Age | Commit message (Collapse) | Author |
|
|
|
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
When the autofs protocol version 5 packet type was added in commit
5c0a32fc2cd0 ("autofs4: add new packet type for v5 communications"), it
obvously tried quite hard to be word-size agnostic, and uses explicitly
sized fields that are all correctly aligned.
However, with the final "char name[NAME_MAX+1]" array at the end, the
actual size of the structure ends up being not very well defined:
because the struct isn't marked 'packed', doing a "sizeof()" on it will
align the size of the struct up to the biggest alignment of the members
it has.
And despite all the members being the same, the alignment of them is
different: a "__u64" has 4-byte alignment on x86-32, but native 8-byte
alignment on x86-64. And while 'NAME_MAX+1' ends up being a nice round
number (256), the name[] array starts out a 4-byte aligned.
End result: the "packed" size of the structure is 300 bytes: 4-byte, but
not 8-byte aligned.
As a result, despite all the fields being in the same place on all
architectures, sizeof() will round up that size to 304 bytes on
architectures that have 8-byte alignment for u64.
Note that this is *not* a problem for 32-bit compat mode on POWER, since
there __u64 is 8-byte aligned even in 32-bit mode. But on x86, 32-bit
and 64-bit alignment is different for 64-bit entities, and as a result
the structure that has exactly the same layout has different sizes.
So on x86-64, but no other architecture, we will just subtract 4 from
the size of the structure when running in a compat task. That way we
will write the properly sized packet that user mode expects.
Not pretty. Sadly, this very subtle, and unnecessary, size difference
has been encoded in user space that wants to read packets of *exactly*
the right size, and will refuse to touch anything else.
Reported-and-tested-by: Thomas Meyer <thomas@m3y3r.de>
Signed-off-by: Ian Kent <raven@themaw.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
At the end of xfs_reclaim_inode(), the inode is locked in order to
we wait for a possible concurrent lookup to complete before the
inode is freed. This synchronization step was taking both the ILOCK
and the IOLOCK, but the latter was causing lockdep to produce
reports of the possibility of deadlock.
It turns out that there's no need to acquire the IOLOCK at this
point anyway. It may have been required in some earlier version of
the code, but there should be no need to take the IOLOCK in
xfs_iget(), so there's no (longer) any need to get it here for
synchronization. Add an assertion in xfs_iget() as a reminder
of this assumption.
Dave Chinner diagnosed this on IRC, and Christoph Hellwig suggested
no longer including the IOLOCK. I just put together the patch.
Signed-off-by: Alex Elder <elder@dreamhost.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
This patch fixies follwing two memory leak patterns that reported by kmemleak.
sysfs_sd_setsecdata() is called during sys_lsetxattr() operation.
It checks sd->s_iattr is NULL or not. Then if it is NULL, it calls
sysfs_init_inode_attrs() to allocate memory.
That code is this.
iattrs = sd->s_iattr;
if (!iattrs)
iattrs = sysfs_init_inode_attrs(sd);
The iattrs recieves sysfs_init_inode_attrs()'s result, but sd->s_iattr
doesn't know the address. so it needs to set correct address to
sd->s_iattr to free memory in other function.
unreferenced object 0xffff880250b73e60 (size 32):
comm "systemd", pid 1, jiffies 4294683888 (age 94.553s)
hex dump (first 32 bytes):
73 79 73 74 65 6d 5f 75 3a 6f 62 6a 65 63 74 5f system_u:object_
72 3a 73 79 73 66 73 5f 74 3a 73 30 00 00 00 00 r:sysfs_t:s0....
