Age | Commit message (Collapse) | Author |
|
Change tty_termios_hw_change() to return bool.
Reviewed-by: Jiri Slaby <jirislaby@kernel.org>
Reviewed-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20230117090358.4796-11-ilpo.jarvinen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Convert uart_handle_cts_change() to bool which is more appropriate
than unsigned int.
Rename status to active to better describe what the parameter means.
While at it, make the comment about the active parameter easier to
parse.
Cleanup callsites from operations that are not necessary with bool.
Reviewed-by: Jiri Slaby <jirislaby@kernel.org>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20230117090358.4796-10-ilpo.jarvinen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Convert status parameter for ->dcd_change() and
uart_handle_dcd_change() to bool which matches to how the parameter is
used.
Rename status to active to better describe what the parameter means.
Acked-by: Rodolfo Giometti <giometti@enneenne.com>
Reviewed-by: Jiri Slaby <jirislaby@kernel.org>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20230117090358.4796-9-ilpo.jarvinen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Convert the raise/on parameter in ->dtr_rts() to bool through the
callchain. The parameter is used like bool. In USB serial, there
remains a few implicit bool -> larger type conversions because some
devices use u8 in their control messages.
In moxa_tiocmget(), dtr variable was reused for line status which
requires int so use a separate variable for status.
Reviewed-by: Jiri Slaby <jirislaby@kernel.org>
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # For MMC
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20230117090358.4796-8-ilpo.jarvinen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Return boolean from ->carrier_raised() instead of 0 and 1. Make the
return type change also to tty_port_carrier_raised() that makes the
->carrier_raised() call (+ cd variable in moxa into which its return
value is stored).
Also cleans up a few unnecessary constructs related to this change:
return xx ? 1 : 0;
-> return xx;
if (xx)
return 1;
return 0;
-> return xx;
Reviewed-by: Jiri Slaby <jirislaby@kernel.org>
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # For MMC
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20230117090358.4796-7-ilpo.jarvinen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This patch provides a generic GPIO variable for outputting the state
of RS485 RX_DURING_TX. The GPIO is defined by the devicetree property
"rs485-rx-during-tx-gpios". To use it in a low level serial driver,
the evaluation of this variable must be implemented there accordingly.
Signed-off-by: Christoph Niedermaier <cniedermaier@dh-electronics.com>
Link: https://lore.kernel.org/r/20221202104127.122761-2-cniedermaier@dh-electronics.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The following symbols will be used when adding support for SE DMA in
the qcom geni serial driver.
Signed-off-by: Bartosz Golaszewski <bartosz.golaszewski@linaro.org>
Reviewed-by: Konrad Dybcio <konrad.dybcio@linaro.org>
Link: https://lore.kernel.org/r/20221229155030.418800-14-brgl@bgdev.pl
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
It contains only lines with pointers to characters (u32s). So use
simple clear 'u32 **lines' all over the code.
This avoids zero-length arrays. It also makes the allocation less
error-prone (size of the struct wasn't taken into account at all).
Signed-off-by: Jiri Slaby (SUSE) <jirislaby@kernel.org>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20230112080136.4929-6-jirislaby@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Add UART_MSR_STATUS_BITS for CD, RI, DSR & CTS. Use names for the
literal.
Don't make the define for combined flags part of UAPI.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20221125130509.8482-3-ilpo.jarvinen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Instead of literal 0x0f, add a define for enabling all IER bits the
8250 driver is interested in.
Don't make the define for combined flags part of UAPI.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Link: https://lore.kernel.org/r/20221125130509.8482-2-ilpo.jarvinen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Now that the clock frequency is also part of the options, 16 bytes is
too little.
Without this patch dmesg does not show the whole options, Eg:
earlycon: uart0 at MMIO32 0x00000000fedc9000 (options '115200n8,480000')
instead of: '115200n8,48000000'
Signed-off-by: Ricardo Ribalda <ribalda@chromium.org>
Reviewed-by: Jiri Slaby <jirislaby@kernel.org>
Link: https://lore.kernel.org/r/20221123-serial-clk-v3-2-49c516980ae0@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Neither FIELD_PREP() nor *_encode_bits() can be used
in constant contexts (such as initializers), but we
don't want to define shift constants for all masks
just for use in initializers, and having checks that
the values fit is also useful.
