Age | Commit message (Collapse) | Author |
|
We should use either GFP_KERNEL or GFP_NOFS, but not both. Also strip
GFP_KERNEL_ACCOUNT down to GFP_KERNEL. This memory is shrinkable, so
does not need to be limited by kmemcg.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
Allow kmemcg to limit the number of NFSv4 delegation, lock and open
state trackers.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
Allow kmemcg to limit the number of open/lock file contexts, in the same
way that it limits the parent file descriptors.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
If memory allocation triggers a direct reclaim from the state recovery
thread, then we can deadlock. Use memalloc_nofs_save/restore to ensure
that doesn't happen.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
[You don't often get email from xiongx18@fudan.edu.cn. Learn why this is important at http://aka.ms/LearnAboutSenderIdentification.]
The reference counting issue happens in two error paths in the
function _nfs42_proc_copy_notify(). In both error paths, the function
simply returns the error code and forgets to balance the refcount of
object `ctx`, bumped by get_nfs_open_context() earlier, which may
cause refcount leaks.
Fix it by balancing refcount of the `ctx` object before the function
returns in both error paths.
Signed-off-by: Xin Xiong <xiongx18@fudan.edu.cn>
Signed-off-by: Xiyu Yang <xiyuyang19@fudan.edu.cn>
Signed-off-by: Xin Tan <tanxin.ctf@gmail.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
git://git.infradead.org/users/hch/configfs
Pull configfs fix from Christoph Hellwig:
- fix a race in configfs_{,un}register_subsystem (ChenXiaoSong)
* tag 'configfs-5.17-2022-02-25' of git://git.infradead.org/users/hch/configfs:
configfs: fix a race in configfs_{,un}register_subsystem()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"This is a hopefully last batch of fixes for defrag that got broken in
5.16, all stable material.
The remaining reported problem is excessive IO with autodefrag due to
various conditions in the defrag code not met or missing"
* tag 'for-5.17-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: reduce extent threshold for autodefrag
btrfs: autodefrag: only scan one inode once
btrfs: defrag: don't use merged extent map for their generation check
btrfs: defrag: bring back the old file extent search behavior
btrfs: defrag: remove an ambiguous condition for rejection
btrfs: defrag: don't defrag extents which are already at max capacity
btrfs: defrag: don't try to merge regular extents with preallocated extents
btrfs: defrag: allow defrag_one_cluster() to skip large extent which is not a target
btrfs: prevent copying too big compressed lzo segment
|
|
NFS is one of the last two users of the deprecated ->readpages aop.
This conversion looks straightforward, but I have only compile-tested
it.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
nfs42_files_from_same_server() is called to check if freeing
cn_resp is required, just do the free.
Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
cnt should be passed to sb_has_quota_active() instead of type to check
active quota properly.
Moreover, when the type is -1, the compiler with enough inline knowledge
can discard sb_has_quota_active() check altogether, causing a NULL pointer
dereference at the following inode_lock(dqopt->files[cnt]):
[ 2.796010] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a0
[ 2.796024] Mem abort info:
[ 2.796025] ESR = 0x96000005
[ 2.796028] EC = 0x25: DABT (current EL), IL = 32 bits
[ 2.796029] SET = 0, FnV = 0
[ 2.796031] EA = 0, S1PTW = 0
[ 2.796032] Data abort info:
[ 2.796034] ISV = 0, ISS = 0x00000005
[ 2.796035] CM = 0, WnR = 0
[ 2.796046] user pgtable: 4k pages, 39-bit VAs, pgdp=00000003370d1000
[ 2.796048] [00000000000000a0] pgd=0000000000000000, pud=0000000000000000
[ 2.796051] Internal error: Oops: 96000005 [#1] PREEMPT SMP
[ 2.796056] CPU: 7 PID: 640 Comm: f2fs_ckpt-259:7 Tainted: G S 5.4.179-arter97-r8-64666-g2f16e087f9d8 #1
[ 2.796057] Hardware name: Qualcomm Technologies, Inc. Lahaina MTP lemonadep (DT)
[ 2.796059] pstate: 80c00005 (Nzcv daif +PAN +UAO)
[ 2.796065] pc : down_write+0x28/0x70
[ 2.796070] lr : f2fs_quota_sync+0x100/0x294
[ 2.796071] sp : ffffffa3f48ffc30
[ 2.796073] x29: ffffffa3f48ffc30 x28: 0000000000000000
[ 2.796075] x27: ffffffa3f6d718b8 x26: ffffffa415fe9d80
[ 2.796077] x25: ffffffa3f7290048 x24: 0000000000000001
[ 2.796078] x23: 0000000000000000 x22: ffffffa3f7290000
[ 2.796080] x21: ffffffa3f72904a0 x20: ffffffa3f7290110
[ 2.796081] x19: ffffffa3f77a9800 x18: ffffffc020aae038
[ 2.796083] x17: ffffffa40e38e040 x16: ffffffa40e38e6d0
[ 2.796085] x15: ffffffa40e38e6cc x14: ffffffa40e38e6d0
[ 2.796086] x13: 00000000000004f6 x12: 00162c44ff493000
[ 2.796088] x11: 0000000000000400 x10: ffffffa40e38c948
[ 2.796090] x9 : 0000000000000000 x8 : 00000000000000a0
[ 2.796091] x7 : 0000000000000000 x6 : 0000d1060f00002a
[ 2.796093] x5 : ffffffa3f48ff718 x4 : 000000000000000d
[ 2.796094] x3 : 00000000060c0000 x2 : 0000000000000001
[ 2.796096] x1 : 0000000000000000 x0 : 00000000000000a0
[ 2.796098] Call trace:
[ 2.796100] down_write+0x28/0x70
[ 2.796102] f2fs_quota_sync+0x100/0x294
[ 2.796104] block_operations+0x120/0x204
[ 2.796106] f2fs_write_checkpoint+0x11c/0x520
[ 2.796107] __checkpoint_and_complete_reqs+0x7c/0xd34
[ 2.796109] issue_checkpoint_thread+0x6c/0xb8
[ 2.796112] kthread+0x138/0x414
[ 2.796114] ret_from_fork+0x10/0x18
[ 2.796117] Code: aa0803e0 aa1f03e1 52800022 aa0103e9 (c8e97d02)
[ 2.796120] ---[ end trace 96e942e8eb6a0b53 ]---
[ 2.800116] Kernel panic - not syncing: Fatal exception
[ 2.800120] SMP: stopping secondary CPUs
Fixes: 9de71ede81e6 ("f2fs: quota: fix potential deadlock")
Cc: <stable@vger.kernel.org> # v5.15+
Signed-off-by: Juhyung Park <qkrwngud825@gmail.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
|
|
Lockdep uses lock class keys in its analysis. init_rwsem() instantiates
one lock class key with each init_rwsem() user as follows:
#define init_rwsem(sem) \
do { \
static struct lock_class_key __key; \
\
__init_rwsem((sem), #sem, &__key); \
} while (0)
Commit e4544b63a7ee ("f2fs: move f2fs to use reader-unfair rwsems") reduced
the number of lock class keys from one per init_rwsem() user to one per
file in which init_f2fs_rwsem() is used. This causes the same lock class key
to be associated with multiple f2fs rwsems and also triggers a number of
false positive lockdep deadlock reports. Fix this by again instantiating one
lock class key with each init_f2fs_rwsem() caller.