backtrace:
[<ffffffff814cb1d0>] kmemleak_alloc+0x73/0x98
[<ffffffff811270ab>] __kmalloc+0x100/0x12c
[<ffffffff8120775a>] context_struct_to_string+0x106/0x210
[<ffffffff81207cc1>] security_sid_to_context_core+0x10b/0x129
[<ffffffff812090ef>] security_sid_to_context+0x10/0x12
[<ffffffff811fb0da>] selinux_inode_getsecurity+0x7d/0xa8
[<ffffffff811fb127>] selinux_inode_getsecctx+0x22/0x2e
[<ffffffff811f4d62>] security_inode_getsecctx+0x16/0x18
[<ffffffff81191dad>] sysfs_setxattr+0x96/0x117
[<ffffffff811542f0>] __vfs_setxattr_noperm+0x73/0xd9
[<ffffffff811543d9>] vfs_setxattr+0x83/0xa1
[<ffffffff811544c6>] setxattr+0xcf/0x101
[<ffffffff81154745>] sys_lsetxattr+0x6a/0x8f
[<ffffffff814efda9>] system_call_fastpath+0x16/0x1b
[<ffffffffffffffff>] 0xffffffffffffffff
unreferenced object 0xffff88024163c5a0 (size 96):
comm "systemd", pid 1, jiffies 4294683888 (age 94.553s)
hex dump (first 32 bytes):
00 00 00 00 ed 41 00 00 00 00 00 00 00 00 00 00 .....A..........
00 00 00 00 00 00 00 00 0c 64 42 4f 00 00 00 00 .........dBO....
backtrace:
[<ffffffff814cb1d0>] kmemleak_alloc+0x73/0x98
[<ffffffff81127402>] kmem_cache_alloc_trace+0xc4/0xee
[<ffffffff81191cbe>] sysfs_init_inode_attrs+0x2a/0x83
[<ffffffff81191dd6>] sysfs_setxattr+0xbf/0x117
[<ffffffff811542f0>] __vfs_setxattr_noperm+0x73/0xd9
[<ffffffff811543d9>] vfs_setxattr+0x83/0xa1
[<ffffffff811544c6>] setxattr+0xcf/0x101
[<ffffffff81154745>] sys_lsetxattr+0x6a/0x8f
[<ffffffff814efda9>] system_call_fastpath+0x16/0x1b
[<ffffffffffffffff>] 0xffffffffffffffff
`
Signed-off-by: Masami Ichikawa <masami256@gmail.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
signalfd_cleanup() ensures that ->signalfd_wqh is not used, but
this is not enough. eppoll_entry->whead still points to the memory
we are going to free, ep_unregister_pollwait()->remove_wait_queue()
is obviously unsafe.
Change ep_poll_callback(POLLFREE) to set eppoll_entry->whead = NULL,
change ep_unregister_pollwait() to check pwq->whead != NULL under
rcu_read_lock() before remove_wait_queue(). We add the new helper,
ep_remove_wait_queue(), for this.
This works because sighand_cachep is SLAB_DESTROY_BY_RCU and because
->signalfd_wqh is initialized in sighand_ctor(), not in copy_sighand.
ep_unregister_pollwait()->remove_wait_queue() can play with already
freed and potentially reused ->sighand, but this is fine. This memory
must have the valid ->signalfd_wqh until rcu_read_unlock().
Reported-by: Maxime Bizon <mbizon@freebox.fr>
Cc: <stable@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch is intentionally incomplete to simplify the review.
It ignores ep_unregister_pollwait() which plays with the same wqh.
See the next change.
epoll assumes that the EPOLL_CTL_ADD'ed file controls everything
f_op->poll() needs. In particular it assumes that the wait queue
can't go away until eventpoll_release(). This is not true in case
of signalfd, the task which does EPOLL_CTL_ADD uses its ->sighand
which is not connected to the file.
This patch adds the special event, POLLFREE, currently only for
epoll. It expects that init_poll_funcptr()'ed hook should do the
necessary cleanup. Perhaps it should be defined as EPOLLFREE in
eventpoll.
__cleanup_sighand() is changed to do wake_up_poll(POLLFREE) if
->signalfd_wqh is not empty, we add the new signalfd_cleanup()
helper.
ep_poll_callback(POLLFREE) simply does list_del_init(task_list).
This make this poll entry inconsistent, but we don't care. If you
share epoll fd which contains our sigfd with another process you
should blame yourself. signalfd is "really special". I simply do
not know how we can define the "right" semantics if it used with
epoll.
