Age | Commit message (Collapse) | Author |
|
[BUG]
Syzbot reported a crash that an ASSERT() got triggered inside
prepare_to_merge().
That ASSERT() makes sure the reloc tree is properly pointed back by its
subvolume tree.
[CAUSE]
After more debugging output, it turns out we had an invalid reloc tree:
BTRFS error (device loop1): reloc tree mismatch, root 8 has no reloc root, expect reloc root key (-8, 132, 8) gen 17
Note the above root key is (TREE_RELOC_OBJECTID, ROOT_ITEM,
QUOTA_TREE_OBJECTID), meaning it's a reloc tree for quota tree.
But reloc trees can only exist for subvolumes, as for non-subvolume
trees, we just COW the involved tree block, no need to create a reloc
tree since those tree blocks won't be shared with other trees.
Only subvolumes tree can share tree blocks with other trees (thus they
have BTRFS_ROOT_SHAREABLE flag).
Thus this new debug output proves my previous assumption that corrupted
on-disk data can trigger that ASSERT().
[FIX]
Besides the dedicated fix and the graceful exit, also let tree-checker to
check such root keys, to make sure reloc trees can only exist for subvolumes.
CC: stable@vger.kernel.org # 5.15+
Reported-by: syzbot+ae97a827ae1c3336bbb4@syzkaller.appspotmail.com
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
Syzbot reported a crash that an ASSERT() got triggered inside
prepare_to_merge().
[CAUSE]
The root cause of the triggered ASSERT() is we can have a race between
quota tree creation and relocation.
This leads us to create a duplicated quota tree in the
btrfs_read_fs_root() path, and since it's treated as fs tree, it would
have ROOT_SHAREABLE flag, causing us to create a reloc tree for it.
The bug itself is fixed by a dedicated patch for it, but this already
taught us the ASSERT() is not something straightforward for
developers.
[ENHANCEMENT]
Instead of using an ASSERT(), let's handle it gracefully and output
extra info about the mismatch reloc roots to help debug.
Also with the above ASSERT() removed, we can trigger ASSERT(0)s inside
merge_reloc_roots() later.
Also replace those ASSERT(0)s with WARN_ON()s.
CC: stable@vger.kernel.org # 5.15+
Reported-by: syzbot+ae97a827ae1c3336bbb4@syzkaller.appspotmail.com
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
Syzbot reported a weird ASSERT() triggered inside prepare_to_merge().
assertion failed: root->reloc_root == reloc_root, in fs/btrfs/relocation.c:1919
------------[ cut here ]------------
kernel BUG at fs/btrfs/relocation.c:1919!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 9904 Comm: syz-executor.3 Not tainted
6.4.0-syzkaller-08881-g533925cb7604 #0
Hardware name: Google Google Compute Engine/Google Compute Engine,
BIOS Google 05/27/2023
RIP: 0010:prepare_to_merge+0xbb2/0xc40 fs/btrfs/relocation.c:1919
Code: fe e9 f5 (...)
RSP: 0018:ffffc9000325f760 EFLAGS: 00010246
RAX: 000000000000004f RBX: ffff888075644030 RCX: 1481ccc522da5800
RDX: ffffc90005c09000 RSI: 00000000000364ca RDI: 00000000000364cb
RBP: ffffc9000325f870 R08: ffffffff816f33ac R09: 1ffff9200064bea0
R10: dffffc0000000000 R11: fffff5200064bea1 R12: ffff888075644000
R13: ffff88803b166000 R14: ffff88803b166560 R15: ffff88803b166558
FS: 00007f4e305fd700(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000056080679c000 CR3: 00000000193ad000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
relocate_block_group+0xa5d/0xcd0 fs/btrfs/relocation.c:3749
btrfs_relocate_block_group+0x7ab/0xd70 fs/btrfs/relocation.c:4087
btrfs_relocate_chunk+0x12c/0x3b0 fs/btrfs/volumes.c:3283
__btrfs_balance+0x1b06/0x2690 fs/btrfs/volumes.c:4018
btrfs_balance+0xbdb/0x1120 fs/btrfs/volumes.c:4402
btrfs_ioctl_balance+0x496/0x7c0 fs/btrfs/ioctl.c:3604
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl+0xf8/0x170 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f4e2f88c389
[CAUSE]
With extra debugging, the offending reloc_root is for quota tree (rootid 8).
