bcachefs-2024-07-12' of https://evilpiepirate.org/git/bcachefsLinus Torvalds
Pull more bcachefs fixes from Kent Overstreet: - revert the SLAB_ACCOUNT patch, something crazy is going on in memcg and someone forgot to test - minor fixes: missing rcu_read_lock(), scheduling while atomic (in an emergency shutdown path) - two lockdep fixes; these could have gone earlier, but were left to bake awhile * tag 'bcachefs-2024-07-12' of https://evilpiepirate.org/git/bcachefs: bcachefs: bch2_gc_btree() should not use btree_root_lock bcachefs: Set PF_MEMALLOC_NOFS when trans->locked bcachefs; Use trans_unlock_long() when waiting on allocator Revert "bcachefs: Mark bch_inode_info as SLAB_ACCOUNT" bcachefs: fix scheduling while atomic in break_cycle() bcachefs: Fix RCU splat
2024-07-11bcachefs: bch2_gc_btree() should not use btree_root_lockKent Overstreet
btree_root_lock is for the root keys in btree_root, not the pointers to the nodes themselves; this fixes a lock ordering issue between btree_root_lock and btree node locks. Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2024-07-11bcachefs: Set PF_MEMALLOC_NOFS when trans->lockedKent Overstreet
proper lock ordering is: fs_reclaim -> btree node locks Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2024-07-11bcachefs; Use trans_unlock_long() when waiting on allocatorKent Overstreet
not using unlock_long() blocks key cache reclaim, and the allocator may take awhile Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2024-07-11Revert "bcachefs: Mark bch_inode_info as SLAB_ACCOUNT"Kent Overstreet
This reverts commit 86d81ec5f5f05846c7c6e48ffb964b24cba2e669. This wasn't tested with memcg enabled, it immediately hits a null ptr deref in list_lru_add(). Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2024-07-11Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
Cross-merge networking fixes after downstream PR. Conflicts: net/sched/act_ct.c 26488172b029 ("net/sched: Fix UAF when resolving a clash") 3abbd7ed8b76 ("act_ct: prepare for stolen verdict coming from conntrack and nat engine") No adjacent changes. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-07-11Merge tag 'vfs-6.10-rc8.fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs Pull vfs fixes from Christian Brauner: "cachefiles: - Export an existing and add a new cachefile helper to be used in filesystems to fix reference count bugs - Use the newly added fscache_ty_get_volume() helper to get a reference count on an fscache_volume to handle volumes that are about to be removed cleanly - After withdrawing a fscache_cache via FSCACHE_CACHE_IS_WITHDRAWN wait for all ongoing cookie lookups to complete and for the object count to reach zero - Propagate errors from vfs_getxattr() to avoid an infinite loop in cachefiles_check_volume_xattr() because it keeps seeing ESTALE - Don't send new requests when an object is dropped by raising CACHEFILES_ONDEMAND_OJBSTATE_DROPPING - Cancel all requests for an object that is about to be dropped - Wait for the ondemand_boject_worker to finish before dropping a cachefiles object to prevent use-after-free - Use cyclic allocation for message ids to better handle id recycling - Add missing lock protection when iterating through the xarray when polling netfs: - Use standard logging helpers for debug logging VFS: - Fix potential use-after-free in file locks during trace_posix_lock_inode(). The tracepoint could fire while another task raced it and freed the lock that was requested to be traced - Only increment the nr_dentry_negative counter for dentries that are present on the superblock LRU. Currently, DCACHE_LRU_LIST list is used to detect this case. However, the flag is also raised in combination with DCACHE_SHRINK_LIST to indicate that dentry->d_lru is used. So checking only DCACHE_LRU_LIST will lead to wrong nr_dentry_negative count. Fix the check to not count dentries that are on a shrink related list Misc: - hfsplus: fix an uninitialized value issue in copy_name - minix: fix minixfs_rename with HIGHMEM. It still uses kunmap() even though we switched it to kmap_local_page() a while ago" * tag 'vfs-6.10-rc8.