Age | Commit message (Collapse) | Author |
|
Statistically, in a large deployment regular segfaults may indicate a CPU
issue.
Currently, it is not possible to find out what CPU the segfault happened
on. There are at least two attempts to improve segfault logging with this
regard, but they do not help in case the logs rotate.
Hence, lets make sure it is possible to permanently record a CPU the task
ran on using a new core_pattern specifier.
Link: https://lkml.kernel.org/r/20220903064330.20772-1-oleksandr@redhat.com
Signed-off-by: Oleksandr Natalenko <oleksandr@redhat.com>
Suggested-by: Renaud Métrich <rmetrich@redhat.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: Grzegorz Halat <ghalat@redhat.com>
Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Joel Savitz <jsavitz@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kees Cook <keescook@chromium.org>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Stephen Kitt <steve@sk2.org>
Cc: Will Deacon <will@kernel.org>
Cc: Xiaoming Ni <nixiaoming@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Mark the devm_*alloc()-family of allocations with appropriate
__alloc_size()/__realloc_size() hints so the compiler can attempt to
reason about buffer lengths from allocations.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rasmus Villemoes <rasmus.villemoes@prevas.dk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Nishanth Menon <nm@ti.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Won Chung <wonchung@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/r/20221029074734.gonna.276-kees@kernel.org
|
|
Since gfn_to_memslot() is relatively expensive, it helps to
skip it if it the memslot cannot possibly have dirty logging
enabled. In order to do this, add to struct kvm a counter
of the number of log-page memslots. While the correct value
can only be read with slots_lock taken, the NX recovery thread
is content with using an approximate value. Therefore, the
counter is an atomic_t.
Based on https://lore.kernel.org/kvm/20221027200316.2221027-2-dmatlack@google.com/
by David Matlack.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Merge series from Corentin Labbe <clabbe@baylibre.com>:
This adds a new regulator_bulk_get_all() which grab all supplies
properties in a DT node, for use in implementing generic handling
for things like MDIO PHYs where the physical standardisation of
the bus does not extend to power supplies.
|
|
It work exactly like regulator_bulk_get() but instead of working on a
provided list of names, it seek all consumers properties matching
xxx-supply.
Signed-off-by: Corentin Labbe <clabbe@baylibre.com>
Link: https://lore.kernel.org/r/20221115073603.3425396-2-clabbe@baylibre.com
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
In subsequent patches we'll arrange for architectures to have an
ftrace_regs which is entirely distinct from pt_regs. In preparation for
this, we need to minimize the use of pt_regs to where strictly necessary
in the core ftrace code.
This patch adds new ftrace_regs_{get,set}_*() helpers which can be used
to manipulate ftrace_regs. When CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS=y,
these can always be used on any ftrace_regs, and when
CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS=n these can be used when regs are
available. A new ftrace_regs_has_args(fregs) helper is added which code
can use to check when these are usable.
Co-developed-by: Florent Revest <revest@chromium.org>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20221103170520.931305-4-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
ftrace_regs_set_instruction_pointer()
In subsequent patches we'll add a sew of ftrace_regs_{get,set}_*()
helpers. In preparation, this patch renames
ftrace_instruction_pointer_set() to
ftrace_regs_set_instruction_pointer().
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20221103170520.931305-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
In subsequent patches we'll arrange for architectures to have an
ftrace_regs which is entirely distinct from pt_regs. In preparation for
this, we need to minimize the use of pt_regs to where strictly
necessary in the core ftrace code.
This patch changes the prototype of arch_ftrace_set_direct_caller() to
take ftrace_regs rather than pt_regs, and moves the extraction of the
pt_regs into arch_ftrace_set_direct_caller().
On x86, arch_ftrace_set_direct_caller() can be used even when
CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS=n, and <linux/ftrace.h> defines
struct ftrace_regs. Due to this, it's necessary to define
arch_ftrace_set_direct_caller() as a macro to avoid using an incomplete
type. I've also moved the body of arch_ftrace_set_direct_caller() after
the CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS=y defineidion of struct
ftrace_regs.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20221103170520.931305-2-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/wireless/wireless-next
Kalle Valo says:
====================
wireless-next patches for v6.2
Second set of patches for v6.2. Only driver patches this time, nothing
really special. Unused platform data support was removed from wl1251
and rtw89 got WoWLAN support.
Major changes:
ath11k
* support configuring channel dwell time during scan
rtw89
* new dynamic header firmware format support
* Wake-over-WLAN support
rtl8xxxu
* enable IEEE80211_HW_SUPPORT_FAST_XMIT
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Clean up the MMC_TRIM_ARGS define that became ambiguous with DISCARD
introduction. While at it, let's fix one usage where MMC_TRIM_ARGS falsely
included DISCARD too.