Normally we should not use the reloc tree for quota root at all, as reloc
trees are only for subvolume trees.
But there is a race between quota enabling and relocation, this happens
after commit 85724171b302 ("btrfs: fix the btrfs_get_global_root return value").
Before that commit, for quota and free space tree, we exit immediately
if we cannot grab it from fs_info.
But now we would try to read it from disk, just as if they are fs trees,
this sets ROOT_SHAREABLE flags in such race:
Thread A | Thread B
---------------------------------+------------------------------
btrfs_quota_enable() |
| | btrfs_get_root_ref()
| | |- btrfs_get_global_root()
| | | Returned NULL
| | |- btrfs_lookup_fs_root()
| | | Returned NULL
|- btrfs_create_tree() | |
| Now quota root item is | |
| inserted | |- btrfs_read_tree_root()
| | | Got the newly inserted quota root
| | |- btrfs_init_fs_root()
| | | Set ROOT_SHAREABLE flag
[FIX]
Get back to the old behavior by returning PTR_ERR(-ENOENT) if the target
objectid is not a subvolume tree or data reloc tree.
Reported-and-tested-by: syzbot+ae97a827ae1c3336bbb4@syzkaller.appspotmail.com
Fixes: 85724171b302 ("btrfs: fix the btrfs_get_global_root return value")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When the call to btrfs_reloc_clone_csums in cow_file_range returns an
error, we jump to the out_unlock label with the extent_reserved variable
set to false. The cleanup at the label will then call
extent_clear_unlock_delalloc on the range from start to end. But we've
already added cur_alloc_size to start before the jump, so there might no
range be left from the newly incremented start to end. Move the check for
'start < end' so that it is reached by also for the !extent_reserved case.
CC: stable@vger.kernel.org # 6.1+
Fixes: a315e68f6e8b ("Btrfs: fix invalid attempt to free reserved space on failure to cow range")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
__extent_writepage could have started on more pages than the one it was
called for. This happens regularly for zoned file systems, and in theory
could happen for compressed I/O if the worker thread was executed very
quickly. For such pages extent_write_cache_pages waits for writeback
to complete before moving on to the next page, which is highly inefficient
as it blocks the flusher thread.
Port over the PageDirty check that was added to write_cache_pages in
commit 515f4a037fb ("mm: write_cache_pages optimise page cleaning") to
fix this.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
extent_write_cache_pages stops writing pages as soon as nr_to_write hits
zero. That is the right thing for opportunistic writeback, but incorrect
for data integrity writeback, which needs to ensure that no dirty pages
are left in the range. Thus only stop the writeback for WB_SYNC_NONE
if nr_to_write hits 0.
This is a port of write_cache_pages changes in commit 05fe478dd04e
("mm: write_cache_pages integrity fix").
Note that I've only trigger the problem with other changes to the btrfs
writeback code, but this condition seems worthwhile fixing anyway.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
[ updated comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Any inode on a reflink filesystem can have a cow fork, even if the inode
does not have the reflink iflag set. This happens either because the
inode once had the iflag set but does not now, because we don't free the
incore cow fork until the icache deletes the inode; or because we're
running in alwayscow mode.