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: minixfs: Fix minixfs_rename with HIGHMEM hfsplus: fix uninit-value in copy_name vfs: don't mod negative dentry count when on shrinker list filelock: fix potential use-after-free in posix_lock_inode cachefiles: add missing lock protection when polling cachefiles: cyclic allocation of msg_id to avoid reuse cachefiles: wait for ondemand_object_worker to finish when dropping object cachefiles: cancel all requests for the object that is being dropped cachefiles: stop sending new request when dropping object cachefiles: propagate errors from vfs_getxattr() to avoid infinite loop cachefiles: fix slab-use-after-free in cachefiles_withdraw_cookie() cachefiles: fix slab-use-after-free in fscache_withdraw_volume() netfs, fscache: export fscache_put_volume() and add fscache_try_get_volume() netfs: Switch debug logging to pr_debug()
2024-07-11btrfs: avoid races when tracking progress for extent map shrinkingFilipe Manana
We store the progress (root and inode numbers) of the extent map shrinker in fs_info without any synchronization but we can have multiple tasks calling into the shrinker during memory allocations when there's enough memory pressure for example. This can result in a task A reading fs_info->extent_map_shrinker_last_ino after another task B updates it, and task A reading fs_info->extent_map_shrinker_last_root before task B updates it, making task A see an odd state that isn't necessarily harmful but may make it skip certain inode ranges or do more work than necessary by going over the same inodes again. These unprotected accesses would also trigger warnings from tools like KCSAN. So add a lock to protect access to these progress fields. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: stop extent map shrinker if reschedule is neededFilipe Manana
The extent map shrinker can be called in a variety of contexts where we are under memory pressure, and of them is when a task is trying to allocate memory. For this reason the shrinker is typically called with a value of struct shrink_control::nr_to_scan that is much smaller than what we return in the nr_cached_objects callback of struct super_operations (fs/btrfs/super.c:btrfs_nr_cached_objects()), so that the shrinker does not take a long time and cause high latencies. However we can still take a lot of time in the shrinker even for a limited amount of nr_to_scan: 1) When traversing the red black tree that tracks open inodes in a root, as for example with millions of open inodes we get a deep tree which takes time searching for an inode; 2) Iterating over the extent map tree, which is a red black tree, of an inode when doing the rb_next() calls and when removing an extent map from the tree, since often that requires rebalancing the red black tree; 3) When trying to write lock an inode's extent map tree we may wait for a significant amount of time, because there's either another task about to do IO and searching for an extent map in the tree or inserting an extent map in the tree, and we can have thousands or even millions of extent maps for an inode. Furthermore, there can be concurrent calls to the shrinker so the lock might be busy simply because there is already another task shrinking extent maps for the same inode; 4) We often reschedule if we need to, which further increases latency. So improve on this by stopping the extent map shrinking code whenever we need to reschedule and make it skip an inode if we can't immediately lock its extent map tree. Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com> Reported-by: Andrea Gelmini <andrea.gelmini@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CABXGCsMmmb36ym8hVNGTiU8yfUS_cGvoUmGCcBrGWq9OxTrs+A@mail.gmail.com/ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: use delayed iput during extent map shrinkingFilipe Manana