Cc: Tim Murray <timmurray@google.com>
Reported-by: syzbot+0b9cadf5fc45a98a5083@syzkaller.appspotmail.com
Fixes: e4544b63a7ee ("f2fs: move f2fs to use reader-unfair rwsems")
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
|
|
This patch fixes xfstests/generic/475 failure.
[ 293.680694] F2FS-fs (dm-1): May loss orphan inode, run fsck to fix.
[ 293.685358] Buffer I/O error on dev dm-1, logical block 8388592, async page read
[ 293.691527] Buffer I/O error on dev dm-1, logical block 8388592, async page read
[ 293.691764] sh (7615): drop_caches: 3
[ 293.691819] sh (7616): drop_caches: 3
[ 293.694017] Buffer I/O error on dev dm-1, logical block 1, async page read
[ 293.695659] sh (7618): drop_caches: 3
[ 293.696979] sh (7617): drop_caches: 3
[ 293.700290] sh (7623): drop_caches: 3
[ 293.708621] sh (7626): drop_caches: 3
[ 293.711386] sh (7628): drop_caches: 3
[ 293.711825] sh (7627): drop_caches: 3
[ 293.716738] sh (7630): drop_caches: 3
[ 293.719613] sh (7632): drop_caches: 3
[ 293.720971] sh (7633): drop_caches: 3
[ 293.727741] sh (7634): drop_caches: 3
[ 293.730783] sh (7636): drop_caches: 3
[ 293.732681] sh (7635): drop_caches: 3
[ 293.732988] sh (7637): drop_caches: 3
[ 293.738836] sh (7639): drop_caches: 3
[ 293.740568] sh (7641): drop_caches: 3
[ 293.743053] sh (7640): drop_caches: 3
[ 293.821889] ------------[ cut here ]------------
[ 293.824654] kernel BUG at fs/f2fs/node.c:3334!
[ 293.826226] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[ 293.828713] CPU: 0 PID: 7653 Comm: umount Tainted: G OE 5.17.0-rc1-custom #1
[ 293.830946] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[ 293.832526] RIP: 0010:f2fs_destroy_node_manager+0x33f/0x350 [f2fs]
[ 293.833905] Code: e8 d6 3d f9 f9 48 8b 45 d0 65 48 2b 04 25 28 00 00 00 75 1a 48 81 c4 28 03 00 00 5b 41 5c 41 5d 41 5e 41 5f 5d c3 0f 0b
[ 293.837783] RSP: 0018:ffffb04ec31e7a20 EFLAGS: 00010202
[ 293.839062] RAX: 0000000000000001 RBX: ffff9df947db2eb8 RCX: 0000000080aa0072
[ 293.840666] RDX: 0000000000000000 RSI: ffffe86c0432a140 RDI: ffffffffc0b72a21
[ 293.842261] RBP: ffffb04ec31e7d70 R08: ffff9df94ca85780 R09: 0000000080aa0072
[ 293.843909] R10: ffff9df94ca85700 R11: ffff9df94e1ccf58 R12: ffff9df947db2e00
[ 293.845594] R13: ffff9df947db2ed0 R14: ffff9df947db2eb8 R15: ffff9df947db2eb8
[ 293.847855] FS: 00007f5a97379800(0000) GS:ffff9dfa77c00000(0000) knlGS:0000000000000000
[ 293.850647] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 293.852940] CR2: 00007f5a97528730 CR3: 000000010bc76005 CR4: 0000000000370ef0
[ 293.854680] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 293.856423] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 293.858380] Call Trace:
[ 293.859302] <TASK>
[ 293.860311] ? ttwu_do_wakeup+0x1c/0x170
[ 293.861800] ? ttwu_do_activate+0x6d/0xb0
[ 293.863057] ? _raw_spin_unlock_irqrestore+0x29/0x40
[ 293.864411] ? try_to_wake_up+0x9d/0x5e0
[ 293.865618] ? debug_smp_processor_id+0x17/0x20
[ 293.866934] ? debug_smp_processor_id+0x17/0x20
[ 293.868223] ? free_unref_page+0xbf/0x120
[ 293.869470] ? __free_slab+0xcb/0x1c0
[ 293.870614] ? preempt_count_add+0x7a/0xc0
[ 293.871811] ? __slab_free+0xa0/0x2d0
[ 293.872918] ? __wake_up_common_lock+0x8a/0xc0
[ 293.874186] ? __slab_free+0xa0/0x2d0
[ 293.875305] ? free_inode_nonrcu+0x20/0x20
[ 293.876466] ? free_inode_nonrcu+0x20/0x20
[ 293.877650] ? debug_smp_processor_id+0x17/0x20
[ 293.878949] ? call_rcu+0x11a/0x240
[ 293.880060] ? f2fs_destroy_stats+0x59/0x60 [f2fs]
[ 293.881437] ? kfree+0x1fe/0x230
[ 293.882674] f2fs_put_super+0x160/0x390 [f2fs]
[ 293.883978] generic_shutdown_super+0x7a/0x120
[ 293.885274] kill_block_super+0x27/0x50
[ 293.886496] kill_f2fs_super+0x7f/0x100 [f2fs]
[ 293.887806] deactivate_locked_super+0x35/0xa0
[ 293.889271] deactivate_super+0x40/0x50
[ 293.890513] cleanup_mnt+0x139/0x190
[ 293.891689] __cleanup_mnt+0x12/0x20
[ 293.892850] task_work_run+0x64/0xa0
[ 293.894035] exit_to_user_mode_prepare+0x1b7/0x1c0
[ 293.895409] syscall_exit_to_user_mode+0x27/0x50
[ 293.896872] do_syscall_64+0x48/0xc0
[ 293.898090] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 293.899517] RIP: 0033:0x7f5a975cd25b
Fixes: 7735730d39d7 ("f2fs: fix to propagate error from __get_meta_page()")
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
|
|
We need to calculate the max file size accurately if the total blocks
that can address by block tree exceed the upper_limit. But this check is
not correct now, it only compute the total data blocks but missing