Either way, we can collapse both of the xfs_is_reflink_inode calls into
one, and change it to xfs_has_reflink, now that the bmap checker will
return ENOENT if there is no pointer to the incore fork.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Remove the pointless goto and return code in xchk_bmap, since it only
serves to obscure what's going on in the function. Instead, return
whichever error code is appropriate there. For nonexistent forks,
this should have been ENOENT.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Back in the mists of time[1], I proposed this function to assist the
inode btree scrubbers in checking the inode btree contents against the
allocation state of the inode records. The original version performed a
direct lookup in the inode cache and returned the allocation status if
the cached inode hadn't been reused and wasn't in an intermediate state.
Brian thought it would be better to use the usual iget/irele mechanisms,
so that was changed for the final version.
Unfortunately, this hasn't aged well -- the IGET_INCORE flag only has
one user and clutters up the regular iget path, which makes it hard to
reason about how it actually works. Worse yet, the inode inactivation
series silently broke it because iget won't return inodes that are
anywhere in the inactivation machinery, even though the caller is
already required to prevent inode allocation and freeing. Inodes in the
inactivation machinery are still allocated, but the current code's
interactions with the iget code prevent us from being able to say that.
Now that I understand the inode lifecycle better than I did in early
2017, I now realize that as long as the cached inode hasn't been reused
and isn't actively being reclaimed, it's safe to access the i_mode field
(with the AGI, rcu, and i_flags locks held), and we don't need to worry
about the inode being freed out from under us.
Therefore, port the original version to modern code structure, which
fixes the brokennes w.r.t. inactivation. In the next patch we'll remove
IGET_INCORE since it's no longer necessary.
[1] https://lore.kernel.org/linux-xfs/149643868294.23065.8094890990886436794.stgit@birch.djwong.org/
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
This function is only used by online fsck, so let's move it there.
In the next patch, we'll fix it to work properly and to require that the
caller hold the AGI buffer locked. No major changes aside from
adjusting the signature a bit.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
xfs/139 with parent pointers enabled occasionally pops up a corruption
message when online fsck force-rebuild repairs an AGFL:
XFS (sde): Metadata corruption detected at xfs_agf_verify+0x11e/0x220 [xfs], xfs_agf block 0x9e0001
XFS (sde): Unmount and run xfs_repair
XFS (sde): First 128 bytes of corrupted metadata buffer:
00000000: 58 41 47 46 00 00 00 01 00 00 00 4f 00 00 40 00 XAGF.......O..@.
00000010: 00 00 00 01 00 00 00 02 00 00 00 05 00 00 00 01 ................
00000020: 00 00 00 01 00 00 00 01 00 00 00 00 ff ff ff ff ................
00000030: 00 00 00 00 00 00 00 05 00 00 00 05 00 00 00 00 ................
00000040: 91 2e 6f b1 ed 61 4b 4d 8c 9b 6e 87 08 bb f6 36 ..o..aKM..n....6
00000050: 00 00 00 01 00 00 00 01 00 00 00 06 00 00 00 01 ................
00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
The root cause of this failure is that prior to the repair, there were
zero blocks in the AGFL. This scenario is set up by the test case, since
it formats with 64MB AGs and tries to ENOSPC the whole filesystem. In
this case of flcount==0, we reset fllast to -1U, which then trips the
write verifier's check that fllast is less than xfs_agfl_size().
Correct this code to set fllast to the last possible slot in the AGFL
when flcount is zero, which mirrors the behavior of xfs_repair phase5
when it has to create a totally empty AGFL.
Fixes: 0e93d3f43ec7 ("xfs: repair the AGFL")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Add a new (superuser-only) flag to the online metadata repair ioctl to
force it to rebuild structures, even if they're not broken. We will use
this to move metadata structures out of the way during a free space
defragmentation operation.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Clear the pagf_agflreset flag when we're repairing the AGFL because we
fix all the same padding problems that xfs_agfl_reset does.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
All online repair functions have the same structure: walk filesystem
metadata structures gathering enough data to rebuild the structure,
stage a new copy, and then commit the new copy.