When putting an inode during extent map shrinking we're doing a standard iput() but that may take a long time in case the inode is dirty and we are doing the final iput that triggers eviction - the VFS will have to wait for writeback before calling the btrfs evict callback (see fs/inode.c:evict()). This slows down the task running the shrinker which may have been triggered while updating some tree for example, meaning locks are held as well as an open transaction handle. Also if the iput() ends up triggering eviction and the inode has no links anymore, then we trigger item truncation which requires flushing delayed items, space reservation to start a transaction and that may trigger the space reclaim task and wait for it, resulting in deadlocks in case the reclaim task needs for example to commit a transaction and the shrinker is being triggered from a path holding a transaction handle. Syzbot reported such a case with the following stack traces: ====================================================== WARNING: possible circular locking dependency detected 6.10.0-rc2-syzkaller-00010-g2ab795141095 #0 Not tainted ------------------------------------------------------ kswapd0/111 is trying to acquire lock: ffff88801eae4610 (sb_internal#3){.+.+}-{0:0}, at: btrfs_commit_inode_delayed_inode+0x110/0x330 fs/btrfs/delayed-inode.c:1275 but task is already holding lock: ffffffff8dd3a9a0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0xa88/0x1970 mm/vmscan.c:6924 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (fs_reclaim){+.+.}-{0:0}: __fs_reclaim_acquire mm/page_alloc.c:3783 [inline] fs_reclaim_acquire+0x102/0x160 mm/page_alloc.c:3797 might_alloc include/linux/sched/mm.h:334 [inline] slab_pre_alloc_hook mm/slub.c:3890 [inline] slab_alloc_node mm/slub.c:3980 [inline] kmem_cache_alloc_lru_noprof+0x58/0x2f0 mm/slub.c:4019 btrfs_alloc_inode+0x118/0xb20 fs/btrfs/inode.c:8411 alloc_inode+0x5d/0x230 fs/inode.c:261 iget5_locked fs/inode.c:1235 [inline] iget5_locked+0x1c9/0x2c0 fs/inode.c:1228 btrfs_iget_locked fs/btrfs/inode.c:5590 [inline] btrfs_iget_path fs/btrfs/inode.c:5607 [inline] btrfs_iget+0xfb/0x230 fs/btrfs/inode.c:5636 create_reloc_inode+0x403/0x820 fs/btrfs/relocation.c:3911 btrfs_relocate_block_group+0x471/0xe60 fs/btrfs/relocation.c:4114 btrfs_relocate_chunk+0x143/0x450 fs/btrfs/volumes.c:3373 __btrfs_balance fs/btrfs/volumes.c:4157 [inline] btrfs_balance+0x211a/0x3f00 fs/btrfs/volumes.c:4534 btrfs_ioctl_balance fs/btrfs/ioctl.c:3675 [inline] btrfs_ioctl+0x12ed/0x8290 fs/btrfs/ioctl.c:4742 __do_compat_sys_ioctl+0x2c3/0x330 fs/ioctl.c:1007 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386 do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e -> #2 (btrfs_trans_num_extwriters){++++}-{0:0}: join_transaction+0x164/0xf40 fs/btrfs/transaction.c:315 start_transaction+0x427/0x1a70 fs/btrfs/transaction.c:700 btrfs_rebuild_free_space_tree+0xaa/0x480 fs/btrfs/free-space-tree.c:1323 btrfs_start_pre_rw_mount+0x218/0xf60 fs/btrfs/disk-io.c:2999 open_ctree+0x41ab/0x52e0 fs/btrfs/disk-io.c:3554 btrfs_fill_super fs/btrfs/super.c:946 [inline] btrfs_get_tree_super fs/btrfs/super.c:1863 [inline] btrfs_get_tree+0x11e9/0x1b90 fs/btrfs/super.c:2089 vfs_get_tree+0x8f/0x380 fs/super.c:1780 fc_mount+0x16/0xc0 fs/namespace.c:1125 btrfs_get_tree_subvol fs/btrfs/super.c:2052 [inline] btrfs_get_tree+0xa53/0x1b90 fs/btrfs/super.c:2090 vfs_get_tree+0x8f/0x380 fs/super.c:1780 do_new_mount fs/namespace.c:3352 [inline] path_mount+0x6e1/0x1f10 fs/namespace.c:3679 do_mount fs/namespace.c:3692 [inline] __do_sys_mount fs/namespace.c:3898 [inline] __se_sys_mount fs/namespace.c:3875 [inline] __ia32_sys_mount+0x295/0x320 fs/namespace.c:3875 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386 do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e -> #1 (btrfs_trans_num_writers){++++}-{0:0}: join_transaction+0x148/0xf40 fs/btrfs/transaction.c:314 start_transaction+0x427/0x1a70 fs/btrfs/transaction.c:700 btrfs_rebuild_free_space_tree+0xaa/0x480 fs/btrfs/free-space-tree.c:1323 btrfs_start_pre_rw_mount+0x218/0xf60 fs/btrfs/disk-io.c:2999 open_ctree+0x41ab/0x52e0 fs/btrfs/disk-io.c:3554 btrfs_fill_super fs/btrfs/super.c:946 [inline] btrfs_get_tree_super fs/btrfs/super.c:1863 [inline] btrfs_get_tree+0x11e9/0x1b90 fs/btrfs/super.c:2089 vfs_get_tree+0x8f/0x380 fs/super.c:1780 fc_mount+0x16/0xc0 fs/namespace.c:1125 btrfs_get_tree_subvol fs/btrfs/super.c:2052 [inline] btrfs_get_tree+0xa53/0x1b90 fs/btrfs/super.c:2090 vfs_get_tree+0x8f/0x380 fs/super.c:1780 do_new_mount fs/namespace.c:3352 [inline] path_mount+0x6e1/0x1f10 fs/namespace.c:3679 do_mount fs/namespace.c:3692 [inline] __do_sys_mount fs/namespace.c:3898 [inline] __se_sys_mount fs/namespace.c:3875 [inline] __ia32_sys_mount+0x295/0x320 fs/namespace.c:3875 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386 do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e -> #0 (sb_internal#3){.+.+}-{0:0}: check_prev_add kernel/locking/lockdep.c:3134 [inline] check_prevs_add kernel/locking/lockdep.c:3253 [inline] validate_chain kernel/locking/lockdep.c:3869 [inline] __lock_acquire+0x2478/0x3b30 kernel/locking/lockdep.c:5137 lock_acquire kernel/locking/lockdep.c:5754 [inline] lock_acquire+0x1b1/0x560 kernel/locking/lockdep.c:5719 percpu_down_read include/linux/percpu-rwsem.h:51 [inline] __sb_start_write include/linux/fs.h:1655 [inline] sb_start_intwrite include/linux/fs.h:1838 [inline] start_transaction+0xbc1/0x1a70 fs/btrfs/transaction.c:694 btrfs_commit_inode_delayed_inode+0x110/0x330 fs/btrfs/delayed-inode.c:1275 btrfs_evict_inode+0x960/0xe80 fs/btrfs/inode.c:5291 evict+0x2ed/0x6c0 fs/inode.c:667 iput_final fs/inode.c:1741 [inline] iput.part.0+0x5a8/0x7f0 fs/inode.c:1767 iput+0x5c/0x80 fs/inode.c:1757 btrfs_scan_root fs/btrfs/extent_map.c:1118 [inline] btrfs_free_extent_maps+0xbd3/0x1320 fs/btrfs/extent_map.c:1189 super_cache_scan+0x409/0x550 fs/super.c:227 do_shrink_slab+0x44f/0x11c0 mm/shrinker.c:435 shrink_slab+0x18a/0x1310 mm/shrinker.c:662 shrink_one+0x493/0x7c0 mm/vmscan.c:4790 shrink_many mm/vmscan.c:4851 [inline] lru_gen_shrink_node+0x89f/0x1750 mm/vmscan.c:4951 shrink_node mm/vmscan.c:5910 [inline] kswapd_shrink_node mm/vmscan.c:6720 [inline] balance_pgdat+0x1105/0x1970 mm/vmscan.c:6911 kswapd+0x5ea/0xbf0 mm/vmscan.c:7180 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 other info that might help us debug this: Chain exists of: sb_internal#3 --> btrfs_trans_num_extwriters --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(btrfs_trans_num_extwriters); lock(fs_reclaim); rlock(sb_internal#3); *** DEADLOCK *** 2 locks held by kswapd0/111: #0: ffffffff8dd3a9a0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0xa88/0x1970 mm/vmscan.c:6924 #1: ffff88801eae40e0 (&type->s_umount_key#62){++++}-{3:3}, at: super_trylock_shared fs/super.c:562 [inline] #1: ffff88801eae40e0 (&type->s_umount_key#62){++++}-{3:3}, at: super_cache_scan+0x96/0x550 fs/super.c:196 stack backtrace: CPU: 0 PID: 111 Comm: kswapd0 Not tainted 6.10.0-rc2-syzkaller-00010-g2ab795141095 #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:114 check_noncircular+0x31a/0x400 kernel/locking/lockdep.c:2187 check_prev_add kernel/locking/lockdep.c:3134 [inline] check_prevs_add kernel/locking/lockdep.c:3253 [inline] validate_chain kernel/locking/lockdep.c:3869 [inline] __lock_acquire+0x2478/0x3b30 kernel/locking/lockdep.c:5137 lock_acquire kernel/locking/lockdep.c:5754 [inline] lock_acquire+0x1b1/0x560 kernel/locking/lockdep.c:5719 percpu_down_read include/linux/percpu-rwsem.h:51 [inline] __sb_start_write include/linux/fs.h:1655 [inline] sb_start_intwrite include/linux/fs.h:1838 [inline] start_transaction+0xbc1/0x1a70 fs/btrfs/transaction.c:694 btrfs_commit_inode_delayed_inode+0x110/0x330 fs/btrfs/delayed-inode.c:1275 btrfs_evict_inode+0x960/0xe80 fs/btrfs/inode.c:5291 evict+0x2ed/0x6c0 fs/inode.c:667 iput_final fs/inode.c:1741 [inline] iput.part.0+0x5a8/0x7f0 fs/inode.c:1767 iput+0x5c/0x80 fs/inode.c:1757 btrfs_scan_root fs/btrfs/extent_map.c:1118 [inline] btrfs_free_extent_maps+0xbd3/0x1320 fs/btrfs/extent_map.c:1189 super_cache_scan+0x409/0x550 fs/super.c:227 do_shrink_slab+0x44f/0x11c0 mm/shrinker.c:435 shrink_slab+0x18a/0x1310 mm/shrinker.c:662 shrink_one+0x493/0x7c0 mm/vmscan.c:4790 shrink_many mm/vmscan.c:4851 [inline] lru_gen_shrink_node+0x89f/0x1750 