The main problem is, epoll calls signalfd_poll() once to establish
the connection with the wait queue, after that signalfd_poll(NULL)
returns the different/inconsistent results depending on who does
EPOLL_CTL_MOD/signalfd_read/etc. IOW: apart from sigmask, signalfd
has nothing to do with the file, it works with the current thread.
In short: this patch is the hack which tries to fix the symptoms.
It also assumes that nobody can take tasklist_lock under epoll
locks, this seems to be true.
Note:
- we do not have wake_up_all_poll() but wake_up_poll()
is fine, poll/epoll doesn't use WQ_FLAG_EXCLUSIVE.
- signalfd_cleanup() uses POLLHUP along with POLLFREE,
we need a couple of simple changes in eventpoll.c to
make sure it can't be "lost".
Reported-by: Maxime Bizon <mbizon@freebox.fr>
Cc: <stable@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Quoth Chris:
"This is later than I wanted because I got backed up running through
btrfs bugs from the Oracle QA teams. But they are all bug fixes that
we've queued and tested since rc1.
Nothing in particular stands out, this just reflects bug fixing and QA
done in parallel by all the btrfs developers. The most user visible
of these is:
Btrfs: clear the extent uptodate bits during parent transid failures
Because that helps deal with out of date drives (say an iscsi disk
that has gone away and come back). The old code wasn't always
properly retrying the other mirror for this type of failure."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (24 commits)
Btrfs: fix compiler warnings on 32 bit systems
Btrfs: increase the global block reserve estimates
Btrfs: clear the extent uptodate bits during parent transid failures
Btrfs: add extra sanity checks on the path names in btrfs_mksubvol
Btrfs: make sure we update latest_bdev
Btrfs: improve error handling for btrfs_insert_dir_item callers
Btrfs: be less strict on finding next node in clear_extent_bit
Btrfs: fix a bug on overcommit stuff
Btrfs: kick out redundant stuff in convert_extent_bit
Btrfs: skip states when they does not contain bits to clear
Btrfs: check return value of lookup_extent_mapping() correctly
Btrfs: fix deadlock on page lock when doing auto-defragment
Btrfs: fix return value check of extent_io_ops
btrfs: honor umask when creating subvol root
btrfs: silence warning in raid array setup
btrfs: fix structs where bitfields and spinlock/atomic share 8B word
btrfs: delalloc for page dirtied out-of-band in fixup worker
Btrfs: fix memory leak in load_free_space_cache()
btrfs: don't check DUP chunks twice
Btrfs: fix trim 0 bytes after a device delete
...
|
|
The enospc tracing code added some interesting uses of
u64 pointer casts.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
From: Masanari Iida <standby24x7@gmail.com>
Signed-off-by: Anton Altaparmakov <anton@tuxera.com>
|
|
|
|
alloc_fdtable allocates space for the open_fds and close_on_exec
bitfields together, as 2 * nr / BITS_PER_BYTE. close_on_exec needs to
point to open_fds + nr / BITS_PER_BYTE, not open_fds + nr /
BITS_PER_LONG, as introducted in 1fd36adc: Replace the fd_sets in
struct fdtable with an array of unsigned longs.
Signed-off-by: Bobby Powers <bobbypowers@gmail.com>
Link: http://lkml.kernel.org/r/1329888587-3087-1-git-send-email-bobbypowers@gmail.com
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
With kernel 3.1, Christoph removed i_alloc_sem and replaced it with
calls (namely inode_dio_wait() and inode_dio_done()) which are
EXPORT_SYMBOL_GPL() thus they cannot be used by non-GPL file systems and
further inode_dio_wait() was pushed from notify_change() into the file
system ->setattr() method but no non-GPL file system can make this call.
That means non-GPL file systems cannot exist any more unless they do not
use any VFS functionality related to reading/writing as far as I can
tell or at least as long as they want to implement direct i/o.
Both Linus and Al (and others) have said on LKML that this breakage of
the VFS API should not have happened and that the change was simply
missed as it was not documented in the change logs of the patches that
did those changes.
This patch changes the two function exports in question to be
EXPORT_SYMBOL() thus restoring the VFS API as it used to be - accessible
for all modules.