The gathering steps do not write anything to disk, so they are peppered
with xchk_should_terminate calls to avoid softlockup warnings and to
provide an opportunity to abort the repair (by killing xfs_scrub).
However, it's not clear in the code base when is the last chance to
abort cleanly without having to undo a bunch of structure.
Therefore, add one more call to xchk_should_terminate (along with a
comment) providing the sysadmin with the ability to abort before it's
too late and to make it clear in the source code when it's no longer
convenient or safe to abort a repair. As there are only four repair
functions right now, this patch exists more to establish a precedent for
subsequent additions than to deliver practical functionality.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
While debugging other parts of online repair, I noticed that if someone
injects FORCE_SCRUB_REPAIR, starts an IFLAG_REPAIR scrub on a piece of
metadata, and the metadata repair fails, we'll log a message about
uncorrected errors in the filesystem.
This isn't strictly true if the scrub function didn't set OFLAG_CORRUPT
and we're only doing the repair because the error injection knob is set.
Repair functions are allowed to abort the entire operation at any point
before committing new metadata, in which case the piece of metadata is
in the same state as it was before. Therefore, the log message should
be gated on the results of the scrub. Refactor the predicate and
rearrange the code flow to make this happen.
Note: If the repair function errors out after it commits the new
metadata, the transaction cancellation will shut down the filesystem,
which is an obvious sign of corrupt metadata.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Finish the realtime summary scrubber by adding the functions we need to
compute a fresh copy of the rtsummary info and comparing it to the copy
on disk.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
After an online repair function runs for a per-AG metadata structure,
sc->sick_mask is supposed to reflect the per-AG metadata that the repair
function fixed. Our next move is to re-check the metadata to assess
the completeness of our repair, so we don't want the rebuilt structure
to be excluded from the rescan just because the health system previously
logged a problem with the data structure.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Move the realtime summary file checking code to a separate file in
preparation to actually implement it.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Scrub tracks the resources that it's holding onto in the xfs_scrub
structure. This includes the inode being checked (if applicable) and
the inode lock state of that inode. Replace the open-coded structure
manipulation with a trivial helper to eliminate sources of error.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
When we want to scrub a file, get our own reference to the inode
unconditionally. This will make disposal rules simpler in the long run.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Track the usage, outcomes, and run times of the online fsck code, and
report these values via debugfs. The columns in the file are:
* scrubber name
* number of scrub invocations
* clean objects found
* corruptions found
* optimizations found
* cross referencing failures
* inconsistencies found during cross referencing
* incomplete scrubs
* warnings
* number of time scrub had to retry
* cumulative amount of time spent scrubbing (microseconds)
* number of repair inovcations
* successfully repaired objects
* cumuluative amount of time spent repairing (microseconds)
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Now that we have the means to do insertion sorts of small in-memory
subsets of an xfarray, use it to improve the quicksort pivot algorithm
by reading 7 records into memory and finding the median of that. This
should prevent bad partitioning when a[lo] and a[hi] end up next to each
other in the final sort, which can happen when sorting for cntbt repair
when the free space is extremely fragmented (e.g. generic/176).
This doesn't speed up the average quicksort run by much, but it will
(hopefully) avoid the quadratic time collapse for which quicksort is
famous.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Set up debugfs directories for xfs as a whole, and a subdirectory for
each mounted filesystem. This will enable the creation of debugfs files
in the next patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
After quicksort picks a pivot item for a particular subsort, it walks
the records in that subset from the outside in, rearranging them so that
every record less than the pivot comes before it, and every record
greater than the pivot comes after it. This scan has a lot of locality,
so we can speed it up quite a bit by grabbing the xfile backing page and
holding onto it as long as we possibly can. Doing so reduces the
runtime by another 5% on the author's computer.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
If all the records in an xfarray subset live within the same memory
page, we can short-circuit even more quicksort recursion by mapping that
page into the local CPU and using the kernel's heapsort function to sort
the subset. On the author's computer, this reduces the runtime by
another 15% on a 500,000 element array.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Certain xfile array operations (such as sorting) can be sped up quite a
bit by allowing xfile users to grab a page to bulk-read the records
contained within it. Create helper methods to facilitate this.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
In the previous patch, we created a very basic quicksort implementation
for xfile arrays. While the use of an alternate sorting algorithm to
avoid quicksort recursion on very small subsets reduces the runtime
modestly, we could do better than a load and store-heavy insertion sort,
particularly since each load and store requires a page mapping lookup in
the xfile.