mm/vmscan.c:4951 shrink_node mm/vmscan.c:5910 [inline] kswapd_shrink_node mm/vmscan.c:6720 [inline] balance_pgdat+0x1105/0x1970 mm/vmscan.c:6911 kswapd+0x5ea/0xbf0 mm/vmscan.c:7180 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> So fix this by using btrfs_add_delayed_iput() so that the final iput is delegated to the cleaner kthread. Link: https://lore.kernel.org/linux-btrfs/000000000000892280061a344581@google.com/ Reported-by: syzbot+3dad89b3993a4b275e72@syzkaller.appspotmail.com Fixes: 956a17d9d050 ("btrfs: add a shrinker for extent maps") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: fix extent map use-after-free when adding pages to compressed bioFilipe Manana
At add_ra_bio_pages() we are accessing the extent map to calculate 'add_size' after we dropped our reference on the extent map, resulting in a use-after-free. Fix this by computing 'add_size' before dropping our extent map reference. Reported-by: syzbot+853d80cba98ce1157ae6@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/000000000000038144061c6d18f2@google.com/ Fixes: 6a4049102055 ("btrfs: subpage: make add_ra_bio_pages() compatible") CC: stable@vger.kernel.org # 6.1+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11affs: struct slink_front: Replace 1-element array with flexible arrayKees Cook
Replace the deprecated[1] use of a 1-element array in struct slink_front with a modern flexible array. No binary differences are present after this conversion. Link: https://github.com/KSPP/linux/issues/79 [1] Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org> Signed-off-by: Kees Cook <kees@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11affs: struct affs_data_head: Replace 1-element array with flexible arrayKees Cook
Replace the deprecated[1] use of a 1-element array in struct affs_data_head with a modern flexible array. No binary differences are present after this conversion. Link: https://github.com/KSPP/linux/issues/79 [1] Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org> Signed-off-by: Kees Cook <kees@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11affs: struct affs_head: Replace 1-element array with flexible arrayKees Cook
AFFS uses struct affs_head's "table" array as a flexible array. Switch this to a proper flexible array[1]. There are no sizeof() uses; struct affs_head is only ever uses via direct casts. No binary output differences were found after this change. Link: https://github.com/KSPP/linux/issues/79 [1] Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org> Signed-off-by: Kees Cook <kees@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: fix bitmap leak when loading free space cache on duplicate entryFilipe Manana
If we failed to link a free space entry because there's already a conflicting entry for the same offset, we free the free space entry but we don't free the associated bitmap that we had just allocated before. Fix that by freeing the bitmap before freeing the entry. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: remove the BUG_ON() inside extent_range_clear_dirty_for_io()Qu Wenruo
Previously we had a BUG_ON() inside extent_range_clear_dirty_for_io(), as we expected all involved folios to be still locked, thus no folio should be missing. However for extent_range_clear_dirty_for_io() itself, we can skip the missing folio and handle the remaining ones, and return an error if there is anything wrong. Remove the BUG_ON() and let the caller to handle the error. In the caller we do not have a quick way to cleanup the error, but all the compression routines would handle the missing folio as an error and properly error out, so we only need to do an ASSERT() for developers, while for non-debug build the compression routine would handle the error correctly. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: move extent_range_clear_dirty_for_io() into inode.cQu Wenruo
The function is only used inside inode.c by compress_file_range(), so move it to inode.c and unexport it. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: enhance compression error messagesDavid Sterba