Christoph, who introduced the two functions and exported them GPL-only
is CC-ed on this patch to give him the opportunity to object to the
symbols being changed in this manner if he did indeed intend them to be
GPL-only and does not want them to become available to all modules.
Signed-off-by: Anton Altaparmakov <anton@tuxera.com>
CC: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A fix from Jesper Juhl removes an assignment in an ASSERT when a compare
is intended. Two fixes from Mitsuo Hayasaka address off-by-ones in XFS
quota enforcement.
* 'for-linus' of git://oss.sgi.com/xfs/xfs:
xfs: make inode quota check more general
xfs: change available ranges of softlimit and hardlimit in quota check
XFS: xfs_trans_add_item() - don't assign in ASSERT() when compare is intended
|
|
When doing IO with large amounts of data fragmentation, the global block
reserve calulations are too low. This increases them to avoid
ENOSPC crashes.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
If btrfs reads a block and finds a parent transid mismatch, it clears
the uptodate flags on the extent buffer, and the pages inside it. But
we only clear the uptodate bits in the state tree if the block straddles
more than one page.
This is from an old optimization from to reduce contention on the extent
state tree. But it is buggy because the code that retries a read from
a different copy of the block is going to find the uptodate state bits
set and skip the IO.
The end result of the bug is that we'll never actually read the good
copy (if there is one).
The fix here is to always clear the uptodate state bits, which is safe
because this code is only called when the parent transid fails.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
When we are setting up the mount, we close all the
devices that were not actually part of the metadata we found.
But, we don't make sure that one of those devices wasn't
fs_devices->latest_bdev, which means we can do a use after free
on the one we closed.
This updates latest_bdev as it goes.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This allows us to gracefully continue if we aren't able to insert
directory items, both for normal files/dirs and snapshots.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Added a minimal exec tracepoint. Exec is an important major event
in the life of a task, like fork(), clone() or exit(), all of
which we already trace.
[ We also do scheduling re-balancing during exec() - so it's useful
from a scheduler instrumentation POV as well. ]
If you want to watch a task start up, when it gets exec'ed is a good place
to start. With the addition of this tracepoint, exec's can be monitored
and better picture of general system activity can be obtained. This
tracepoint will also enable better process life tracking, allowing you to
answer questions like "what process keeps starting up binary X?".
This tracepoint can also be useful in ftrace filtering and trigger
conditions: i.e. starting or stopping filtering when exec is called.
Signed-off-by: David Smith <dsmith@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/4F314D19.7030504@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Split the log regrant case out of xfs_log_reserve into a separate function,
and merge xlog_grant_log_space and xlog_regrant_write_log_space into their
respective callers. Also replace the XFS_LOG_PERM_RESERV flag, which easily
got misused before the previous cleanups with a simple boolean parameter.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Add a new data structure to allow sharing code between the log grant and
regrant code.
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
The tic->t_wait waitqueues can never have more than a single waiter
on them, so we can easily replace them with a task_struct pointer
and wake_up_process.
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Remove the now unused opportunistic parameter, and use the the
xlog_writeq_wake and xlog_reserveq_wake helpers now that we don't have
to care about the opportunistic wakeups.
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
There is no reason to wake up log space waiters when unlocking inodes or
dquots, and the commit log has no explanation for this function either.
Given that we now have exact log space wakeups everywhere we can assume
the reason for this function was to paper over log space races in earlier
XFS versions.
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
The only reason that xfs_log_space_wake had to do opportunistic wakeups
was that the old xfs_log_move_tail calling convention didn't allow for
exact wakeups when not updating the log tail LSN. Since this issue has
been fixed we can do exact wakeups now.
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Currently xfs_log_move_tail has a tail_lsn argument that is horribly
overloaded: it may contain either an actual lsn to assign to the log tail,
0 as a special case to use the last sync LSN, or 1 to indicate that no tail
LSN assignment should be performed, and we should opportunisticly wake up
at one task waiting for log space even if we did not move the LSN.
