Age | Commit message (Collapse) | Author |
|
This patch avoids the memory alloc & free path when depth is 0,
since anyway there is no extra caching done in that case.
So on checking depth 0, simply return early.
Signed-off-by: Ritesh Harjani <riteshh@linux.ibm.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/93da0d0f073c73358e85bb9849d8a5378d1da539.1582880246.git.riteshh@linux.ibm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
IOMAP_F_MERGED needs to be set in case of non-extent based mapping.
This is needed in later patches for conversion of ext4_fiemap to use iomap.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ritesh Harjani <riteshh@linux.ibm.com>
Link: https://lore.kernel.org/r/a4764c91c08c16d4d4a4b36defb2a08625b0e9b3.1582880246.git.riteshh@linux.ibm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Daniel Borkmann says:
====================
pull-request: bpf-next 2020-03-13
The following pull-request contains BPF updates for your *net-next* tree.
We've added 86 non-merge commits during the last 12 day(s) which contain
a total of 107 files changed, 5771 insertions(+), 1700 deletions(-).
The main changes are:
1) Add modify_return attach type which allows to attach to a function via
BPF trampoline and is run after the fentry and before the fexit programs
and can pass a return code to the original caller, from KP Singh.
2) Generalize BPF's kallsyms handling and add BPF trampoline and dispatcher
objects to be visible in /proc/kallsyms so they can be annotated in
stack traces, from Jiri Olsa.
3) Extend BPF sockmap to allow for UDP next to existing TCP support in order
in order to enable this for BPF based socket dispatch, from Lorenz Bauer.
4) Introduce a new bpftool 'prog profile' command which attaches to existing
BPF programs via fentry and fexit hooks and reads out hardware counters
during that period, from Song Liu. Example usage:
bpftool prog profile id 337 duration 3 cycles instructions llc_misses
4228 run_cnt
3403698 cycles (84.08%)
3525294 instructions # 1.04 insn per cycle (84.05%)
13 llc_misses # 3.69 LLC misses per million isns (83.50%)
5) Batch of improvements to libbpf, bpftool and BPF selftests. Also addition
of a new bpf_link abstraction to keep in particular BPF tracing programs
attached even when the applicaion owning them exits, from Andrii Nakryiko.
6) New bpf_get_current_pid_tgid() helper for tracing to perform PID filtering
and which returns the PID as seen by the init namespace, from Carlos Neira.
7) Refactor of RISC-V JIT code to move out common pieces and addition of a
new RV32G BPF JIT compiler, from Luke Nelson.
8) Add gso_size context member to __sk_buff in order to be able to know whether
a given skb is GSO or not, from Willem de Bruijn.
9) Add a new bpf_xdp_output() helper which reuses XDP's existing perf RB output
implementation but can be called from tracepoint programs, from Eelco Chaudron.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
gets the regular mount crossing on result of ..
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Right now the tail ends of follow_dotdot{,_rcu}() are pretty
much the open-coded analogues of step_into(). The differences:
* the lack of proper LOOKUP_NO_XDEV handling in non-RCU case
(arguably a bug)
* the lack of ->d_manage() handling (again, arguably a bug)
Adjust the calling conventions so that on the next step with could
just switch those functions to returning step_into().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
pure move; we are going to have step_into() called by that bunch.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Behaviour change: LOOKUP_BENEATH lookup of .. in absolute root
yields an error even if it's not the process' root. That's
possible only if you'd managed to escape chroot jail by way of
procfs symlinks, but IMO the resulting behaviour is not worse -
more consistent and easier to describe:
".." in root is "stay where you are", uness LOOKUP_BENEATH
has been given, in which case it's "fail with EXDEV".
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Instead of returning 0, return new dentry; instead of returning
-ENOENT, return NULL. Adjust the callers accordingly.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
eventually we'll want to do that check *before* mangling
nd->path.dentry...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
... getting may_create_in_sticky() checks in FMODE_OPENED case as well.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Don't mess with got_write there - it is guaranteed to be false on
entry and it will be set true if and only if we decide to go for
truncation and manage to get write access for that.