Fixes: b3bf915308ca ("mmc: core: new discard feature support at eMMC v4.5")
Signed-off-by: Christian Loehle <cloehle@hyperstone.com>
Acked-by: Adrian Hunter <adrian.hunter@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/11376b5714964345908f3990f17e0701@hyperstone.com
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
|
|
Instead of blindly creating the EFI random seed configuration table if
the RNG protocol is implemented and works, check whether such a EFI
configuration table was provided by an earlier boot stage and if so,
concatenate the existing and the new seeds, leaving it up to the core
code to mix it in and credit it the way it sees fit.
This can be used for, e.g., systemd-boot, to pass an additional seed to
Linux in a way that can be consumed by the kernel very early. In that
case, the following definitions should be used to pass the seed to the
EFI stub:
struct linux_efi_random_seed {
u32 size; // of the 'seed' array in bytes
u8 seed[];
};
The memory for the struct must be allocated as EFI_ACPI_RECLAIM_MEMORY
pool memory, and the address of the struct in memory should be installed
as a EFI configuration table using the following GUID:
LINUX_EFI_RANDOM_SEED_TABLE_GUID 1ce1e5bc-7ceb-42f2-81e5-8aadf180f57b
Note that doing so is safe even on kernels that were built without this
patch applied, but the seed will simply be overwritten with a seed
derived from the EFI RNG protocol, if available. The recommended seed
size is 32 bytes, and seeds larger than 512 bytes are considered
corrupted and ignored entirely.
In order to preserve forward secrecy, seeds from previous bootloaders
are memzero'd out, and in order to preserve memory, those older seeds
are also freed from memory. Freeing from memory without first memzeroing
is not safe to do, as it's possible that nothing else will ever
overwrite those pages used by EFI.
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
[ardb: incorporate Jason's followup changes to extend the maximum seed
size on the consumer end, memzero() it and drop a needless printk]
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
The last register logic and different register logic are combined.
Use "u32" instead of 'int' in the regs function input parameter to
simplify some checks.
Signed-off-by: Kai Ye <yekai13@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
pci_get_device() will increase the reference count for the returned
pci_dev. We need to use pci_dev_put() to decrease the reference count
before q_num_set() returns.
Fixes: c8b4b477079d ("crypto: hisilicon - add HiSilicon HPRE accelerator")
Signed-off-by: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Reviewed-by: Weili Qian <qianweili@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Most hw_random devices return entropy which is assumed to be of full
quality, but driver authors don't bother setting the quality knob. Some
hw_random devices return less than full quality entropy, and then driver
authors set the quality knob. Therefore, the entropy crediting should be
opt-out rather than opt-in per-driver, to reflect the actual reality on
the ground.
For example, the two Raspberry Pi RNG drivers produce full entropy
randomness, and both EDK2 and U-Boot's drivers for these treat them as
such. The result is that EFI then uses these numbers and passes the to
Linux, and Linux credits them as boot, thereby initializing the RNG.
Yet, in Linux, the quality knob was never set to anything, and so on the
chance that Linux is booted without EFI, nothing is ever credited.
That's annoying.
The same pattern appears to repeat itself throughout various drivers. In
fact, very very few drivers have bothered setting quality=1024.
Looking at the git history of existing drivers and corresponding mailing
list discussion, this conclusion tracks. There's been a decent amount of
discussion about drivers that set quality < 1024 -- somebody read and
interepreted a datasheet, or made some back of the envelope calculation
somehow. But there's been very little, if any, discussion about most
drivers where the quality is just set to 1024 or unset (or set to 1000
when the authors misunderstood the API and assumed it was base-10 rather
than base-2); in both cases the intent was fairly clear of, "this is a
hardware random device; it's fine."
So let's invert this logic. A hw_random struct's quality knob now
controls the maximum quality a driver can produce, or 0 to specify 1024.
Then, the module-wide switch called "default_quality" is changed to
represent the maximum quality of any driver. By default it's 1024, and
the quality of any particular driver is then given by:
min(default_quality, rng->quality ?: 1024);
This way, the user can still turn this off for weird reasons (and we can
replace whatever driver-specific disabling hacks existed in the past),
yet we get proper crediting for relevant RNGs.