For a small increase in kernel memory requirements, we could instead
bulk load the xfarray records into memory, use the kernel's existing
heapsort implementation to sort the records, and bulk store the memory
buffer back into the xfile. On the author's computer, this reduces the
runtime by about 5% on a 500,000 element array.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
The btree bulk loading code requires that records be provided in the
correct record sort order for the given btree type. In general, repair
code cannot be required to collect records in order, and it is not
feasible to insert new records in the middle of an array to maintain
sort order.
Implement a sorting algorithm so that we can sort the records just prior
to bulk loading. In principle, an xfarray could consume many gigabytes
of memory and its backing pages can be sent out to disk at any time.
This means that we cannot map the entire array into memory at once, so
we must find a way to divide the work into smaller portions (e.g. a
page) that /can/ be mapped into memory.
Quicksort seems like a reasonable fit for this purpose, since it uses a
divide and conquer strategy to keep its average runtime logarithmic.
The solution presented here is a port of the glibc implementation, which
itself is derived from the median-of-three and tail call recursion
strategies outlined by Sedgwick.
Subsequent patches will optimize the implementation further by utilizing
the kernel's heapsort on directly-mapped memory whenever possible, and
improving the quicksort pivot selection algorithm to try to avoid O(n^2)
collapses.
Note: The sorting functionality gets its own patch because the basic big
array mechanisms were plenty for a single code patch.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
The AGFL repair code uses a series of bitmaps to figure out where there
are OWN_AG blocks that are not claimed by the free space and rmap
btrees. These blocks become the new AGFL, and any overflow is reaped.
The bitmaps current track xfs_fsblock_t even though we already know the
AG number.
In the last patch, we introduced a new bitmap "type" for tracking
xfs_agblock_t extents. Port the reaping code and the AGFL repair to use
this new type, which makes it very obvious what we're tracking. This
also eliminates a bunch of unnecessary agblock <-> fsblock conversions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Create a simple 'big array' data structure for storage of fixed-size
metadata records that will be used to reconstruct a btree index. For
repair operations, the most important operations are append, iterate,
and sort.
Earlier implementations of the big array used linked lists and suffered
from severe problems -- pinning all records in kernel memory was not a
good idea and frequently lead to OOM situations; random access was very
inefficient; and record overhead for the lists was unacceptably high at
40-60%.
Therefore, the big memory array relies on the 'xfile' abstraction, which
creates a memfd file and stores the records in page cache pages. Since
the memfd is created in tmpfs, the memory pages can be pushed out to
disk if necessary and we have a built-in usage limit of 50% of physical
memory.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
When we're freeing extents that have been set in a bitmap, break the
bitmap extent into multiple sub-extents organized by fate, and reap the
extents. This enables us to dispose of old resources more efficiently
than doing them block by block.
While we're at it, rename the reaping functions to make it clear that
they're reaping per-AG extents.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
After an online repair, we need to invalidate buffers representing the
blocks from the old metadata that we're replacing. It's possible that
parts of a tree that were previously cached in memory are no longer
accessible due to media failure or other corruption on interior nodes,
so repair figures out the old blocks from the reverse mapping data and
scans the buffer cache directly.
In other words, online fsck needs to find all the live (i.e. non-stale)
buffers for a range of fsblocks so that it can invalidate them.