Don't carry acc_mode through the entire thing - it's only used
in that part. And don't bother with gotos in there - compiler is
quite capable of optimizing that.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
it's easier to drop it right after lookup_open() and regain if
needed (i.e. if we will need to truncate). On the non-FMODE_OPENED
path we do that anyway. In case of FMODE_CREATED we won't be
needing it. And it's easier to prove correctness that way,
especially since the initial failure to get write access is not
always fatal; proving that we'll never end up truncating in that
case is rather convoluted.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
have FMODE_OPENED case rejoin the main path at earlier point
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
there we'll be able to merge it with its counterparts in other
cases, and there's no reason to do it before the parent has
been unlocked
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
->atomic_open() might have used a different alias than the one we'd
passed to it; in "not opened" case we take care of that, in "opened"
one we don't. Currently we don't care downstream of "opened" case
which alias to return; however, that will change shortly when we
get to unifying may_open() calls.
It's not hard to get right in all cases, anyway.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
common guts of follow_down() and follow_managed() taken to a new
helper - traverse_mounts(). The remnants of follow_managed()
are folded into its sole remaining caller (handle_mounts()).
Calling conventions of handle_mounts() slightly sanitized -
instead of the weird "1 for success, -E... for failure" that used
to be imposed by the calling conventions of walk_component() et.al.
we can use the normal "0 for success, -E... for failure".
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
make the loop more similar to that in follow_managed(), with
explicit tracking of flags, etc.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
set on entry, clear when we get to the last component.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
We use nd->stack to store two things: pinning down the symlinks
we are resolving and resuming the name traversal when a nested
symlink is finished.
Currently, nd->depth is used to keep track of both. It's 0 when
we call link_path_walk() for the first time (for the pathname
itself) and 1 on all subsequent calls (for trailing symlinks,
if any). That's fine, as far as pinning symlinks goes - when
handling a trailing symlink, the string we are interpreting
is the body of symlink pinned down in nd->stack[0]. It's
rather inconvenient with respect to handling nested symlinks,
though - when we run out of a string we are currently interpreting,
we need to decide whether it's a nested symlink (in which case
we need to pick the string saved back when we started to interpret
that nested symlink and resume its traversal) or not (in which
case we are done with link_path_walk()).
Current solution is a bit of a kludge - in handling of trailing symlink
(in lookup_last() and open_last_lookups() we clear nd->stack[0].name.
That allows link_path_walk() to use the following rules when
running out of a string to interpret:
* if nd->depth is zero, we are at the end of pathname itself.
* if nd->depth is positive, check the saved string; for
nested symlink it will be non-NULL, for trailing symlink - NULL.
It works, but it's rather non-obvious. Note that we have two sets:
the set of symlinks currently being traversed and the set of postponed
pathname tails. The former is stored in nd->stack[0..nd->depth-1].link
and it's valid throught the pathname resolution; the latter is valid only
during an individual call of link_path_walk() and it occupies
nd->stack[0..nd->depth-1].name for the first call of link_path_walk() and
nd->stack[1..nd->depth-1].name for subsequent ones. The kludge is basically
a way to recognize the second set becoming empty.
The things get simpler if we keep track of the second set's size
explicitly and always store it in nd->stack[0..depth-1].name.
We access the second set only inside link_path_walk(), so its
size can live in a local variable; that way the check becomes
trivial without the need of that kludge.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
old flags & WALK_FOLLOW <=> new !(flags & WALK_TRAILING)
That's what that flag had really been used for.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
->last_type values are set in 3 places: path_init() (sets to LAST_ROOT),
link_path_walk (LAST_NORM/DOT/DOTDOT) and pick_link (LAST_BIND).
The are checked in walk_component(), lookup_last() and do_last().
They also get copied to the caller by filename_parentat(). In the last
3 cases the value is what we had at the return from link_path_walk().
In case of walk_component() it's either directly downstream from
assignment in link_path_walk() or, when called by lookup_last(), the
value we have at the return from link_path_walk().
The value at the entry into link_path_walk() can survive to return only
if the pathname contains nothing but slashes. Note that pick_link()
never returns such - pure jumps are handled directly. So for the calls
of link_path_walk() for trailing symlinks it does not matter what value
had been there at the entry; the value at the return won't depend upon it.
There are 3 call chains that might have pick_link() storing LAST_BIND:
1) pick_link() from step_into() from walk_component() from
link_path_walk(). In that case we will either be parsing the next
component immediately after return into link_path_walk(), which will
overwrite the ->last_type before anyone has a chance to look at it,
or we'll fail, in which case nobody will be looking at ->last_type at all.
2) pick_link() from step_into() from walk_component() from lookup_last().
The value is never looked at due to the above; it won't affect the value
seen at return from any link_path_walk().
3) pick_link() from step_into() from do_last(). Ditto.