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/pinctrl/intel into devel
intel-pinctrl for v6.2-1
* Add Intel Moorefield pin control driver
* Deduplicate COMMUNITY() macro in the Intel pin control drivers
* Switch Freescale GPIO driver to use fwnode instead of of_node
* Miscellaneous clenups here and there
The following is an automated git shortlog grouped by driver:
alderlake:
- Deduplicate COMMUNITY macro code
cannonlake:
- Deduplicate COMMUNITY macro code
device property:
- Introduce fwnode_device_is_compatible() helper
icelake:
- Deduplicate COMMUNITY macro code
intel:
- Add Intel Moorefield pin controller support
- Use temporary variable for struct device
- Use str_enable_disable() helper
merrifield:
- Use temporary variable for struct device
qcom:
- lpass-lpi: Add missed bitfield.h
soc:
- fsl: qe: Switch to use fwnode instead of of_node
sunrisepoint:
- Deduplicate COMMUNITY macro code
tigerlake:
- Deduplicate COMMUNITY macro code
|
|
Print the CXL Error Log field as found in CXL Protocol Error Section.
The CXL RAS Capability structure will be reused by OS First Handling
and the duplication/appropriate placement will be addressed eventually.
Signed-off-by: Smita Koralahalli <Smita.KoralahalliChannabasappa@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
The EFI runtime map code is only wired up on x86, which is the only
architecture that has a need for it in its implementation of kexec.
So let's move this code under arch/x86 and drop all references to it
from generic code. To ensure that the efi_runtime_map_init() is invoked
at the appropriate time use a 'sync' subsys_initcall() that will be
called right after the EFI initcall made from generic code where the
original invocation of efi_runtime_map_init() resided.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Dave Young <dyoung@redhat.com>
|
|
The EFI memory map is a description of the memory layout as provided by
the firmware, and only x86 manipulates it in various different ways for
its own memory bookkeeping. So let's move the memmap routines that are
only used by x86 into the x86 arch tree.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
The EFI fake memmap support is specific to x86, which manipulates the
EFI memory map in various different ways after receiving it from the EFI
stub. On other architectures, we have managed to push back on this, and
the EFI memory map is kept pristine.
So let's move the fake memmap code into the x86 arch tree, where it
arguably belongs.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
Currently, the initrd= command line option to the EFI stub only supports
loading files that reside on the same volume as the loaded image, which
is not workable for loaders like GRUB that don't even implement the
volume abstraction (EFI_SIMPLE_FILE_SYSTEM_PROTOCOL), and load the
kernel from an anonymous buffer in memory. For this reason, another
method was devised that relies on the LoadFile2 protocol.
However, the command line loader is rather useful when using the UEFI
shell or other generic loaders that have no awareness of Linux specific
protocols so let's make it a bit more flexible, by permitting textual
device paths to be provided to initrd= as well, provided that they refer
to a file hosted on a EFI_SIMPLE_FILE_SYSTEM_PROTOCOL volume. E.g.,
initrd=PciRoot(0x0)/Pci(0x3,0x0)/HD(1,MBR,0xBE1AFDFA,0x3F,0xFBFC1)/rootfs.cpio.gz
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
|
|
pwm_request() isn't recommended to be used any more because it relies on
global IDs for the PWM which comes with different difficulties.
The new way to do things is to find the right PWM using a reference from
the platform device. (This can be created either using a device-tree
or a platform lookup table, see e.g. commit 5a4412d4a82f ("ARM: pxa:
tavorevb: Use PWM lookup table") how to do this.)
There are no in-tree users, so there are no other code locations that need
adaption.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Acked-by: Lee Jones <lee@kernel.org>
Link: https://lore.kernel.org/r/20221117073543.3790449-1-u.kleine-koenig@pengutronix.de
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
|
|
Move these two macros from net/sctp/sctp.h to linux/sctp.h, so that
it will be enough to include only linux/sctp.h in nft_exthdr.c and
xt_sctp.c. It should not include "net/sctp/sctp.h" if a module does
not have a dependence on SCTP module.
Signed-off-by: Xin Long <lucien.xin@gmail.com>
Reviewed-by: Saeed Mahameed <saeed@kernel.org>
Link: https://lore.kernel.org/r/ef6468a687f36da06f575c2131cd4612f6b7be88.1668526821.git.lucien.xin@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Many of the drivers which implement ethtool_ops::get_drvinfo() will
prints the .driver, .version or .bus_info of struct ethtool_drvinfo.
To have a glance of current state, do:
$ git grep -W "get_drvinfo(struct"
Printing in those three fields is useless because:
- since [1], the driver version should be the kernel version (at
least for upstream drivers). Arguably, out of tree drivers might
still want to set a custom version, but out of tree is not our
focus.