Remove the tail lsn assigned from xfs_log_move_tail and make the two callers
use xlog_assign_tail_lsn instead of the current variant of partially using
the code in xfs_log_move_tail and partially opencoding it. Note that means
we grow an addition lock roundtrip on the AIL lock for each bulk update
or delete, which is still far less than what we had before introducing the
bulk operations. If this proves to be a problem we can still add a variant
of xlog_assign_tail_lsn that expects the lock to be held already.
Also rename the remainder of xfs_log_move_tail to xfs_log_space_wake as
that name describes its functionality much better.
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
This patch is a cleanup of quota check on disk blocks and inodes
reservations, and changes it as follows.
(1) add a total_count variable to store the total number of
current usages and new reservations for disk blocks and inodes,
respectively.
(2) make it more readable to check if the local variables softlimit
and hardlimit are positive. It has been changed as follows.
if (softlimit > 0ULL) -> if (softlimit)
if (hardlimit > 0ULL) -> if (hardlimit)
This is because they are defined as xfs_qcnt_t which is unsigned.
Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Ben Myers <bpm@sgi.com>
Cc: Alex Elder <elder@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
With the firmware-assisted dump support we don't require a reboot when we
are in second kernel after crash. The second kernel after crash is a normal
kernel boot and has knowledge about entire system RAM with the page tables
initialized for entire system RAM. Hence once the dump is saved to disk, we
can just release the reserved memory area for general use and continue
with second kernel as production kernel.
Hence when we release the reserved memory that contains dump data, the
'/proc/vmcore' will not be valid anymore. Hence this patch introduces
a cleanup routine that invalidates and removes the /proc/vmcore file. This
routine will be invoked before we release the reserved dump memory area.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Bugfixes for the NFS client.
Fix a nasty Oops in the NFSv4 getacl code, another source of infinite
loops in the NFSv4 state recovery code, and a regression in NFSv4.1
session initialisation.
Also deal with an NFSv4.1 memory leak.
* tag 'nfs-for-3.3-4' of git://git.linux-nfs.org/projects/trondmy/linux-nfs:
NFSv4: fix server_scope memory leak
NFSv4.1: Fix a NFSv4.1 session initialisation regression
NFSv4: Ensure we throw out bad delegation stateids on NFS4ERR_BAD_STATEID
NFSv4: Fix an Oops in the NFSv4 getacl code
|
|
Found by Coverity software (http://scan.coverity.com).
Signed-off-by: Anton Altaparmakov <anton@tuxera.com>
|
|
Found by Coverity software (http://scan.coverity.com).
Signed-off-by: Anton Altaparmakov <anton@tuxera.com>
|
|
The 'poll()' system call timeout parameter is supposed to be 'int', not
'long'.
Now, the reason this matters is that right now 32-bit compat mode is
broken on at least x86-64, because the 32-bit code just calls
'sys_poll()' directly on x86-64, and the 32-bit argument will have been
zero-extended, turning a signed 'int' into a large unsigned 'long'
value.
We could just introduce a 'compat_sys_poll()' function for this, and
that may eventually be what we have to do, but since the actual standard
poll() semantics is *supposed* to be 'int', and since at least on x86-64
glibc sign-extends the argument before invocing the system call (so
nobody can actually use a 64-bit timeout value in user space _anyway_,
even in 64-bit binaries), the simpler solution would seem to be to just
fix the definition of the system call to match what it should have been
from the very start.
If it turns out that somebody somehow circumvents the user-level libc
64-bit sign extension and actually uses a large unsigned 64-bit timeout
despite that not being how poll() is supposed to work, we will need to
do the compat_sys_poll() approach.
Reported-by: Thomas Meyer <thomas@m3y3r.de>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The xfs checks quota when reserving disk blocks and inodes. In the block
reservation, it checks if the total number of blocks including current
usage and new reservation exceed quota. In the inode reservation,
it checks using the total number of inodes including only current usage
without new reservation. However, this inode quota check works well
since the caller of xfs_trans_dquot() always sets the argument of the
number of new inode reservation to 1 or 0 and inode is reserved one by
one in current xfs.
To make it more general, this patch changes it to the same way as the
block quota check.
Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Ben Myers <bpm@sgi.com>
Cc: Alex Elder <elder@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit c922bbc819324558e61402a7a76c10c550ca61bc)
|
|
In general, quota allows us to use disk blocks and inodes up to each
limit, that is, they are available if they don't exceed their limitations.