metadata blocks are needed. So in the case of "data blocks < upper_limit
&& total blocks > upper_limit", we will get wrong result. Fortunately,
this case could not happen in reality, but it's confused and better to
correct the computing.
bits data blocks metadatablocks upper_limit
10 16843020 66051 2147483647
11 134480396 263171 1073741823
12 1074791436 1050627 536870911 (*)
13 8594130956 4198403 268435455 (*)
14 68736258060 16785411 134217727 (*)
15 549822930956 67125251 67108863 (*)
16 4398314962956 268468227 33554431 (*)
[*] Need to calculate in depth.
Fixes: 1c2d14212b15 ("ext2: Fix underflow in ext2_max_size()")
Link: https://lore.kernel.org/r/20220212050532.179055-1-yi.zhang@huawei.com
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
As talked about in commit b792e64021ec ("drm: no need to check return
value of debugfs_create functions"), in many cases we can get away
with totally skipping checking the errors of debugfs functions. Let's
document that so people don't add new code that needlessly checks
these errors.
Probably this note could be added to a boatload of functions, but
that's a lot of duplication. Let's just add it to the two most
frequent ones and hope people will get the idea.
Suggested-by: Javier Martinez Canillas <javierm@redhat.com>
Reviewed-by: Javier Martinez Canillas <javierm@redhat.com>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20220222154555.1.I26d364db7a007f8995e8f0dac978673bc8e9f5e2@changeid
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
There are no remaining callers of set_fs(), so CONFIG_SET_FS
can be removed globally, along with the thread_info field and
any references to it.
This turns access_ok() into a cheaper check against TASK_SIZE_MAX.
As CONFIG_SET_FS is now gone, drop all remaining references to
set_fs()/get_fs(), mm_segment_t, user_addr_max() and uaccess_kernel().
Acked-by: Sam Ravnborg <sam@ravnborg.org> # for sparc32 changes
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Tested-by: Sergey Matyukevich <sergey.matyukevich@synopsys.com> # for arc changes
Acked-by: Stafford Horne <shorne@gmail.com> # [openrisc, asm-generic]
Acked-by: Dinh Nguyen <dinguyen@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Pull io_uring fixes from Jens Axboe:
- Add a conditional schedule point in io_add_buffers() (Eric)
- Fix for a quiesce speedup merged in this release (Dylan)
- Don't convert to jiffies for event timeout waiting, it's way too
coarse when we accept a timespec as input (me)
* tag 'io_uring-5.17-2022-02-23' of git://git.kernel.dk/linux-block:
io_uring: disallow modification of rsrc_data during quiesce
io_uring: don't convert to jiffies for waiting on timeouts
io_uring: add a schedule point in io_add_buffers()
|
|
There is a big gap between inode_should_defrag() and autodefrag extent
size threshold. For inode_should_defrag() it has a flexible
@small_write value. For compressed extent is 16K, and for non-compressed
extent it's 64K.
However for autodefrag extent size threshold, it's always fixed to the
default value (256K).
This means, the following write sequence will trigger autodefrag to
defrag ranges which didn't trigger autodefrag:
pwrite 0 8k
sync
pwrite 8k 128K
sync
The latter 128K write will also be considered as a defrag target (if
other conditions are met). While only that 8K write is really
triggering autodefrag.
Such behavior can cause extra IO for autodefrag.
Close the gap, by copying the @small_write value into inode_defrag, so
that later autodefrag can use the same @small_write value which
triggered autodefrag.
With the existing transid value, this allows autodefrag really to scan
the ranges which triggered autodefrag.
Although this behavior change is mostly reducing the extent_thresh value
for autodefrag, I believe in the future we should allow users to specify
the autodefrag extent threshold through mount options, but that's an
other problem to consider in the future.
CC: stable@vger.kernel.org # 5.16+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
fsnotify() treats FS_MODIFY events specially - it does not skip them
even if the FS_MODIFY event does not apear in the object's fsnotify
mask. This is because send_to_group() checks if FS_MODIFY needs to
clear ignored mask of marks.
The common case is that an object does not have any mark with ignored
mask and in particular, that it does not have a mark with ignored mask
and without the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag.