- since [2], the core is able to provide default values for .driver
and .bus_info.
In summary, drivers may provide .fw_version and .erom_version, the
rest is expected to be done by the core.
In struct ethtool_ops doc from linux/ethtool: rephrase field
get_drvinfo() doc to discourage developers from implementing this
callback.
In struct ethtool_drvinfo doc from uapi/linux/ethtool.h: remove the
paragraph mentioning what drivers should do. Rationale: no need to
repeat what is already written in struct ethtool_ops doc. But add a
note that .fw_version and .erom_version are driver defined.
Also update the dummy driver and simply remove the callback in order
not to confuse the newcomers: most of the drivers will not need this
callback function any more.
[1] commit 6a7e25c7fb48 ("net/core: Replace driver version to be
kernel version")
Link: https://git.kernel.org/torvalds/linux/c/6a7e25c7fb48
[2] commit edaf5df22cb8 ("ethtool: ethtool_get_drvinfo: populate
drvinfo fields even if callback exits")
Link: https://git.kernel.org/netdev/net-next/c/edaf5df22cb8
Reviewed-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Link: https://lore.kernel.org/r/20221116171828.4093-1-mailhol.vincent@wanadoo.fr
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
This commit implements the delayed release logic for bpf_list_push_front
and bpf_list_push_back.
Once a node has been added to the list, it's pointer changes to
PTR_UNTRUSTED. However, it is only released once the lock protecting the
list is unlocked. For such PTR_TO_BTF_ID | MEM_ALLOC with PTR_UNTRUSTED
set but an active ref_obj_id, it is still permitted to read them as long
as the lock is held. Writing to them is not allowed.
This allows having read access to push items we no longer own until we
release the lock guarding the list, allowing a little more flexibility
when working with these APIs.
Note that enabling write support has fairly tricky interactions with
what happens inside the critical section. Just as an example, currently,
bpf_obj_drop is not permitted, but if it were, being able to write to
the PTR_UNTRUSTED pointer while the object gets released back to the
memory allocator would violate safety properties we wish to guarantee
(i.e. not crashing the kernel). The memory could be reused for a
different type in the BPF program or even in the kernel as it gets
eventually kfree'd.
Not enabling bpf_obj_drop inside the critical section would appear to
prevent all of the above, but that is more of an artifical limitation
right now. Since the write support is tangled with how we handle
potential aliasing of nodes inside the critical section that may or may
not be part of the list anymore, it has been deferred to a future patch.
Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-18-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Introduce type safe memory allocator bpf_obj_new for BPF programs. The
kernel side kfunc is named bpf_obj_new_impl, as passing hidden arguments
to kfuncs still requires having them in prototype, unlike BPF helpers
which always take 5 arguments and have them checked using bpf_func_proto
in verifier, ignoring unset argument types.
Introduce __ign suffix to ignore a specific kfunc argument during type
checks, then use this to introduce support for passing type metadata to
the bpf_obj_new_impl kfunc.
The user passes BTF ID of the type it wants to allocates in program BTF,
the verifier then rewrites the first argument as the size of this type,
after performing some sanity checks (to ensure it exists and it is a
struct type).
The second argument is also fixed up and passed by the verifier. This is
the btf_struct_meta for the type being allocated. It would be needed
mostly for the offset array which is required for zero initializing
special fields while leaving the rest of storage in unitialized state.
It would also be needed in the next patch to perform proper destruction
of the object's special fields.
Under the hood, bpf_obj_new will call bpf_mem_alloc and bpf_mem_free,
using the any context BPF memory allocator introduced recently. To this
end, a global instance of the BPF memory allocator is initialized on
boot to be used for this purpose. This 'bpf_global_ma' serves all
allocations for bpf_obj_new. In the future, bpf_obj_new variants will
allow specifying a custom allocator.
Note that now that bpf_obj_new can be used to allocate objects that can
be linked to BPF linked list (when future linked list helpers are
available), we need to also free the elements using bpf_mem_free.
However, since the draining of elements is done outside the
bpf_spin_lock, we need to do migrate_disable around the call since
bpf_list_head_free can be called from map free path where migration is
enabled. Otherwise, when called from BPF programs migration is already
disabled.
A convenience macro is included in the bpf_experimental.h header to hide
over the ugly details of the implementation, leading to user code
looking similar to a language level extension which allocates and
constructs fields of a user type.
struct bar {
struct bpf_list_node node;
};
struct foo {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(bar, node);
};
void prog(void) {
struct foo *f;
f = bpf_obj_new(typeof(*f));
if (!f)
return;
...