Current xfs sets their available ranges to lower than them except disk
inode quota check. So, this patch changes the ranges to not beyond them.
Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Ben Myers <bpm@sgi.com>
Cc: Alex Elder <elder@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 20f12d8ac01917d96860f352f67eddd912df0afb)
|
|
The xfs checks quota when reserving disk blocks and inodes. In the block
reservation, it checks if the total number of blocks including current
usage and new reservation exceed quota. In the inode reservation,
it checks using the total number of inodes including only current usage
without new reservation. However, this inode quota check works well
since the caller of xfs_trans_dquot() always sets the argument of the
number of new inode reservation to 1 or 0 and inode is reserved one by
one in current xfs.
To make it more general, this patch changes it to the same way as the
block quota check.
Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Ben Myers <bpm@sgi.com>
Cc: Alex Elder <elder@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
In general, quota allows us to use disk blocks and inodes up to each
limit, that is, they are available if they don't exceed their limitations.
Current xfs sets their available ranges to lower than them except disk
inode quota check. So, this patch changes the ranges to not beyond them.
Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Ben Myers <bpm@sgi.com>
Cc: Alex Elder <elder@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
In clear_extent_bit, it is enough that next node is adjacent in tree level.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
|
|
The below patch fixes some typos "aditional" to "additional", and also fixes
a comment with another word mispelled.
Signed-off-by: Justin P. Mattock <justinmattock@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
Correct spelling "endianess" to "endianness" in
fs/cramfs/inode.c
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
Fix ext4_warning format flag in dx_probe().
CC: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Zheng Liu <wenqing.lz@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
Processes hang forever on a sync-mounted ext2 file system that
is mounted with the ext4 module (default in Fedora 16).
I can reproduce this reliably by mounting an ext2 partition with
"-o sync" and opening a new file an that partition with vim. vim
will hang in "D" state forever. The same happens on ext4 without
a journal.
I am attaching a small patch here that solves this issue for me.
In the sync mounted case without a journal,
ext4_handle_dirty_metadata() may call sync_dirty_buffer(), which
can't be called with buffer lock held.
Also move mb_cache_entry_release inside lock to avoid race
fixed previously by 8a2bfdcb ext[34]: EA block reference count racing fix
Note too that ext2 fixed this same problem in 2006 with
b2f49033 [PATCH] fix deadlock in ext2
Signed-off-by: Martin.Wilck@ts.fujitsu.com
[sandeen@redhat.com: move mb_cache_entry_release before unlock, edit commit msg]
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
When resizing file system in the way that the new size of the file
system is still in the same group (no new groups are added), then we can
hit a BUG_ON in ext4_alloc_group_tables()
BUG_ON(flex_gd->count == 0 || group_data == NULL);
because flex_gd->count is zero. The reason is the missing check for such
case, so the code always extend the last group fully and then attempt to
add more groups, but at that time n_blocks_count is actually smaller
than o_blocks_count.
It can be easily reproduced like this:
mkfs.ext4 -b 4096 /dev/sda 30M
mount /dev/sda /mnt/test
resize2fs /dev/sda 50M
Fix this by checking whether the resize happens within the singe group
and only add that many blocks into the last group to satisfy user
request. Then o_blocks_count == n_blocks_count and the resize will exit
successfully without and attempt to add more groups into the fs.
Also fix mixing together block number and blocks count which might be
confusing and can easily lead to off-by-one errors (but it is actually
not the case here since the two occurrence of this mix-up will cancel
each other).
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reported-by: Milan Broz <mbroz@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Assorted fixes, sat in -next for a week or so...
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
ocfs2: deal with wraparounds of i_nlink in ocfs2_rename()
vfs: fix compat_sys_stat() handling of overflows in st_nlink
quota: Fix deadlock with suspend and quotas
vfs: Provide function to get superblock and wait for it to thaw
vfs: fix panic in __d_lookup() with high dentry hashtable counts
autofs4 - fix lockdep splat in autofs
vfs: fix d_inode_lookup() dentry ref leak
|