In other words, assignemnt in pick_link() is pointless, and so is
LAST_BIND itself; nothing ever looks at that value. Kill it off.
And make link_path_walk() _always_ assign ->last_type - in the only
case when the value at the entry might survive to the return that value
is always LAST_ROOT, inherited from path_init(). Move that assignment
from path_init() into the beginning of link_path_walk(), to consolidate
the things.
Historical note: LAST_BIND used to be used for the kludge with trailing
pure jump symlinks (extra iteration through the top-level loop).
No point keeping it anymore...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
kill nd->link_inode, while we are at it
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
move the only remaining call of get_link() into pick_link()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
move get_link() call into step_into().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Move the call of get_link() into walk_component(). Change the
calling conventions for walk_component() to returning the link
body to follow (if any).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
After a pure jump ("/" or procfs-style symlink) we don't need to
hold the link anymore. link_path_walk() dropped it if such case
had been detected, lookup_last/do_last() (i.e. old trailing_symlink())
left it on the stack - it ended up calling terminate_walk() shortly
anyway, which would've purged the entire stack.
Do it in get_link() itself instead. Simpler logics that way...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Fold trailing_symlink() into lookup_last() and do_last(), change
the calling conventions of those two. Rules change:
success, we are done => NULL instead of 0
error => ERR_PTR(-E...) instead of -E...
got a symlink to follow => return the path to be followed instead of 1
The loops calling those (in path_lookupat() and path_openat()) adjusted.
A subtle change of control flow here: originally a pure-jump trailing
symlink ("/" or procfs one) would've passed through the upper level
loop once more, with "" for path to traverse. That would've brought
us back to the lookup_last/do_last entry and we would've hit LAST_BIND
case (LAST_BIND left from get_link() called by trailing_symlink())
and pretty much skip to the point right after where we'd left the
sucker back when we picked that trailing symlink.
Now we don't bother with that extra pass through the upper level
loop - if get_link() says "I've just done a pure jump, nothing
else to do", we just treat that as non-symlink case.
Boilerplate added on that step will go away shortly - it'll migrate
into walk_component() and then to step_into(), collapsing into the
change of calling conventions for those.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Move restoring LOOKUP_PARENT and zeroing nd->stack.name[0] past
the call of get_link() (nothing _currently_ uses them in there).
That allows to moved the call of may_follow_link() into get_link()
as well, since now the presence of LOOKUP_PARENT distinguishes
the callers from each other (link_path_walk() has it, trailing_symlink()
doesn't).
Preparations for folding trailing_symlink() into callers (lookup_last()
and do_last()) and changing the calling conventions of those. Next
stage after that will have get_link() call migrate into walk_component(),
then - into step_into(). It's tricky enough to warrant doing that
in stages, unfortunately...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
New LOOKUP flag, telling path_lookupat() to act as path_mountpointat().
IOW, traverse mounts at the final point and skip revalidation of the
location where it ends up.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
The following is true:
* calls of handle_mounts() and step_into() are always
paired in sequences like
err = handle_mounts(nd, dentry, &path, &inode, &seq);
if (unlikely(err < 0))
return err;
err = step_into(nd, &path, flags, inode, seq);
* in all such sequences path is uninitialized before and
unused after this pair of calls
* in all such sequences inode and seq are unused afterwards.
So the call of handle_mounts() can be shifted inside step_into(),
turning 'path' into a local variable in the combined function.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Tells step_into() not to follow symlinks, regardless of LOOKUP_FOLLOW.
Allows to switch handle_lookup_down() to of step_into(), getting
all follow_managed() and step_into() calls paired.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
We need to dismiss a symlink when we are done traversing it;
currently that's done when we call step_into() for its last
component. For the cases when we do not call step_into()
for that component (i.e. when it's . or ..) we do the same
symlink dismissal after the call of handle_dots().
What we need to guarantee is that the symlink won't be dismissed
while we are still using nd->last.name - it's pointing into the
body of said symlink. step_into() is sufficiently late - by
the time it's called we'd already obtained the dentry, so the
name we'd been looking up is no longer needed. However, it
turns out to be cleaner to have that ("we are done with that
component now, can dismiss the link") done explicitly - in the
callers of step_into().
In handle_dots() case we won't be using the component string
at all, so for . and .. the corresponding point is actually
_before_ the call of handle_dots(), not after it.