Set FS_MODIFY in object's fsnotify mask during fsnotify_recalc_mask()
if object has a mark with an ignored mask and without the
FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag and remove the special
treatment of FS_MODIFY in fsnotify(), so that FS_MODIFY events could
be optimized in the common case.
Call fsnotify_recalc_mask() from fanotify after adding or removing an
ignored mask from a mark without FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY
or when adding the FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY flag to a mark
with ignored mask (the flag cannot be removed by fanotify uapi).
Performance results for doing 10000000 write(2)s to tmpfs:
vanilla patched
without notification mark 25.486+-1.054 24.965+-0.244
with notification mark 30.111+-0.139 26.891+-1.355
So we can see the overhead of notification subsystem has been
drastically reduced.
Link: https://lore.kernel.org/r/20220223151438.790268-3-amir73il@gmail.com
Suggested-by: Jan Kara <jack@suse.cz>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
fsnotify_parent() does not consider the parent's mark at all unless
the parent inode shows interest in events on children and in the
specific event.
So unless parent added an event to both its mark mask and ignored mask,
the event will not be ignored.
Fix this by declaring the interest of an object in an event when the
event is in either a mark mask or ignored mask.
Link: https://lore.kernel.org/r/20220223151438.790268-2-amir73il@gmail.com
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Although we have btrfs_requeue_inode_defrag(), for autodefrag we are
still just exhausting all inode_defrag items in the tree.
This means, it doesn't make much difference to requeue an inode_defrag,
other than scan the inode from the beginning till its end.
Change the behaviour to always scan from offset 0 of an inode, and till
the end.
By this we get the following benefit:
- Straight-forward code
- No more re-queue related check
- Fewer members in inode_defrag
We still keep the same btrfs_get_fs_root() and btrfs_iget() check for
each loop, and added extra should_auto_defrag() check per-loop.
Note: the patch needs to be backported and is intentionally written
to minimize the diff size, code will be cleaned up later.
CC: stable@vger.kernel.org # 5.16
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
For extent maps, if they are not compressed extents and are adjacent by
logical addresses and file offsets, they can be merged into one larger
extent map.
Such merged extent map will have the higher generation of all the
original ones.
But this brings a problem for autodefrag, as it relies on accurate
extent_map::generation to determine if one extent should be defragged.
For merged extent maps, their higher generation can mark some older
extents to be defragged while the original extent map doesn't meet the
minimal generation threshold.
Thus this will cause extra IO.
So solve the problem, here we introduce a new flag, EXTENT_FLAG_MERGED,
to indicate if the extent map is merged from one or more ems.
And for autodefrag, if we find a merged extent map, and its generation
meets the generation requirement, we just don't use this one, and go
back to defrag_get_extent() to read extent maps from subvolume trees.
This could cause more read IO, but should result less defrag data write,
so in the long run it should be a win for autodefrag.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
For defrag, we don't really want to use btrfs_get_extent() to iterate
all extent maps of an inode.
The reasons are:
- btrfs_get_extent() can merge extent maps
And the result em has the higher generation of the two, causing defrag
to mark unnecessary part of such merged large extent map.
This in fact can result extra IO for autodefrag in v5.16+ kernels.
However this patch is not going to completely solve the problem, as
one can still using read() to trigger extent map reading, and got
them merged.
The completely solution for the extent map merging generation problem
will come as an standalone fix.
- btrfs_get_extent() caches the extent map result
Normally it's fine, but for defrag the target range may not get
another read/write for a long long time.
Such cache would only increase the memory usage.
- btrfs_get_extent() doesn't skip older extent map
Unlike the old find_new_extent() which uses btrfs_search_forward() to
skip the older subtree, thus it will pick up unnecessary extent maps.
This patch will fix the regression by introducing defrag_get_extent() to
replace the btrfs_get_extent() call.
This helper will:
- Not cache the file extent we found
It will search the file extent and manually convert it to em.
- Use btrfs_search_forward() to skip entire ranges which is modified in
the past
This should reduce the IO for autodefrag.
Reported-by: Filipe Manana <fdmanana@suse.com>
Fixes: 7b508037d4ca ("btrfs: defrag: use defrag_one_cluster() to implement btrfs_defrag_file()")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
From the very beginning of btrfs defrag, there is a check to reject
extents which meet both conditions:
- Physically adjacent
We may want to defrag physically adjacent extents to reduce the number
of extents or the size of subvolume tree.
- Larger than 128K
This may be there for compressed extents, but unfortunately 128K is
exactly the max capacity for compressed extents.
And the check is > 128K, thus it never rejects compressed extents.
Furthermore, the compressed extent capacity bug is fixed by previous
patch, there is no reason for that check anymore.
The original check has a very small ranges to reject (the target extent
size is > 128K, and default extent threshold is 256K), and for
compressed extent it doesn't work at all.
So it's better just to remove the rejection, and allow us to defrag
physically adjacent extents.
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
For compressed extents, defrag ioctl will always try to defrag any
compressed extents, wasting not only IO but also CPU time to
compress/decompress:
mkfs.btrfs -f $DEV
mount -o compress $DEV $MNT
xfs_io -f -c "pwrite -S 0xab 0 128K" $MNT/foobar
sync
xfs_io -f -c "pwrite -S 0xcd 128K 128K" $MNT/foobar
sync
echo "=== before ==="
xfs_io -c "fiemap -v" $MNT/foobar
btrfs filesystem defrag $MNT/foobar
sync
echo "=== after ==="
xfs_io -c "fiemap -v" $MNT/foobar
Then it shows the 2 128K extents just get COW for no extra benefit, with
extra IO/CPU spent:
=== before ===
/mnt/btrfs/file1:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..255]: 26624..26879 256 0x8
1: [256..511]: 26632..26887 256 0x9
=== after ===
/mnt/btrfs/file1:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..255]: 26640..26895 256 0x8
1: [256..511]: 26648..26903 256 0x9
This affects not only v5.16 (after the defrag rework), but also v5.15
(before the defrag rework).