Add more verbose and specific messages to all main error points in compression code for all algorithms. Currently there's no way to know which inode is affected or where in the data errors happened. The messages follow a common format: - what happened - error code if relevant - root and inode - additional data like offsets or lengths There's no helper for the messages as they differ in some details and that would be cumbersome to generalize to a single function. As all the errors are "almost never happens" there are the unlikely annotations done as compression is hot path. Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: fix data race when accessing the last_trans field of a rootFilipe Manana
KCSAN complains about a data race when accessing the last_trans field of a root: [ 199.553628] BUG: KCSAN: data-race in btrfs_record_root_in_trans [btrfs] / record_root_in_trans [btrfs] [ 199.555186] read to 0x000000008801e308 of 8 bytes by task 2812 on cpu 1: [ 199.555210] btrfs_record_root_in_trans+0x9a/0x128 [btrfs] [ 199.555999] start_transaction+0x154/0xcd8 [btrfs] [ 199.556780] btrfs_join_transaction+0x44/0x60 [btrfs] [ 199.557559] btrfs_dirty_inode+0x9c/0x140 [btrfs] [ 199.558339] btrfs_update_time+0x8c/0xb0 [btrfs] [ 199.559123] touch_atime+0x16c/0x1e0 [ 199.559151] pipe_read+0x6a8/0x7d0 [ 199.559179] vfs_read+0x466/0x498 [ 199.559204] ksys_read+0x108/0x150 [ 199.559230] __s390x_sys_read+0x68/0x88 [ 199.559257] do_syscall+0x1c6/0x210 [ 199.559286] __do_syscall+0xc8/0xf0 [ 199.559318] system_call+0x70/0x98 [ 199.559431] write to 0x000000008801e308 of 8 bytes by task 2808 on cpu 0: [ 199.559464] record_root_in_trans+0x196/0x228 [btrfs] [ 199.560236] btrfs_record_root_in_trans+0xfe/0x128 [btrfs] [ 199.561097] start_transaction+0x154/0xcd8 [btrfs] [ 199.561927] btrfs_join_transaction+0x44/0x60 [btrfs] [ 199.562700] btrfs_dirty_inode+0x9c/0x140 [btrfs] [ 199.563493] btrfs_update_time+0x8c/0xb0 [btrfs] [ 199.564277] file_update_time+0xb8/0xf0 [ 199.564301] pipe_write+0x8ac/0xab8 [ 199.564326] vfs_write+0x33c/0x588 [ 199.564349] ksys_write+0x108/0x150 [ 199.564372] __s390x_sys_write+0x68/0x88 [ 199.564397] do_syscall+0x1c6/0x210 [ 199.564424] __do_syscall+0xc8/0xf0 [ 199.564452] system_call+0x70/0x98 This is because we update and read last_trans concurrently without any type of synchronization. This should be generally harmless and in the worst case it can make us do extra locking (btrfs_record_root_in_trans()) trigger some warnings at ctree.c or do extra work during relocation - this would probably only happen in case of load or store tearing. So fix this by always reading and updating the field using READ_ONCE() and WRITE_ONCE(), this silences KCSAN and prevents load and store tearing. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: rename the extra_gfp parameter of btrfs_alloc_page_array()Qu Wenruo
There is only one caller utilizing the @extra_gfp parameter, alloc_eb_folio_array(). And in that case the extra_gfp is only assigned to __GFP_NOFAIL. Rename the @extra_gfp parameter to @nofail to indicate that. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: remove the extra_gfp parameter from btrfs_alloc_folio_array()Qu Wenruo
The function btrfs_alloc_folio_array() is only utilized in btrfs_submit_compressed_read() and no other location, and the only caller is not utilizing the @extra_gfp parameter. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: introduce new "rescue=ignoresuperflags" mount optionQu Wenruo
This new mount option allows the kernel to skip the super flags check, it's mostly to allow the kernel to do a rescue mount of an interrupted checksum conversion. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: introduce new "rescue=ignoremetacsums" mount optionQu Wenruo
Introduce "rescue=ignoremetacsums" to ignore metadata csums, all the other metadata sanity checks are still kept as is. This new mount option is mostly to allow the kernel to mount an interrupted checksum conversion (at the metadata csum overwrite stage). And since the main part of metadata sanity checks is inside tree-checker, we shouldn't lose much safety, and the new mount option is rescue mount option it requires full read-only mount. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: output the unrecognized super block flags as hexQu Wenruo