}
A key piece of this story is still missing, i.e. the free function,
which will come in the next patch.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-14-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
As we continue to add more features, argument types, kfunc flags, and
different extensions to kfuncs, the code to verify the correctness of
the kfunc prototype wrt the passed in registers has become ad-hoc and
ugly to read. To make life easier, and make a very clear split between
different stages of argument processing, move all the code into
verifier.c and refactor into easier to read helpers and functions.
This also makes sharing code within the verifier easier with kfunc
argument processing. This will be more and more useful in later patches
as we are now moving to implement very core BPF helpers as kfuncs, to
keep them experimental before baking into UAPI.
Remove all kfunc related bits now from btf_check_func_arg_match, as
users have been converted away to refactored kfunc argument handling.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-12-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Global variables reside in maps accessible using direct_value_addr
callbacks, so giving each load instruction's rewrite a unique reg->id
disallows us from holding locks which are global.
The reason for preserving reg->id as a unique value for registers that
may point to spin lock is that two separate lookups are treated as two
separate memory regions, and any possible aliasing is ignored for the
purposes of spin lock correctness.
This is not great especially for the global variable case, which are
served from maps that have max_entries == 1, i.e. they always lead to
map values pointing into the same map value.
So refactor the active_spin_lock into a 'active_lock' structure which
represents the lock identity, and instead of the reg->id, remember two
fields, a pointer and the reg->id. The pointer will store reg->map_ptr
or reg->btf. It's only necessary to distinguish for the id == 0 case of
global variables, but always setting the pointer to a non-NULL value and
using the pointer to check whether the lock is held simplifies code in
the verifier.
This is generic enough to allow it for global variables, map lookups,
and allocated objects at the same time.
Note that while whether a lock is held can be answered by just comparing
active_lock.ptr to NULL, to determine whether the register is pointing
to the same held lock requires comparing _both_ ptr and id.
Finally, as a result of this refactoring, pseudo load instructions are
not given a unique reg->id, as they are doing lookup for the same map
value (max_entries is never greater than 1).
Essentially, we consider that the tuple of (ptr, id) will always be
unique for any kind of argument to bpf_spin_{lock,unlock}.
Note that this can be extended in the future to also remember offset
used for locking, so that we can introduce multiple bpf_spin_lock fields
in the same allocation.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-10-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Ensure that there can be no ownership cycles among different types by
way of having owning objects that can hold some other type as their
element. For instance, a map value can only hold allocated objects, but
these are allowed to have another bpf_list_head. To prevent unbounded
recursion while freeing resources, elements of bpf_list_head in local
kptrs can never have a bpf_list_head which are part of list in a map
value. Later patches will verify this by having dedicated BTF selftests.
Also, to make runtime destruction easier, once btf_struct_metas is fully
populated, we can stash the metadata of the value type directly in the
metadata of the list_head fields, as that allows easier access to the
value type's layout to destruct it at runtime from the btf_field entry
of the list head itself.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Allow specifying bpf_spin_lock, bpf_list_head, bpf_list_node fields in a
allocated object.
Also update btf_struct_access to reject direct access to these special
fields.
A bpf_list_head allows implementing map-in-map style use cases, where an
allocated object with bpf_list_head is linked into a list in a map
value. This would require embedding a bpf_list_node, support for which
is also included. The bpf_spin_lock is used to protect the bpf_list_head
and other data.
While we strictly don't require to hold a bpf_spin_lock while touching
the bpf_list_head in such objects, as when have access to it, we have
complete ownership of the object, the locking constraint is still kept
and may be conditionally lifted in the future.
Note that the specification of such types can be done just like map
values, e.g.:
struct bar {
struct bpf_list_node node;
};
struct foo {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(bar, node);
struct bpf_list_node node;
};
struct map_value {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(foo, node);
};
To recognize such types in user BTF, we build a btf_struct_metas array
of metadata items corresponding to each BTF ID. This is done once during
the btf_parse stage to avoid having to do it each time during the
verification process's requirement to inspect the metadata.
Moreover, the computed metadata needs to be passed to some helpers in
future patches which requires allocating them and storing them in the
BTF that is pinned by the program itself, so that valid access can be
assumed to such data during program runtime.
A key thing to note is that once a btf_struct_meta is available for a
type, both the btf_record and btf_field_offs should be available. It is
critical that btf_field_offs is available in case special fields are
present, as we extensively rely on special fields being zeroed out in
map values and allocated objects in later patches. The code ensures that
by bailing out in case of errors and ensuring both are available
together. If the record is not available, the special fields won't be
recognized, so not having both is also fine (in terms of being a
verification error and not a runtime bug).