Therefore, add FIELD_PREP_CONST() which is a smaller
version of FIELD_PREP() that can only take constant
arguments and has less friendly (but not less strict)
error checks, and expands to a constant value.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Link: https://lore.kernel.org/r/20230118142652.53f20593504b.Iaeea0aee77a6493d70e573b4aa55c91c00e01e4b@changeid
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
|
|
Make fwnode_graph_for_each_endpoint() consistent with the rest of
for_each_*() definitions in the file, i.e. use the form of
for (iter = func(NULL); iter; \
iter = func(iter))
as it's done in all the rest of the similar macro definitions.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Acked-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Link: https://lore.kernel.org/r/20230117152120.42531-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
There is a custom (non-USB IF) extension to the USB standard:
https://wicg.github.io/webusb/
This specification is published under the W3C Community Contributor
Agreement, which in particular allows to implement the specification
without any royalties.
The specification allows USB gadgets to announce an URL to landing
page and describes a Javascript interface for websites to interact
with the USB gadget, if the user allows it. It is currently
supported by Chromium-based browsers, such as Chrome, Edge and
Opera on all major operating systems including Linux.
This patch adds optional support for Linux-based USB gadgets
wishing to expose such a landing page.
During device enumeration, a host recognizes that the announced
USB version is at least 2.01, which means, that there are BOS
descriptors available. The device than announces WebUSB support
using a platform device capability. This includes a vendor code
under which the landing page URL can be retrieved using a
vendor-specific request.
Previously, the BOS descriptors would unconditionally include an
LPM related descriptor, as BOS descriptors were only ever sent
when the device was LPM capable. As this is no longer the case,
this patch puts this descriptor behind a lpm_capable condition.
Usage is modeled after os_desc descriptors:
echo 1 > webusb/use
echo "https://www.kernel.org" > webusb/landingPage
lsusb will report the device with the following lines:
Platform Device Capability:
bLength 24
bDescriptorType 16
bDevCapabilityType 5
bReserved 0
PlatformCapabilityUUID {3408b638-09a9-47a0-8bfd-a0768815b665}
WebUSB:
bcdVersion 1.00
bVendorCode 0
iLandingPage 1 https://www.kernel.org
Signed-off-by: Jó Ágila Bitsch <jgilab@gmail.com>
Link: https://lore.kernel.org/r/Y8Crf8P2qAWuuk/F@jo-einhundert
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use the perf_report_aux_output_id() call to output the CoreSight trace ID
and associated CPU as a PERF_RECORD_AUX_OUTPUT_HW_ID record in the
perf.data file.
Signed-off-by: Mike Leach <mike.leach@linaro.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20230116124928.5440-14-mike.leach@linaro.org
|
|
Removes legacy coresight_get_trace_id() function now its use has been
removed from the ETM code.
Signed-off-by: Mike Leach <mike.leach@linaro.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20230116124928.5440-9-mike.leach@linaro.org
|
|
CoreSight sources provide a callback (.trace_id) in the standard source
ops which returns the ID to the core code. This was used to check that
sources all had a unique Trace ID.
Uniqueness is now gauranteed by the Trace ID allocation system, and the
check code has been removed from the core.
This patch removes the unneeded and unused .trace_id source ops
from the ops structure and implementations in etm3x, etm4x and stm.
Signed-off-by: Mike Leach <mike.leach@linaro.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20230116124928.5440-8-mike.leach@linaro.org
|
|
The existing mechanism to assign Trace ID values to sources is limited
and does not scale for larger multicore / multi trace source systems.
The API introduces functions that reserve IDs based on availabilty
represented by a coresight_trace_id_map structure. This records the
used and free IDs in a bitmap.
CPU bound sources such as ETMs use the coresight_trace_id_get_cpu_id
coresight_trace_id_put_cpu_id pair of functions. The API will record
the ID associated with the CPU. This ensures that the same ID will be
re-used while perf events are active on the CPU. The put_cpu_id function
will pend release of the ID until all perf cs_etm sessions are complete.
For backward compatibility the functions will attempt to use the same
CPU IDs as the legacy system would have used if these are still available.
Non-cpu sources, such as the STM can use coresight_trace_id_get_system_id /
coresight_trace_id_put_system_id.
Signed-off-by: Mike Leach <mike.leach@linaro.org>
[ Fix checkpatch warning in drivers/hwtracing/coresight/coresight-trace-id.c ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20230116124928.5440-2-mike.leach@linaro.org
|
|
Backmerging into drm-misc-next to get DRM accelerator infrastructure,
which is required by ipuv driver.
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
|
|
Refactor SCMI device create/destroy helpers: it is now possible to ask
for the creation of all the currently requested devices for a whole
protocol, not only for the creation of a single well-defined device.
While at that, re-instate uniqueness checks on the creation of SCMI
SystemPower devices.