[CAUSE]
From the very beginning, btrfs defrag never checks if one extent is
already at its max capacity (128K for compressed extents, 128M
otherwise).
And the default extent size threshold is 256K, which is already beyond
the compressed extent max size.
This means, by default btrfs defrag ioctl will mark all compressed
extent which is not adjacent to a hole/preallocated range for defrag.
[FIX]
Introduce a helper to grab the maximum extent size, and then in
defrag_collect_targets() and defrag_check_next_extent(), reject extents
which are already at their max capacity.
Reported-by: Filipe Manana <fdmanana@suse.com>
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
With older kernels (before v5.16), btrfs will defrag preallocated extents.
While with newer kernels (v5.16 and newer) btrfs will not defrag
preallocated extents, but it will defrag the extent just before the
preallocated extent, even it's just a single sector.
This can be exposed by the following small script:
mkfs.btrfs -f $dev > /dev/null
mount $dev $mnt
xfs_io -f -c "pwrite 0 4k" -c sync -c "falloc 4k 16K" $mnt/file
xfs_io -c "fiemap -v" $mnt/file
btrfs fi defrag $mnt/file
sync
xfs_io -c "fiemap -v" $mnt/file
The output looks like this on older kernels:
/mnt/btrfs/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 26624..26631 8 0x0
1: [8..39]: 26632..26663 32 0x801
/mnt/btrfs/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..39]: 26664..26703 40 0x1
Which defrags the single sector along with the preallocated extent, and
replace them with an regular extent into a new location (caused by data
COW).
This wastes most of the data IO just for the preallocated range.
On the other hand, v5.16 is slightly better:
/mnt/btrfs/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 26624..26631 8 0x0
1: [8..39]: 26632..26663 32 0x801
/mnt/btrfs/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 26664..26671 8 0x0
1: [8..39]: 26632..26663 32 0x801
The preallocated range is not defragged, but the sector before it still
gets defragged, which has no need for it.
[CAUSE]
One of the function reused by the old and new behavior is
defrag_check_next_extent(), it will determine if we should defrag
current extent by checking the next one.
It only checks if the next extent is a hole or inlined, but it doesn't
check if it's preallocated.
On the other hand, out of the function, both old and new kernel will
reject preallocated extents.
Such inconsistent behavior causes above behavior.
[FIX]
- Also check if next extent is preallocated
If so, don't defrag current extent.
- Add comments for each branch why we reject the extent
This will reduce the IO caused by defrag ioctl and autodefrag.
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There is no need to have struct kernfs_root be part of kernfs.h for
the whole kernel to see and poke around it. Move it internal to kernfs
code and provide a helper function, kernfs_root_to_node(), to handle the
one field that kernfs users were directly accessing from the structure.
Cc: Imran Khan <imran.f.khan@oracle.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20220222070713.3517679-1-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When configfs_register_subsystem() or configfs_unregister_subsystem()
is executing link_group() or unlink_group(),
it is possible that two processes add or delete list concurrently.
Some unfortunate interleavings of them can cause kernel panic.
One of cases is:
A --> B --> C --> D
A <-- B <-- C <-- D
delete list_head *B | delete list_head *C
--------------------------------|-----------------------------------
configfs_unregister_subsystem | configfs_unregister_subsystem
unlink_group | unlink_group
unlink_obj | unlink_obj
list_del_init | list_del_init
__list_del_entry | __list_del_entry
__list_del | __list_del
// next == C |
next->prev = prev |
| next->prev = prev
prev->next = next |
| // prev == B
| prev->next = next
Fix this by adding mutex when calling link_group() or unlink_group(),
but parent configfs_subsystem is NULL when config_item is root.
So I create a mutex configfs_subsystem_mutex.
Fixes: 7063fbf22611 ("[PATCH] configfs: User-driven configuration filesystem")
Signed-off-by: ChenXiaoSong <chenxiaosong2@huawei.com>
Signed-off-by: Laibin Qiu <qiulaibin@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
io_rsrc_ref_quiesce will unlock the uring while it waits for references to
the io_rsrc_data to be killed.
There are other places to the data that might add references to data via
calls to io_rsrc_node_switch.
There is a race condition where this reference can be added after the
completion has been signalled. At this point the io_rsrc_ref_quiesce call
will wake up and relock the uring, assuming the data is unused and can be
freed - although it is actually being used.
To fix this check in io_rsrc_ref_quiesce if a resource has been revived.
Reported-by: syzbot+ca8bf833622a1662745b@syzkaller.appspotmail.com
Cc: stable@vger.kernel.org
Signed-off-by: Dylan Yudaken <dylany@fb.com>
Link: https://lore.kernel.org/r/20220222161751.995746-1-dylany@fb.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Remove usage of AOP_FLAG_CONT_EXPAND flag. Reiserfs is the only user of
it and it is easy to avoid.
Link: https://lore.kernel.org/r/20220220232219.1235-1-edward.shishkin@gmail.com
Signed-off-by: Edward Shishkin <edward.shishkin@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Since 'commit 393c3714081a ("kernfs: switch global kernfs_rwsem lock to
per-fs lock")' per-fs kernfs_rwsem has replaced global kernfs_rwsem.
Remove redundant declaration of global kernfs_rwsem.
Fixes: 393c3714081a ("kernfs: switch global kernfs_rwsem lock to per-fs lock")
Signed-off-by: Imran Khan <imran.f.khan@oracle.com>
Link: https://lore.kernel.org/r/20220218010205.717582-1-imran.f.khan@oracle.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
...to help userland apps that need to identify FUSE mounts.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
|
|
If an application calls io_uring_enter(2) with a timespec passed in,
convert that timespec to ktime_t rather than jiffies. The latter does
not provide the granularity the application may expect, and may in
fact provided different granularity on different systems, depending
on what the HZ value is configured at.