Fix a minor irregularity in do_last(), while we are at it -
if trailing symlink ended with . or .. we forgot to dismiss
it. Not a problem, since nameidata is about to be done with
(neither . nor .. can be a trailing symlink, so this is the
last iteration through the loop) and terminate_walk() will
clean the stack anyway, but let's keep it more regular.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Current calling conventions: -E... on error, 0 on cache miss,
result of handle_mounts(nd, dentry, path, inode, seqp) on
success. Turn that into returning ERR_PTR(-E...), NULL and dentry
resp.; deal with handle_mounts() in the callers. The thing
is, they already do that in cache miss handling case, so we
just need to supply dentry to them and unify the mount traversal
in those cases. Fewer arguments that way, and we get closer
to merging handle_mounts() and step_into().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
... and make the callers of __follow_mount_rcu() use handle_mounts().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
1) in case of __follow_mount_rcu() failure, lookup_fast() proceeds
to call unlazy_child() and, should it succeed, handle_mounts().
Note that we have status > 0 (or we wouldn't be calling
__follow_mount_rcu() at all), so all stuff conditional upon
non-positive status won't be even touched.
Consolidate just that sequence after the call of __follow_mount_rcu().
2) calling d_is_negative() and keeping its result is pointless -
we either don't get past checking ->d_seq (and don't use the results of
d_is_negative() at all), or we are guaranteed that ->d_inode and
type bits of ->d_flags had been consistent at the time of d_is_negative()
call. IOW, we could only get to the use of its result if it's
equal to !inode. The same ->d_seq check guarantees that after that point
this CPU won't observe ->d_flags values older than ->d_inode update.
So 'negative' variable is completely pointless these days.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Fix the handling of signals in client rxrpc calls made by the afs
filesystem. Ignore signals completely, leaving call abandonment or
connection loss to be detected by timeouts inside AF_RXRPC.
Allowing a filesystem call to be interrupted after the entire request has
been transmitted and an abort sent means that the server may or may not
have done the action - and we don't know. It may even be worse than that
for older servers.
Fixes: bc5e3a546d55 ("rxrpc: Use MSG_WAITALL to tell sendmsg() to temporarily ignore signals")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
When an AFS service handler function aborts a call, AF_RXRPC marks the call
as complete - which means that it's not going to get any more packets from
the receiver. This is a problem because reception of the final ACK is what
triggers afs_deliver_to_call() to drop the final ref on the afs_call
object.
Instead, aborted AFS service calls may then just sit around waiting for
ever or until they're displaced by a new call on the same connection
channel or a connection-level abort.
Fix this by calling afs_set_call_complete() to finalise the afs_call struct
representing the call.
However, we then need to drop the ref that stops the call from being
deallocated. We can do this in afs_set_call_complete(), as the work queue
is holding a separate ref of its own, but then we shouldn't do it in
afs_process_async_call() and afs_delete_async_call().
call->drop_ref is set to indicate that a ref needs dropping for a call and
this is dealt with when we transition a call to AFS_CALL_COMPLETE.
But then we also need to get rid of the ref that pins an asynchronous
client call. We can do this by the same mechanism, setting call->drop_ref
for an async client call too.
We can also get rid of call->incoming since nothing ever sets it and only
one thing ever checks it (futilely).
A trace of the rxrpc_call and afs_call struct ref counting looks like:
<idle>-0 [001] ..s5 164.764892: rxrpc_call: c=00000002 SEE u=3 sp=rxrpc_new_incoming_call+0x473/0xb34 a=00000000442095b5
<idle>-0 [001] .Ns5 164.766001: rxrpc_call: c=00000002 QUE u=4 sp=rxrpc_propose_ACK+0xbe/0x551 a=00000000442095b5
<idle>-0 [001] .Ns4 164.766005: rxrpc_call: c=00000002 PUT u=3 sp=rxrpc_new_incoming_call+0xa3f/0xb34 a=00000000442095b5
<idle>-0 [001] .Ns7 164.766433: afs_call: c=00000002 WAKE u=2 o=11 sp=rxrpc_notify_socket+0x196/0x33c
kworker/1:2-1810 [001] ...1 164.768409: rxrpc_call: c=00000002 SEE u=3 sp=rxrpc_process_call+0x25/0x7ae a=00000000442095b5
kworker/1:2-1810 [001] ...1 164.769439: rxrpc_tx_packet: c=00000002 e9f1a7a8:95786a88:00000008:09c5 00000001 00000000 02 22 ACK CallAck
kworker/1:2-1810 [001] ...1 164.769459: rxrpc_call: c=00000002 PUT u=2 sp=rxrpc_process_call+0x74f/0x7ae a=00000000442095b5
kworker/1:2-1810 [001] ...1 164.770794: afs_call: c=00000002 QUEUE u=3 o=12 sp=afs_deliver_to_call+0x449/0x72c
kworker/1:2-1810 [001] ...1 164.770829: afs_call: c=00000002 PUT u=2 o=12 sp=afs_process_async_call+0xdb/0x11e
kworker/1:2-1810 [001] ...2 164.771084: rxrpc_abort: c=00000002 95786a88:00000008 s=0 a=1 e=1 K-1
kworker/1:2-1810 [001] ...1 164.771461: rxrpc_tx_packet: c=00000002 e9f1a7a8:95786a88:00000008:09c5 00000002 00000000 04 00 ABORT CallAbort
kworker/1:2-1810 [001] ...1 164.771466: afs_call: c=00000002 PUT u=1 o=12 sp=SRXAFSCB_ProbeUuid+0xc1/0x106
The abort generated in SRXAFSCB_ProbeUuid(), labelled "K-1", indicates that
the local filesystem/cache manager didn't recognise the UUID as its own.