Signed-off-by: Cristian Marussi <cristian.marussi@arm.com>
Link: https://lore.kernel.org/r/20221222185049.737625-8-cristian.marussi@arm.com
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
|
|
Now that we converted everything to just rely on struct mnt_idmap move it all
into a separate file. This ensure that no code can poke around in struct
mnt_idmap without any dedicated helpers and makes it easier to extend it in the
future. Filesystems will now not be able to conflate mount and filesystem
idmappings as they are two distinct types and require distinct helpers that
cannot be used interchangeably. We are now also able to extend struct mnt_idmap
as we see fit.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Remove legacy file_mnt_user_ns() and mnt_user_ns().
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Add a folio equivalent for page_is_pfmemalloc. This removes two instances
of page_is_pfmemalloc(folio_page(folio, 0)) so the folio can be used
directly.
Link: https://lkml.kernel.org/r/20230106215251.599222-1-sidhartha.kumar@oracle.com
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This patch adds POSIX_FADV_NOREUSE to vma_has_recency() so that the LRU
algorithm can ignore access to mapped files marked by this flag.
The advantages of POSIX_FADV_NOREUSE are:
1. Unlike MADV_SEQUENTIAL and MADV_RANDOM, it does not alter the
default readahead behavior.
2. Unlike MADV_SEQUENTIAL and MADV_RANDOM, it does not split VMAs and
therefore does not take mmap_lock.
3. Unlike MADV_COLD, setting it has a negligible cost, regardless of
how many pages it affects.
Its limitations are:
1. Like POSIX_FADV_RANDOM and POSIX_FADV_SEQUENTIAL, it currently does
not support range. IOW, its scope is the entire file.
2. It currently does not ignore access through file descriptors.
Specifically, for the active/inactive LRU, given a file page shared
by two users and one of them having set POSIX_FADV_NOREUSE on the
file, this page will be activated upon the second user accessing
it. This corner case can be covered by checking POSIX_FADV_NOREUSE
before calling folio_mark_accessed() on the read path. But it is
considered not worth the effort.
There have been a few attempts to support POSIX_FADV_NOREUSE, e.g., [1].
This time the goal is to fill a niche: a few desktop applications, e.g.,
large file transferring and video encoding/decoding, want fast file
streaming with mmap() rather than direct IO. Among those applications, an
SVT-AV1 regression was reported when running with MGLRU [2]. The
following test can reproduce that regression.
kb=$(awk '/MemTotal/ { print $2 }' /proc/meminfo)
kb=$((kb - 8*1024*1024))
modprobe brd rd_nr=1 rd_size=$kb
dd if=/dev/zero of=/dev/ram0 bs=1M
mkfs.ext4 /dev/ram0
mount /dev/ram0 /mnt/
swapoff -a
fallocate -l 8G /mnt/swapfile
mkswap /mnt/swapfile
swapon /mnt/swapfile
wget http://ultravideo.cs.tut.fi/video/Bosphorus_3840x2160_120fps_420_8bit_YUV_Y4M.7z
7z e -o/mnt/ Bosphorus_3840x2160_120fps_420_8bit_YUV_Y4M.7z
SvtAv1EncApp --preset 12 -w 3840 -h 2160 \
-i /mnt/Bosphorus_3840x2160.y4m
For MGLRU, the following change showed a [9-11]% increase in FPS,
which makes it on par with the active/inactive LRU.
patch Source/App/EncApp/EbAppMain.c <<EOF
31a32
> #include <fcntl.h>
35d35
< #include <fcntl.h> /* _O_BINARY */
117a118
> posix_fadvise(config->mmap.fd, 0, 0, POSIX_FADV_NOREUSE);
EOF
[1] https://lore.kernel.org/r/1308923350-7932-1-git-send-email-andrea@betterlinux.com/
[2] https://openbenchmarking.org/result/2209259-PTS-MGLRU8GB57
Link: https://lkml.kernel.org/r/20221230215252.2628425-2-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Righi <andrea.righi@canonical.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add vma_has_recency() to indicate whether a VMA may exhibit temporal
locality that the LRU algorithm relies on.
This function returns false for VMAs marked by VM_SEQ_READ or
VM_RAND_READ. While the former flag indicates linear access, i.e., a
special case of spatial locality, both flags indicate a lack of temporal
locality, i.e., the reuse of an area within a relatively small duration.
"Recency" is chosen over "locality" to avoid confusion between temporal
and spatial localities.
Before this patch, the active/inactive LRU only ignored the accessed bit
from VMAs marked by VM_SEQ_READ. After this patch, the active/inactive
LRU and MGLRU share the same logic: they both ignore the accessed bit if
vma_has_recency() returns false.