Turn the timespec into an absolute ktime_t, and use that with
schedule_hrtimeout() instead.
Link: https://github.com/axboe/liburing/issues/531
Cc: stable@vger.kernel.org
Reported-by: Bob Chen <chenbo.chen@alibaba-inc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull mount_setattr test/doc fixes from Christian Brauner:
"This contains a fix for one of the selftests for the mount_setattr
syscall to create idmapped mounts, an entry for idmapped mounts for
maintainers, and missing kernel documentation for the helper we split
out some time ago to get and yield write access to a mount when
changing mount properties"
* tag 'fs.mount_setattr.v5.17-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
fs: add kernel doc for mnt_{hold,unhold}_writers()
MAINTAINERS: add entry for idmapped mounts
tests: fix idmapped mount_setattr test
|
|
Pull NFS client bugfixes from Anna Schumaker:
- Fix unnecessary changeattr revalidations
- Fix resolving symlinks during directory lookups
- Don't report writeback errors in nfs_getattr()
* tag 'nfs-for-5.17-3' of git://git.linux-nfs.org/projects/anna/linux-nfs:
NFS: Do not report writeback errors in nfs_getattr()
NFS: LOOKUP_DIRECTORY is also ok with symlinks
NFS: Remove an incorrect revalidation in nfs4_update_changeattr_locked()
|
|
Pull cifs fixes from Steve French:
"Six small smb3 client fixes, three for stable:
- fix for snapshot mount option
- two ACL related fixes
- use after free race fix
- fix for confusing warning message logged with older dialects"
* tag '5.17-rc5-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6:
cifs: fix confusing unneeded warning message on smb2.1 and earlier
cifs: modefromsids must add an ACE for authenticated users
cifs: fix double free race when mount fails in cifs_get_root()
cifs: do not use uninitialized data in the owner/group sid
cifs: fix set of group SID via NTSD xattrs
smb3: fix snapshot mount option
|
|
The fileattr API conversion broke lsattr on ntfs3g.
Previously the ioctl(... FS_IOC_GETFLAGS) returned an EINVAL error, but
after the conversion the error returned by the fuse filesystem was not
propagated back to the ioctl() system call, resulting in success being
returned with bogus values.
Fix by checking for outarg.result in fuse_priv_ioctl(), just as generic
ioctl code does.
Reported-by: Jean-Pierre André <jean-pierre.andre@wanadoo.fr>
Fixes: 72227eac177d ("fuse: convert to fileattr")
Cc: <stable@vger.kernel.org> # v5.13
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
|
|
The function name has been changed, so the description should be updated
too.
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20220127124058.1172422-5-ruansy.fnst@fujitsu.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Commit b42bc9a3c511 ("Fix regression due to "fs: move binfmt_misc sysctl
to its own file") fixed a regression, however it failed to add a
kmemleak_not_leak().
Fixes: b42bc9a3c511 ("Fix regression due to "fs: move binfmt_misc sysctl to its own file")
Reported-by: Tong Zhang <ztong0001@gmail.com>
Cc: Tong Zhang <ztong0001@gmail.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is a regular need in the kernel to provide a way to declare
having a dynamically sized set of trailing elements in a structure.
Kernel code should always use “flexible array members”[1] for these
cases. The older style of one-element or zero-length arrays should
no longer be used[2].
This code was transformed with the help of Coccinelle:
(next-20220214$ spatch --jobs $(getconf _NPROCESSORS_ONLN) --sp-file script.cocci --include-headers --dir . > output.patch)
@@
identifier S, member, array;
type T1, T2;
@@
struct S {
...
T1 member;
T2 array[
- 0
];
};
UAPI and wireless changes were intentionally excluded from this patch
and will be sent out separately.
[1] https://en.wikipedia.org/wiki/Flexible_array_member
[2] https://www.kernel.org/doc/html/v5.16/process/deprecated.html#zero-length-and-one-element-arrays
Link: https://github.com/KSPP/linux/issues/78
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
|
|
When mounting with SMB2.1 or earlier, even with nomultichannel, we
log the confusing warning message:
"CIFS: VFS: multichannel is not supported on this protocol version, use 3.0 or above"
Fix this so that we don't log this unless they really are trying
to mount with multichannel.
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=215608
Reported-by: Kim Scarborough <kim@scarborough.kim>
Cc: stable@vger.kernel.org # 5.11+
Reviewed-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
|
|
The result of the writeback, whether it is an ENOSPC or an EIO, or
anything else, does not inhibit the NFS client from reporting the
correct file timestamps.
Fixes: 79566ef018f5 ("NFS: Getattr doesn't require data sync semantics")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
As arm64 is about to introduce MTE-specific phdrs in the core dump, add
a common CONFIG_ARCH_BINFMT_ELF_EXTRA_PHDRS option currently selectable
by UML_X86 and IA64.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Link: https://lore.kernel.org/r/20220131165456.2160675-2-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
a target
In the rework of btrfs_defrag_file(), we always call
defrag_one_cluster() and increase the offset by cluster size, which is
only 256K.
But there are cases where we have a large extent (e.g. 128M) which
doesn't need to be defragged at all.
Before the refactor, we can directly skip the range, but now we have to
scan that extent map again and again until the cluster moves after the
non-target extent.
Fix the problem by allow defrag_one_cluster() to increase
btrfs_defrag_ctrl::last_scanned to the end of an extent, if and only if
the last extent of the cluster is not a target.