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Introduce support for representing pointers to objects allocated by the
BPF program, i.e. PTR_TO_BTF_ID that point to a type in program BTF.
This is indicated by the presence of MEM_ALLOC type flag in reg->type to
avoid having to check btf_is_kernel when trying to match argument types
in helpers.
Whenever walking such types, any pointers being walked will always yield
a SCALAR instead of pointer. In the future we might permit kptr inside
such allocated objects (either kernel or program allocated), and it will
then form a PTR_TO_BTF_ID of the respective type.
For now, such allocated objects will always be referenced in verifier
context, hence ref_obj_id == 0 for them is a bug. It is allowed to write
to such objects, as long fields that are special are not touched
(support for which will be added in subsequent patches). Note that once
such a pointer is marked PTR_UNTRUSTED, it is no longer allowed to write
to it.
No PROBE_MEM handling is therefore done for loads into this type unless
PTR_UNTRUSTED is part of the register type, since they can never be in
an undefined state, and their lifetime will always be valid.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
include/linux/bpf.h
1f6e04a1c7b8 ("bpf: Fix offset calculation error in __copy_map_value and zero_map_value")
aa3496accc41 ("bpf: Refactor kptr_off_tab into btf_record")
f71b2f64177a ("bpf: Refactor map->off_arr handling")
https://lore.kernel.org/all/20221114095000.67a73239@canb.auug.org.au/
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
add_latent_entropy() is called every time a process forks, in
kernel_clone(). This in turn calls add_device_randomness() using the
latent entropy global state. add_device_randomness() does two things:
2) Mixes into the input pool the latent entropy argument passed; and
1) Mixes in a cycle counter, a sort of measurement of when the event
took place, the high precision bits of which are presumably
difficult to predict.
(2) is impossible without CONFIG_GCC_PLUGIN_LATENT_ENTROPY=y. But (1) is
always possible. However, currently CONFIG_GCC_PLUGIN_LATENT_ENTROPY=n
disables both (1) and (2), instead of just (2).
This commit causes the CONFIG_GCC_PLUGIN_LATENT_ENTROPY=n case to still
do (1) by passing NULL (len 0) to add_device_randomness() when add_latent_
entropy() is called.
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: PaX Team <pageexec@freemail.hu>
Cc: Emese Revfy <re.emese@gmail.com>
Fixes: 38addce8b600 ("gcc-plugins: Add latent_entropy plugin")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Rather than calling add_device_randomness(), the add_early_randomness()
function should use add_hwgenerator_randomness(), so that the early
entropy can be potentially credited, which allows for the RNG to
initialize earlier without having to wait for the kthread to come up.
This requires some minor API refactoring, by adding a `sleep_after`
parameter to add_hwgenerator_randomness(), so that we don't hit a
blocking sleep from add_early_randomness().
Tested-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
The arch_get_random*_early() abstraction is not completely useful and
adds complexity, because it's not a given that there will be no calls to
arch_get_random*() between random_init_early(), which uses
arch_get_random*_early(), and init_cpu_features(). During that gap,
crng_reseed() might be called, which uses arch_get_random*(), since it's
mostly not init code.
Instead we can test whether we're in the early phase in
arch_get_random*() itself, and in doing so avoid all ambiguity about
where we are. Fortunately, the only architecture that currently
implements arch_get_random*_early() also has an alternatives-based cpu
feature system, one flag of which determines whether the other flags
have been initialized. This makes it possible to do the early check with
zero cost once the system is initialized.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Jean-Philippe Brucker <jean-philippe@linaro.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
This has nothing to do with random.c and everything to do with stack
protectors. Yes, it uses randomness. But many things use randomness.
random.h and random.c are concerned with the generation of randomness,
not with each and every use. So move this function into the more
specific stackprotector.h file where it belongs.
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
This is a simple mechanical transformation done by:
@@
expression E;
@@
- prandom_u32_max
+ get_random_u32_below
(E)
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Reviewed-by: SeongJae Park <sj@kernel.org> # for damon
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> # for infiniband
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> # for arm
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Now that we have get_random_u32_below(), it's nearly trivial to make
inline helpers to compute get_random_u32_above() and
get_random_u32_inclusive(), which will help clean up open coded loops
and manual computations throughout the tree.
One snag is that in order to make get_random_u32_inclusive() operate on
closed intervals, we have to do some (unlikely) special case handling if
get_random_u32_inclusive(0, U32_MAX) is called. The least expensive way
of doing this is actually to adjust the slowpath of
get_random_u32_below() to have its undefined 0 result just return the
output of get_random_u32(). We can make this basically free by calling
get_random_u32() before the branch, so that the branch latency gets
interleaved.