Fixes: 2067b2b3f484 ("afs: Fix the CB.ProbeUuid service handler to reply correctly")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Fix a couple of tracelines to indicate the usage count after the atomic op,
not the usage count before it to be consistent with other afs and rxrpc
trace lines.
Change the wording of the afs_call_trace_work trace ID label from "WORK" to
"QUEUE" to reflect the fact that it's queueing work, not doing work.
Fixes: 341f741f04be ("afs: Refcount the afs_call struct")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Fix the interruptibility of kernel-initiated client calls so that they're
either only interruptible when they're waiting for a call slot to come
available or they're not interruptible at all. Either way, they're not
interruptible during transmission.
This should help prevent StoreData calls from being interrupted when
writeback is in progress. It doesn't, however, handle interruption during
the receive phase.
Userspace-initiated calls are still interruptable. After the signal has
been handled, sendmsg() will return the amount of data copied out of the
buffer and userspace can perform another sendmsg() call to continue
transmission.
Fixes: bc5e3a546d55 ("rxrpc: Use MSG_WAITALL to tell sendmsg() to temporarily ignore signals")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Pull NFS client bugfixes from Anna Schumaker:
"These are mostly fscontext fixes, but there is also one that fixes
collisions seen in fscache:
- Ensure the fs_context has the correct fs_type when mounting and
submounting
- Fix leaking of ctx->nfs_server.hostname
- Add minor version to fscache key to prevent collisions"
* tag 'nfs-for-5.6-3' of git://git.linux-nfs.org/projects/anna/linux-nfs:
nfs: add minor version to nfs_server_key for fscache
NFS: Fix leak of ctx->nfs_server.hostname
NFS: Don't hard-code the fs_type when submounting
NFS: Ensure the fs_context has the correct fs_type before mounting
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse
Pull fuse fix from Miklos Szeredi:
"Fix an Oops introduced in v5.4"
* tag 'fuse-fixes-5.6-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse:
fuse: fix stack use after return
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
Pull overlayfs fixes from Miklos Szeredi:
"Fix three bugs introduced in this cycle"
* tag 'ovl-fixes-5.6-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
ovl: fix lockdep warning for async write
ovl: fix some xino configurations
ovl: fix lock in ovl_llseek()
|
|
During a rename whiteout, if btrfs_whiteout_for_rename() returns an error
we can end up returning from btrfs_rename() with the log context object
still in the root's log context list - this happens if 'sync_log' was
set to true before we called btrfs_whiteout_for_rename() and it is
dangerous because we end up with a corrupt linked list (root->log_ctxs)
as the log context object was allocated on the stack.
After btrfs_rename() returns, any task that is running btrfs_sync_log()
concurrently can end up crashing because that linked list is traversed by
btrfs_sync_log() (through btrfs_remove_all_log_ctxs()). That results in
the same issue that commit e6c617102c7e4 ("Btrfs: fix log context list
corruption after rename exchange operation") fixed.
Fixes: d4682ba03ef618 ("Btrfs: sync log after logging new name")
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Pull io_uring fix from Jens Axboe:
"Just a single fix here, improving the RCU callback ordering from last
week. After a bit more perusing by Paul, he poked a hole in the
original"
* tag 'io_uring-5.6-2020-03-13' of git://git.kernel.dk/linux-block:
io_uring: ensure RCU callback ordering with rcu_barrier()
|