The test script looks like this:
mkfs.btrfs -f $dev > /dev/null
mount $dev $mnt
# As btrfs ioctl uses 32M as extent_threshold
xfs_io -f -c "pwrite 0 64M" $mnt/file1
sync
# Some fragemented range to defrag
xfs_io -s -c "pwrite 65548k 4k" \
-c "pwrite 65544k 4k" \
-c "pwrite 65540k 4k" \
-c "pwrite 65536k 4k" \
$mnt/file1
sync
echo "=== before ==="
xfs_io -c "fiemap -v" $mnt/file1
echo "=== after ==="
btrfs fi defrag $mnt/file1
sync
xfs_io -c "fiemap -v" $mnt/file1
umount $mnt
With extra ftrace put into defrag_one_cluster(), before the patch it
would result tons of loops:
(As defrag_one_cluster() is inlined, the function name is its caller)
btrfs-126062 [005] ..... 4682.816026: btrfs_defrag_file: r/i=5/257 start=0 len=262144
btrfs-126062 [005] ..... 4682.816027: btrfs_defrag_file: r/i=5/257 start=262144 len=262144
btrfs-126062 [005] ..... 4682.816028: btrfs_defrag_file: r/i=5/257 start=524288 len=262144
btrfs-126062 [005] ..... 4682.816028: btrfs_defrag_file: r/i=5/257 start=786432 len=262144
btrfs-126062 [005] ..... 4682.816028: btrfs_defrag_file: r/i=5/257 start=1048576 len=262144
...
btrfs-126062 [005] ..... 4682.816043: btrfs_defrag_file: r/i=5/257 start=67108864 len=262144
But with this patch there will be just one loop, then directly to the
end of the extent:
btrfs-130471 [014] ..... 5434.029558: defrag_one_cluster: r/i=5/257 start=0 len=262144
btrfs-130471 [014] ..... 5434.029559: defrag_one_cluster: r/i=5/257 start=67108864 len=16384
CC: stable@vger.kernel.org # 5.16
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Compressed length can be corrupted to be a lot larger than memory
we have allocated for buffer.
This will cause memcpy in copy_compressed_segment to write outside
of allocated memory.
This mostly results in stuck read syscall but sometimes when using
btrfs send can get #GP
kernel: general protection fault, probably for non-canonical address 0x841551d5c1000: 0000 [#1] PREEMPT SMP NOPTI
kernel: CPU: 17 PID: 264 Comm: kworker/u256:7 Tainted: P OE 5.17.0-rc2-1 #12
kernel: Workqueue: btrfs-endio btrfs_work_helper [btrfs]
kernel: RIP: 0010:lzo_decompress_bio (./include/linux/fortify-string.h:225 fs/btrfs/lzo.c:322 fs/btrfs/lzo.c:394) btrfs
Code starting with the faulting instruction
===========================================
0:* 48 8b 06 mov (%rsi),%rax <-- trapping instruction
3: 48 8d 79 08 lea 0x8(%rcx),%rdi
7: 48 83 e7 f8 and $0xfffffffffffffff8,%rdi
b: 48 89 01 mov %rax,(%rcx)
e: 44 89 f0 mov %r14d,%eax
11: 48 8b 54 06 f8 mov -0x8(%rsi,%rax,1),%rdx
kernel: RSP: 0018:ffffb110812efd50 EFLAGS: 00010212
kernel: RAX: 0000000000001000 RBX: 000000009ca264c8 RCX: ffff98996e6d8ff8
kernel: RDX: 0000000000000064 RSI: 000841551d5c1000 RDI: ffffffff9500435d
kernel: RBP: ffff989a3be856c0 R08: 0000000000000000 R09: 0000000000000000
kernel: R10: 0000000000000000 R11: 0000000000001000 R12: ffff98996e6d8000
kernel: R13: 0000000000000008 R14: 0000000000001000 R15: 000841551d5c1000
kernel: FS: 0000000000000000(0000) GS:ffff98a09d640000(0000) knlGS:0000000000000000
kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
kernel: CR2: 00001e9f984d9ea8 CR3: 000000014971a000 CR4: 00000000003506e0
kernel: Call Trace:
kernel: <TASK>
kernel: end_compressed_bio_read (fs/btrfs/compression.c:104 fs/btrfs/compression.c:1363 fs/btrfs/compression.c:323) btrfs
kernel: end_workqueue_fn (fs/btrfs/disk-io.c:1923) btrfs
kernel: btrfs_work_helper (fs/btrfs/async-thread.c:326) btrfs
kernel: process_one_work (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:212 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2312)
kernel: worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2455)
kernel: ? process_one_work (kernel/workqueue.c:2397)
kernel: kthread (kernel/kthread.c:377)
kernel: ? kthread_complete_and_exit (kernel/kthread.c:332)
kernel: ret_from_fork (arch/x86/entry/entry_64.S:301)
kernel: </TASK>
CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Dāvis Mosāns <davispuh@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- yield CPU more often when defragmenting a large file
- skip defragmenting extents already under writeback
- improve error message when send fails to write file data
- get rid of warning when mounted with 'flushoncommit'
* tag 'for-5.17-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: send: in case of IO error log it
btrfs: get rid of warning on transaction commit when using flushoncommit
btrfs: defrag: don't try to defrag extents which are under writeback
btrfs: don't hold CPU for too long when defragging a file
|
|
Looping ~65535 times doing kmalloc() calls can trigger soft lockups,
especially with DEBUG features (like KASAN).