Cc: stable@vger.kernel.org # to ease future backports that use this api
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Having REQ_F_POLLED set doesn't guarantee that the request is
executed as a multishot from the polling path. Fortunately for us, if
the code thinks it's multishot issue when it's not, it can only ask to
skip completion so leaking the request. Use issue_flags to mark
multipoll issues.
Cc: stable@vger.kernel.org
Fixes: 390ed29b5e425 ("io_uring: add IORING_ACCEPT_MULTISHOT for accept")
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/7700ac57653f2823e30b34dc74da68678c0c5f13.1668710222.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Paolo Abeni:
"Including fixes from bpf.
Current release - regressions:
- tls: fix memory leak in tls_enc_skb() and tls_sw_fallback_init()
Previous releases - regressions:
- bridge: fix memory leaks when changing VLAN protocol
- dsa: make dsa_master_ioctl() see through port_hwtstamp_get() shims
- dsa: don't leak tagger-owned storage on switch driver unbind
- eth: mlxsw: avoid warnings when not offloaded FDB entry with IPv6
is removed
- eth: stmmac: ensure tx function is not running in
stmmac_xdp_release()
- eth: hns3: fix return value check bug of rx copybreak
Previous releases - always broken:
- kcm: close race conditions on sk_receive_queue
- bpf: fix alignment problem in bpf_prog_test_run_skb()
- bpf: fix writing offset in case of fault in
strncpy_from_kernel_nofault
- eth: macvlan: use built-in RCU list checking
- eth: marvell: add sleep time after enabling the loopback bit
- eth: octeon_ep: fix potential memory leak in octep_device_setup()
Misc:
- tcp: configurable source port perturb table size
- bpf: Convert BPF_DISPATCHER to use static_call() (not ftrace)"
* tag 'net-6.1-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (51 commits)
net: use struct_group to copy ip/ipv6 header addresses
net: usb: smsc95xx: fix external PHY reset
net: usb: qmi_wwan: add Telit 0x103a composition
netdevsim: Fix memory leak of nsim_dev->fa_cookie
tcp: configurable source port perturb table size
l2tp: Serialize access to sk_user_data with sk_callback_lock
net: thunderbolt: Fix error handling in tbnet_init()
net: microchip: sparx5: Fix potential null-ptr-deref in sparx_stats_init() and sparx5_start()
net: lan966x: Fix potential null-ptr-deref in lan966x_stats_init()
net: dsa: don't leak tagger-owned storage on switch driver unbind
net/x25: Fix skb leak in x25_lapb_receive_frame()
net: ag71xx: call phylink_disconnect_phy if ag71xx_hw_enable() fail in ag71xx_open()
bridge: switchdev: Fix memory leaks when changing VLAN protocol
net: hns3: fix setting incorrect phy link ksettings for firmware in resetting process
net: hns3: fix return value check bug of rx copybreak
net: hns3: fix incorrect hw rss hash type of rx packet
net: phy: marvell: add sleep time after enabling the loopback bit
net: ena: Fix error handling in ena_init()
kcm: close race conditions on sk_receive_queue
net: ionic: Fix error handling in ionic_init_module()
...
|
|
Until the very recent commits, many bounded random integers were
calculated using `get_random_u32() % max_plus_one`, which not only
incurs the price of a division -- indicating performance mostly was not
a real issue -- but also does not result in a uniformly distributed
output if max_plus_one is not a power of two. Recent commits moved to
using `prandom_u32_max(max_plus_one)`, which replaces the division with
a faster multiplication, but still does not solve the issue with
non-uniform output.
For some users, maybe this isn't a problem, and for others, maybe it is,
but for the majority of users, probably the question has never been
posed and analyzed, and nobody thought much about it, probably assuming
random is random is random. In other words, the unthinking expectation
of most users is likely that the resultant numbers are uniform.
So we implement here an efficient way of generating uniform bounded
random integers. Through use of compile-time evaluation, and avoiding
divisions as much as possible, this commit introduces no measurable
overhead. At least for hot-path uses tested, any potential difference
was lost in the noise. On both clang and gcc, code generation is pretty
small.
The new function, get_random_u32_below(), lives in random.h, rather than
prandom.h, and has a "get_random_xxx" function name, because it is
suitable for all uses, including cryptography.
In order to be efficient, we implement a kernel-specific variant of
Daniel Lemire's algorithm from "Fast Random Integer Generation in an
Interval", linked below. The kernel's variant takes advantage of
constant folding to avoid divisions entirely in the vast majority of
cases, works on both 32-bit and 64-bit architectures, and requests a
minimal amount of bytes from the RNG.