Unfortunately, the current buffer cache code triggers asserts if the
rhashtable lookup finds a non-stale buffer of a different length than
the key we searched for. For regular operation this is desirable, but
for this repair procedure, we don't care since we're going to forcibly
stale the buffer anyway. Add an internal lookup flag to avoid the
assert. Skip buffers that are already XBF_STALE.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Rearrange the logic inside xrep_reap_block to make it more obvious that
crosslinked metadata blocks are handled differently. Add a couple of
tracepoints so that we can tell what's going on at the end of a btree
rebuild operation.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Use deferred frees (EFIs) to reap the blocks of a btree that we just
replaced. This helps us to shrink the window in which those old blocks
could be lost due to a system crash, though we try to flush the EFIs
every few hundred blocks so that we don't also overflow the transaction
reservations during and after we commit the new btree.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Now that we've refactored btree cursors to require the caller to pass in
a perag structure, there are numerous problems in xrep_reap_extents if
it's being called to reap extents for an inode metadata repair. We
don't have any repair functions that can do that, so drop the support
for now.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
When we're discarding old btree blocks after a repair, only invalidate
the buffers for the ones that we're freeing -- if the metadata was
crosslinked with another data structure, we don't want to touch it.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Reaping blocks after a repair is a complicated affair involving a lot of
rmap btree lookups and figuring out if we're going to unmap or free old
metadata blocks that might be crosslinked. Eventually, we will need to
be able to reap per-AG metadata blocks, bmbt blocks from inode forks,
garbage CoW staging extents, and (even later) blocks from btrees rooted
in inodes. This results in a lot of reaping code, so we might as well
split that off while it's easy.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
These two functions date from the era when I thought that we could
rebuild btrees by creating an alternate root and adding records one by
one. In other words, they predate the btree bulk loader. They're not
necessary now, so remove them.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Recently we've been having mysterious hangs while running generic/475 on
the CI system. This turned out to be something like this:
Task 1
dmsetup suspend --nolockfs
-> __dm_suspend
-> dm_wait_for_completion
-> dm_wait_for_bios_completion
-> Unable to complete because of IO's on a plug in Task 2
Task 2
wb_workfn
-> wb_writeback
-> blk_start_plug
-> writeback_sb_inodes
-> Infinite loop unable to make an allocation
Task 3
cache_block_group
->read_extent_buffer_pages
->Waiting for IO to complete that can't be submitted because Task 1
suspended the DM device
The problem here is that we need Task 2 to be scheduled completely for
the blk plug to flush. Normally this would happen, we normally wait for
the block group caching to finish (Task 3), and this schedule would
result in the block plug flushing.
However if there's enough free space available from the current caching
to satisfy the allocation we won't actually wait for the caching to
complete. This check however just checks that we have enough space, not
that we can make the allocation. In this particular case we were trying
to allocate 9MiB, and we had 10MiB of free space, but we didn't have
9MiB of contiguous space to allocate, and thus the allocation failed and
we looped.
We specifically don't cycle through the FFE loop until we stop finding
cached block groups because we don't want to allocate new block groups
just because we're caching, so we short circuit the normal loop once we
hit LOOP_CACHING_WAIT and we found a caching block group.
This is normally fine, except in this particular case where the caching
thread can't make progress because the DM device has been suspended.
Fix this by not only waiting for free space to >= the amount of space we
want to allocate, but also that we make some progress in caching from
the time we start waiting. This will keep us from busy looping when the
caching is taking a while but still theoretically has enough space for
us to allocate from, and fixes this particular case by forcing us to
actually sleep and wait for forward progress, which will flush the plug.
With this fix we're no longer hanging with generic/475.
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Enable "user." extended attributes on tmpfs, limiting them by tracking
the space they occupy, and deducting that space from the limited ispace
(unless tmpfs mounted with nr_inodes=0 to leave that ispace unlimited).
tmpfs inodes and simple xattrs are both unswappable, and have to be in
lowmem on a 32-bit highmem kernel: so the ispace limit is appropriate
for xattrs, without any need for a further mount option.