[ 253.536212] watchdog: BUG: soft lockup - CPU#64 stuck for 26s! [b219417889:12575]
[ 253.544433] Modules linked in: vfat fat i2c_mux_pca954x i2c_mux spidev cdc_acm xhci_pci xhci_hcd sha3_generic gq(O)
[ 253.544451] CPU: 64 PID: 12575 Comm: b219417889 Tainted: G S O 5.17.0-smp-DEV #801
[ 253.544457] RIP: 0010:kernel_text_address (./include/asm-generic/sections.h:192 ./include/linux/kallsyms.h:29 kernel/extable.c:67 kernel/extable.c:98)
[ 253.544464] Code: 0f 93 c0 48 c7 c1 e0 63 d7 a4 48 39 cb 0f 92 c1 20 c1 0f b6 c1 5b 5d c3 90 0f 1f 44 00 00 55 48 89 e5 41 57 41 56 53 48 89 fb <48> c7 c0 00 00 80 a0 41 be 01 00 00 00 48 39 c7 72 0c 48 c7 c0 40
[ 253.544468] RSP: 0018:ffff8882d8baf4c0 EFLAGS: 00000246
[ 253.544471] RAX: 1ffff1105b175e00 RBX: ffffffffa13ef09a RCX: 00000000a13ef001
[ 253.544474] RDX: ffffffffa13ef09a RSI: ffff8882d8baf558 RDI: ffffffffa13ef09a
[ 253.544476] RBP: ffff8882d8baf4d8 R08: ffff8882d8baf5e0 R09: 0000000000000004
[ 253.544479] R10: ffff8882d8baf5e8 R11: ffffffffa0d59a50 R12: ffff8882eab20380
[ 253.544481] R13: ffffffffa0d59a50 R14: dffffc0000000000 R15: 1ffff1105b175eb0
[ 253.544483] FS: 00000000016d3380(0000) GS:ffff88af48c00000(0000) knlGS:0000000000000000
[ 253.544486] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 253.544488] CR2: 00000000004af0f0 CR3: 00000002eabfa004 CR4: 00000000003706e0
[ 253.544491] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 253.544492] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 253.544494] Call Trace:
[ 253.544496] <TASK>
[ 253.544498] ? io_queue_sqe (fs/io_uring.c:7143)
[ 253.544505] __kernel_text_address (kernel/extable.c:78)
[ 253.544508] unwind_get_return_address (arch/x86/kernel/unwind_frame.c:19)
[ 253.544514] arch_stack_walk (arch/x86/kernel/stacktrace.c:27)
[ 253.544517] ? io_queue_sqe (fs/io_uring.c:7143)
[ 253.544521] stack_trace_save (kernel/stacktrace.c:123)
[ 253.544527] ____kasan_kmalloc (mm/kasan/common.c:39 mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:515)
[ 253.544531] ? ____kasan_kmalloc (mm/kasan/common.c:39 mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:515)
[ 253.544533] ? __kasan_kmalloc (mm/kasan/common.c:524)
[ 253.544535] ? kmem_cache_alloc_trace (./include/linux/kasan.h:270 mm/slab.c:3567)
[ 253.544541] ? io_issue_sqe (fs/io_uring.c:4556 fs/io_uring.c:4589 fs/io_uring.c:6828)
[ 253.544544] ? __io_queue_sqe (fs/io_uring.c:?)
[ 253.544551] __kasan_kmalloc (mm/kasan/common.c:524)
[ 253.544553] kmem_cache_alloc_trace (./include/linux/kasan.h:270 mm/slab.c:3567)
[ 253.544556] ? io_issue_sqe (fs/io_uring.c:4556 fs/io_uring.c:4589 fs/io_uring.c:6828)
[ 253.544560] io_issue_sqe (fs/io_uring.c:4556 fs/io_uring.c:4589 fs/io_uring.c:6828)
[ 253.544564] ? __kasan_slab_alloc (mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:469)
[ 253.544567] ? __kasan_slab_alloc (mm/kasan/common.c:39 mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:469)
[ 253.544569] ? kmem_cache_alloc_bulk (mm/slab.h:732 mm/slab.c:3546)
[ 253.544573] ? __io_alloc_req_refill (fs/io_uring.c:2078)
[ 253.544578] ? io_submit_sqes (fs/io_uring.c:7441)
[ 253.544581] ? __se_sys_io_uring_enter (fs/io_uring.c:10154 fs/io_uring.c:10096)
[ 253.544584] ? __x64_sys_io_uring_enter (fs/io_uring.c:10096)
[ 253.544587] ? do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
[ 253.544590] ? entry_SYSCALL_64_after_hwframe (??:?)
[ 253.544596] __io_queue_sqe (fs/io_uring.c:?)
[ 253.544600] io_queue_sqe (fs/io_uring.c:7143)
[ 253.544603] io_submit_sqe (fs/io_uring.c:?)
[ 253.544608] io_submit_sqes (fs/io_uring.c:?)
[ 253.544612] __se_sys_io_uring_enter (fs/io_uring.c:10154 fs/io_uring.c:10096)
[ 253.544616] __x64_sys_io_uring_enter (fs/io_uring.c:10096)
[ 253.544619] do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
[ 253.544623] entry_SYSCALL_64_after_hwframe (??:?)
Fixes: ddf0322db79c ("io_uring: add IORING_OP_PROVIDE_BUFFERS")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Cc: io-uring <io-uring@vger.kernel.org>
Reported-by: syzbot <syzkaller@googlegroups.com>
Link: https://lore.kernel.org/r/20220215041003.2394784-1-eric.dumazet@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The gh_error field if a glock holder is initialized to zero in
gfs2_holder_init(). When a locking operation fails, gh_error is set to
an error code; when it succeeds, the gh_error value is left unchanged.
The field isn't initialized in gfs2_holder_reinit(), which is a problem.
Instead of fixing that directly, initialize gh_error in gfs2_glock_nq().
That also obsoletes the assignment in do_flock().
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
|
|
Use list_is_first() instead of open-coding it.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
|
|
This patch tries to fix the continual ABBA deadlocks we keep having
between the iopen and inode glocks. This switches the lock order in
gfs2_inode_lookup and gfs2_create_inode so the iopen glock is always
locked first.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
|
|
The gfs2 evict code tries to upgrade the iopen glock from SH to EX. If
the attempt to upgrade times out, gfs2 needs to tell dlm to cancel the
lock request or it can deadlock. We also need to wake up the process
waiting for the lock when dlm sends its AST back to gfs2.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
|