For the active/inactive LRU, the following fio test showed a [6, 8]%
increase in IOPS when randomly accessing mapped files under memory
pressure.
kb=$(awk '/MemTotal/ { print $2 }' /proc/meminfo)
kb=$((kb - 8*1024*1024))
modprobe brd rd_nr=1 rd_size=$kb
dd if=/dev/zero of=/dev/ram0 bs=1M
mkfs.ext4 /dev/ram0
mount /dev/ram0 /mnt/
swapoff -a
fio --name=test --directory=/mnt/ --ioengine=mmap --numjobs=8 \
--size=8G --rw=randrw --time_based --runtime=10m \
--group_reporting
The discussion that led to this patch is here [1]. Additional test
results are available in that thread.
[1] https://lore.kernel.org/r/Y31s%2FK8T85jh05wH@google.com/
Link: https://lkml.kernel.org/r/20221230215252.2628425-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Righi <andrea.righi@canonical.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's stop using VM_MAYSHARE for MAP_PRIVATE mappings and use
VM_MAYOVERLAY instead. Rewrite determine_vm_flags() to make the whole
logic easier to digest, and to cleanly separate MAP_PRIVATE vs.
MAP_SHARED.
No functional change intended.
Link: https://lkml.kernel.org/r/20230102160856.500584-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Nicolas Pitre <nico@fluxnic.net>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
is_nommu_shared_mapping()
Patch series "mm/nommu: don't use VM_MAYSHARE for MAP_PRIVATE mappings".
Trying to reduce the confusion around VM_SHARED and VM_MAYSHARE first
requires !CONFIG_MMU to stop using VM_MAYSHARE for MAP_PRIVATE mappings.
CONFIG_MMU only sets VM_MAYSHARE for MAP_SHARED mappings.
This paves the way for further VM_MAYSHARE and VM_SHARED cleanups: for
example, renaming VM_MAYSHARED to VM_MAP_SHARED to make it cleaner what is
actually means.
Let's first get the weird case out of the way and not use VM_MAYSHARE in
MAP_PRIVATE mappings, using a new VM_MAYOVERLAY flag instead.
This patch (of 3):
We want to stop using VM_MAYSHARE in private mappings to pave the way for
clarifying the semantics of VM_MAYSHARE vs. VM_SHARED and reduce the
confusion. While CONFIG_MMU uses VM_MAYSHARE to represent MAP_SHARED,
!CONFIG_MMU also sets VM_MAYSHARE for selected R/O private file mappings
that are an effective overlay of a file mapping.
Let's factor out all relevant VM_MAYSHARE checks in !CONFIG_MMU code into
is_nommu_shared_mapping() first.
Note that whenever VM_SHARED is set, VM_MAYSHARE must be set as well
(unless there is a serious BUG). So there is not need to test for
VM_SHARED manually.
No functional change intended.
Link: https://lkml.kernel.org/r/20230102160856.500584-1-david@redhat.com
Link: https://lkml.kernel.org/r/20230102160856.500584-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Nicolas Pitre <nico@fluxnic.net>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
zap_page_range was originally designed to unmap pages within an address
range that could span multiple vmas. While working on [1], it was
discovered that all callers of zap_page_range pass a range entirely within
a single vma. In addition, the mmu notification call within zap_page
range does not correctly handle ranges that span multiple vmas. When
crossing a vma boundary, a new mmu_notifier_range_init/end call pair with
the new vma should be made.
Instead of fixing zap_page_range, do the following:
- Create a new routine zap_vma_pages() that will remove all pages within
the passed vma. Most users of zap_page_range pass the entire vma and
can use this new routine.
- For callers of zap_page_range not passing the entire vma, instead call
zap_page_range_single().
- Remove zap_page_range.
[1] https://lore.kernel.org/linux-mm/20221114235507.294320-2-mike.kravetz@oracle.com/
Link: https://lkml.kernel.org/r/20230104002732.232573-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Suggested-by: Peter Xu <peterx@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com> [s390]
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
struct 'kasan_cache' has a member 'is_kmalloc' indicating whether its host
kmem_cache is a kmalloc cache. With newly introduced is_kmalloc_cache()
helper, 'is_kmalloc' and its related function can be replaced and removed.
Also 'kasan_cache' is only needed by KASAN generic mode, and not by SW/HW
tag modes, so refine its protection macro accordingly, suggested by Andrey
Konoval.
Link: https://lkml.kernel.org/r/20230104060605.930910-2-feng.tang@intel.com
Signed-off-by: Feng Tang <feng.tang@intel.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|