Add simple_xattr_space() to give approximate but deterministic estimate
of the space taken up by each xattr: with simple_xattrs_free() outputting
the space freed if required (but kernfs and even some tmpfs usages do not
require that, so don't waste time on strlen'ing if not needed).
Security and trusted xattrs were already supported: for consistency and
simplicity, account them from the same pool; though there's a small risk
that a tmpfs with enough space before would now be considered too small.
When extended attributes are used, "df -i" does show more IUsed and less
IFree than can be explained by the inodes: document that (manpage later).
xfstests tests/generic which were not run on tmpfs before but now pass:
020 037 062 070 077 097 103 117 337 377 454 486 523 533 611 618 728
with no new failures.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Message-Id: <2e63b26e-df46-5baa-c7d6-f9a8dd3282c5@google.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Check for sb->s_type which is the right place to look at the file system
type, not the holder, which is just an implementation detail in the VFS
helpers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Message-Id: <20230802154131.2221419-6-hch@lst.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Use the generic setup_bdev_super helper to open the main block device
and do various bits of superblock setup instead of duplicating the
logic. This includes moving to the new scheme implemented in common
code that only opens the block device after the superblock has allocated.
It does not yet convert nilfs2 to the new mount API, but doing so will
become a bit simpler after this first step.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Message-Id: <20230802154131.2221419-3-hch@lst.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
We'll want to use setup_bdev_super instead of duplicating it in nilfs2.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Message-Id: <20230802154131.2221419-2-hch@lst.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Currently get_tree_bdev and mount_bdev open the block device before
committing to allocating a super block. That creates problems for
restricting the number of writers to a device, and also leads to a
unusual and not very helpful holder (the fs_type).
Reorganize the super block code to first look whether the superblock for
a particular device does already exist and open the block device only if
it doesn't.
[hch: port to before the bdev_handle changes,
duplicate the bdev read-only check from blkdev_get_by_path,
extend the fsfree_mutex coverage to protect against freezes,
fix an open bdev leak when the bdev is frozen,
use the bdev local variable more,
rename the s variable to sb to be more descriptive]
[brauner: remove references to mounts as they're mostly irrelevant]
[brauner & hch: fold fixes for romfs and cramfs for
syzbot+2faac0423fdc9692822b@syzkaller.appspotmail.com]
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Message-Id: <20230724175145.201318-1-hch@lst.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
As a rule of thumb everything allocated to the fs_context and moved into
the super_block should be freed by ->kill_sb so that the teardown
handling doesn't need to be duplicated between the fill_super error
path and put_super. Implement an ntfs3-specific kill_sb method to do
that.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Message-Id: <20230809220545.1308228-14-hch@lst.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
kill_block_super will call sync_blockdev just a tad later already.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Message-Id: <20230809220545.1308228-13-hch@lst.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
put_ntfs is a rather unconventional name for a function that frees the
sbi and associated resources. Give it a more descriptive name and drop
the duplicate name in the top of the function comment.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Message-Id: <20230809220545.1308228-12-hch@lst.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
As a rule of thumb everything allocated to the fs_context and moved into
the super_block should be freed by ->kill_sb so that the teardown
handling doesn't need to be duplicated between the fill_super error
path and put_super. Implement an exfat-specific kill_sb method to do
that and share the code with the mount contex free helper for the
mount error handling case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Message-Id: <20230809220545.1308228-11-hch@lst.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
There are no RCU critical sections for accessing any information in the
sbi, so drop the call_rcu indirection for freeing the sbi.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Message-Id: <20230809220545.1308228-10-hch@lst.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
blkdev_put must not be called under sb->s_umount to avoid a lock order
reversal with disk->open_mutex. Move closing the external journal device
into ->kill_sb to archive that.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Message-Id: <20230809220545.1308228-9-hch@lst.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|