Most of the extra super block flags are beyond 32bits (from CHANGING_FSID_V2 to CHANGING_*_CSUMS), thus using %llu is not only too long and pretty hard to read. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: remove unused Opt enumsQu Wenruo
The following three Opt_* enums haven't been utilized since the port to new mount API: - Opt_ignorebadroots - Opt_ignoredatacsums - Opt_rescue_all All those enums are from the old day where we have dedicated mount options, nowadays they have been moved to "rescue=" mount option groups, and no more global tokens for them. So we can safely remove them now. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: tree-checker: add extra ram_bytes and disk_num_bytes checkQu Wenruo
This is to ensure non-compressed file extents (both regular and prealloc) should have matching ram_bytes and disk_num_bytes. This is only for CONFIG_BTRFS_DEBUG and CONFIG_BTRFS_ASSERT case, furthermore this will not return error, but just a kernel warning to inform developers. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: fix the ram_bytes assignment for truncated ordered extentsQu Wenruo
[HICCUP] After adding extra checks on btrfs_file_extent_item::ram_bytes to tree-checker, running fsstress leads to tree-checker warning at write time, as we created file extent items with an invalid ram_bytes. All those offending file extents have offset 0, and ram_bytes matching num_bytes, and smaller than disk_num_bytes. This would also trigger the recently enhanced btrfs-check, which catches such mismatches and report them as minor errors. [CAUSE] When a folio/page is invalidated and it is part of a submitted OE, we mark the OE truncated just to the beginning of the folio/page. And for truncated OE, we insert the file extent item with incorrect value for ram_bytes (using num_bytes instead of the usual value). This is not a big deal for end users, as we do not utilize the ram_bytes field for regular non-compressed extents. This mismatch is just a small violation against on-disk format. [FIX] Fix it by removing the override on btrfs_file_extent_item::ram_bytes. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: make validate_extent_map() catch ram_bytes mismatchQu Wenruo
Previously validate_extent_map() is only to catch bugs related to extent_map member cleanups. But with recent btrfs-check enhancement to catch ram_bytes mismatch with disk_num_bytes, it would be much better to catch such extent maps earlier. So this patch adds extra ram_bytes validation for extent maps. Please note that, older filesystems with such mismatch won't trigger this error: - extent_map::ram_bytes is already fixed Previous patch has already fixed the ram_bytes for affected file extents. So this enhanced sanity check should not affect end users. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: ignore incorrect btrfs_file_extent_item::ram_bytesQu Wenruo
[HICCUP] Kernels can create file extent items with incorrect ram_bytes like this: item 6 key (257 EXTENT_DATA 0) itemoff 15816 itemsize 53 generation 7 type 1 (regular) extent data disk byte 13631488 nr 32768 extent data offset 0 nr 4096 ram 4096 extent compression 0 (none) Thankfully kernel can handle them properly, as in that case ram_bytes is not utilized at all. [ENHANCEMENT] Since the hiccup is not going to cause any data-loss and is only a minor violation of on-disk format, here we only need to ignore the incorrect ram_bytes value, and use the correct one from btrfs_file_extent_item::disk_num_bytes. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: cleanup the bytenr usage inside btrfs_extent_item_to_extent_map()Qu Wenruo