Link: https://arxiv.org/pdf/1805.10941.pdf
Cc: stable@vger.kernel.org # to ease future backports that use this api
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Currently bpf_map_do_batch() first invokes fdget(batch.map_fd) to get
the target map file, then it invokes generic_map_update_batch() to do
batch update. generic_map_update_batch() will get the target map file
by using fdget(batch.map_fd) again and pass it to bpf_map_update_value().
The problem is map file returned by the second fdget() may be NULL or a
totally different file compared by map file in bpf_map_do_batch(). The
reason is that the first fdget() only guarantees the liveness of struct
file instead of file descriptor and the file description may be released
by concurrent close() through pick_file().
It doesn't incur any problem as for now, because maps with batch update
support don't use map file in .map_fd_get_ptr() ops. But it is better to
fix the potential access of an invalid map file.
Using __bpf_map_get() again in generic_map_update_batch() can not fix
the problem, because batch.map_fd may be closed and reopened, and the
returned map file may be different with map file got in
bpf_map_do_batch(), so just passing the map file directly to
.map_update_batch() in bpf_map_do_batch().
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221116075059.1551277-1-houtao@huaweicloud.com
|
|
Make fb_modesetting_disabled() a static-inline function when it is
defined in the header file. Avoid the linker error shown below.
ld: drivers/video/fbdev/core/fbmon.o: in function `fb_modesetting_disabled':
fbmon.c:(.text+0x1e4): multiple definition of `fb_modesetting_disabled'; drivers/video/fbdev/core/fbmem.o:fbmem.c:(.text+0x1bac): first defined here
A bug report is at [1].
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
Reviewed-by: Javier Martinez Canillas <javierm@redhat.com>
Fixes: 0ba2fa8cbd29 ("fbdev: Add support for the nomodeset kernel parameter")
Cc: Javier Martinez Canillas <javierm@redhat.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Helge Deller <deller@gmx.de>
Cc: linux-fbdev@vger.kernel.org
Cc: dri-devel@lists.freedesktop.org
Link: https://lore.kernel.org/dri-devel/20221117183214.2473e745@canb.auug.org.au/T/#u # 1
Link: https://patchwork.freedesktop.org/patch/msgid/20221117114729.7570-1-tzimmermann@suse.de
|
|
Obey kvm.halt_poll_ns in VMs not using KVM_CAP_HALT_POLL on every halt,
rather than just sampling the module parameter when the VM is first
created. This restore the original behavior of kvm.halt_poll_ns for VMs
that have not opted into KVM_CAP_HALT_POLL.
Notably, this change restores the ability for admins to disable or
change the maximum halt-polling time system wide for VMs not using
KVM_CAP_HALT_POLL.
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Fixes: acd05785e48c ("kvm: add capability for halt polling")
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20221117001657.1067231-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
No more users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20221111122015.807616900@linutronix.de
|
|
To disentangle the maze in msi.c, all exported device-driver MSI APIs are
now to be grouped in one file, api.c.
Make pci_alloc_irq_vectors() a real function instead of wrapper and add
proper kernel doc to it.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Link: https://lore.kernel.org/r/20221111122014.870888193@linutronix.de
|
|
Adjust to reality and remove another layer of pointless Kconfig
indirection. CONFIG_GENERIC_MSI_IRQ is good enough to serve
all purposes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20221111122014.524842979@linutronix.de
|
|
What a zoo:
PCI_MSI
select GENERIC_MSI_IRQ
PCI_MSI_IRQ_DOMAIN
def_bool y
depends on PCI_MSI
select GENERIC_MSI_IRQ_DOMAIN
Ergo PCI_MSI enables PCI_MSI_IRQ_DOMAIN which in turn selects
GENERIC_MSI_IRQ_DOMAIN. So all the dependencies on PCI_MSI_IRQ_DOMAIN are
just an indirection to PCI_MSI.
Match the reality and just admit that PCI_MSI requires
GENERIC_MSI_IRQ_DOMAIN.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Link: https://lore.kernel.org/r/20221111122014.467556921@linutronix.de
|
|
Add a bus token member to struct msi_domain_info and let
msi_create_irq_domain() set the bus token.
That allows to remove the bus token updates at the call sites.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20221111122014.294554462@linutronix.de
|
|
Split the bus token defines out into a seperate header file to avoid
inclusion of irqdomain.h in msi.h.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20221111122014.237221143@linutronix.de
|