[HICCUP] Before commit 85de2be7129c ("btrfs: remove extent_map::block_start member"), we utilized @bytenr variable inside btrfs_extent_item_to_extent_map() to calculate block_start. But that commit removed block_start completely, we have no need to advance @bytenr at all. [ENHANCEMENT] - Rename @bytenr as @disk_bytenr - Only declare @disk_bytenr inside the if branch - Make @disk_bytenr const and remove the modification on it Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: fix typo in error message in btrfs_validate_super()Mark Harmstone
There's a typo in an error message when checking the block group tree feature, it mentions fres-space-tree instead of free-space-tree. Fix that. Signed-off-by: Mark Harmstone <maharmstone@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: move the direct IO code into its own fileFilipe Manana
The direct IO code is over a thousand lines and it's currently spread between file.c and inode.c, which makes it not easy to locate some parts of it sometimes. Also inode.c is about 11 thousand lines and file.c about 4 thousand lines, both too big. So move all the direct IO code into a dedicated file, so that it's easy to locate all its code and reduce the sizes of inode.c and file.c. This is a pure move of code without any other changes except export a a couple functions from inode.c (get_extent_allocation_hint() and create_io_em()) because they are used in inode.c and the new direct-io.c file, and a couple functions from file.c (btrfs_buffered_write() and btrfs_write_check()) because they are used both in file.c and in the new direct-io.c file. Reviewed-by: Boris Burkov <boris@bur.io> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: pass a btrfs_inode to btrfs_set_prop()David Sterba
Pass a struct btrfs_inode to btrfs_set_prop() as it's an internal interface, allowing to remove some use of BTRFS_I. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: pass a btrfs_inode to btrfs_compress_heuristic()David Sterba
Pass a struct btrfs_inode to btrfs_compress_heuristic() as it's an internal interface, allowing to remove some use of BTRFS_I. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: switch btrfs_ordered_extent::inode to struct btrfs_inodeDavid Sterba
The structure is internal so we should use struct btrfs_inode for that, allowing to remove some use of BTRFS_I. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: switch btrfs_pending_snapshot::dir to btrfs_inodeDavid Sterba
The structure is internal so we should use struct btrfs_inode for that. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: pass a btrfs_inode to btrfs_ioctl_send()David Sterba
Pass a struct btrfs_inode to btrfs_ioctl_send() and _btrfs_ioctl_send() as it's an internal interface, allowing to remove some use of BTRFS_I. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: switch btrfs_block_group::inode to struct btrfs_inodeDavid Sterba
The structure is internal so we should use struct btrfs_inode for that. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: pass a btrfs_inode to is_data_inode()David Sterba
Pass a struct btrfs_inode to is_data_inode() as it's an internal interface, allowing to remove some use of BTRFS_I. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: pass a btrfs_inode to btrfs_readdir_get_delayed_items()David Sterba
Pass a struct btrfs_inode to btrfs_readdir_get_delayed_items() as it's an internal interface, allowing to remove some use of BTRFS_I. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: pass a btrfs_inode to btrfs_readdir_put_delayed_items()David Sterba
Pass a struct btrfs_inode to btrfs_readdir_put_delayed_items() as it's an internal interface, allowing to remove some use of BTRFS_I. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: remove raid-stripe-tree encoding field from stripe_extentJohannes Thumshirn
Remove the encoding field from 'struct btrfs_stripe_extent'. It was originally intended to encode the RAID type as well as if we're a data or a parity stripe. But the RAID type can be inferred form the block-group and the data vs. parity differentiation can be done easier with adding a new key type for parity stripes in the RAID stripe tree. Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>