summaryrefslogtreecommitdiff
path: root/include/linux
AgeCommit message (Collapse)Author
2023-01-19coresight: trace id: Remove legacy get trace ID function.Mike Leach
Removes legacy coresight_get_trace_id() function now its use has been removed from the ETM code. Signed-off-by: Mike Leach <mike.leach@linaro.org> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Link: https://lore.kernel.org/r/20230116124928.5440-9-mike.leach@linaro.org
2023-01-19coresight: etmX.X: stm: Remove trace_id() callbackMike Leach
CoreSight sources provide a callback (.trace_id) in the standard source ops which returns the ID to the core code. This was used to check that sources all had a unique Trace ID. Uniqueness is now gauranteed by the Trace ID allocation system, and the check code has been removed from the core. This patch removes the unneeded and unused .trace_id source ops from the ops structure and implementations in etm3x, etm4x and stm. Signed-off-by: Mike Leach <mike.leach@linaro.org> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Link: https://lore.kernel.org/r/20230116124928.5440-8-mike.leach@linaro.org
2023-01-19coresight: trace-id: Add API to dynamically assign Trace ID valuesMike Leach
The existing mechanism to assign Trace ID values to sources is limited and does not scale for larger multicore / multi trace source systems. The API introduces functions that reserve IDs based on availabilty represented by a coresight_trace_id_map structure. This records the used and free IDs in a bitmap. CPU bound sources such as ETMs use the coresight_trace_id_get_cpu_id coresight_trace_id_put_cpu_id pair of functions. The API will record the ID associated with the CPU. This ensures that the same ID will be re-used while perf events are active on the CPU. The put_cpu_id function will pend release of the ID until all perf cs_etm sessions are complete. For backward compatibility the functions will attempt to use the same CPU IDs as the legacy system would have used if these are still available. Non-cpu sources, such as the STM can use coresight_trace_id_get_system_id / coresight_trace_id_put_system_id. Signed-off-by: Mike Leach <mike.leach@linaro.org> [ Fix checkpatch warning in drivers/hwtracing/coresight/coresight-trace-id.c ] Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Link: https://lore.kernel.org/r/20230116124928.5440-2-mike.leach@linaro.org
2023-01-19Merge drm/drm-next into drm-misc-nextThomas Zimmermann
Backmerging into drm-misc-next to get DRM accelerator infrastructure, which is required by ipuv driver. Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
2023-01-19firmware: arm_scmi: Refactor device create/destroy helpersCristian Marussi
Refactor SCMI device create/destroy helpers: it is now possible to ask for the creation of all the currently requested devices for a whole protocol, not only for the creation of a single well-defined device. While at that, re-instate uniqueness checks on the creation of SCMI SystemPower devices. Signed-off-by: Cristian Marussi <cristian.marussi@arm.com> Link: https://lore.kernel.org/r/20221222185049.737625-8-cristian.marussi@arm.com Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
2023-01-19fs: move mnt_idmapChristian Brauner
Now that we converted everything to just rely on struct mnt_idmap move it all into a separate file. This ensure that no code can poke around in struct mnt_idmap without any dedicated helpers and makes it easier to extend it in the future. Filesystems will now not be able to conflate mount and filesystem idmappings as they are two distinct types and require distinct helpers that cannot be used interchangeably. We are now also able to extend struct mnt_idmap as we see fit. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port vfs{g,u}id helpers to mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port fs{g,u}id helpers to mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port i_{g,u}id_into_vfs{g,u}id() to mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Remove legacy file_mnt_user_ns() and mnt_user_ns(). Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port i_{g,u}id_{needs_}update() to mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19quota: port to mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port privilege checking helpers to mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port inode_owner_or_capable() to mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port inode_init_owner() to mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port acl to mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port xattr to mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port ->permission() to pass mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port ->fileattr_set() to pass mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port ->set_acl() to pass mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port ->get_acl() to pass mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port ->tmpfile() to pass mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port ->rename() to pass mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port ->mknod() to pass mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port ->mkdir() to pass mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port ->symlink() to pass mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port ->create() to pass mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port ->getattr() to pass mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port ->setattr() to pass mnt_idmapChristian Brauner
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-18mm: introduce folio_is_pfmemallocSidhartha Kumar
Add a folio equivalent for page_is_pfmemalloc. This removes two instances of page_is_pfmemalloc(folio_page(folio, 0)) so the folio can be used directly. Link: https://lkml.kernel.org/r/20230106215251.599222-1-sidhartha.kumar@oracle.com Suggested-by: Matthew Wilcox <willy@infradead.org> Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: SeongJae Park <sj@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm: support POSIX_FADV_NOREUSEYu Zhao
This patch adds POSIX_FADV_NOREUSE to vma_has_recency() so that the LRU algorithm can ignore access to mapped files marked by this flag. The advantages of POSIX_FADV_NOREUSE are: 1. Unlike MADV_SEQUENTIAL and MADV_RANDOM, it does not alter the default readahead behavior. 2. Unlike MADV_SEQUENTIAL and MADV_RANDOM, it does not split VMAs and therefore does not take mmap_lock. 3. Unlike MADV_COLD, setting it has a negligible cost, regardless of how many pages it affects. Its limitations are: 1. Like POSIX_FADV_RANDOM and POSIX_FADV_SEQUENTIAL, it currently does not support range. IOW, its scope is the entire file. 2. It currently does not ignore access through file descriptors. Specifically, for the active/inactive LRU, given a file page shared by two users and one of them having set POSIX_FADV_NOREUSE on the file, this page will be activated upon the second user accessing it. This corner case can be covered by checking POSIX_FADV_NOREUSE before calling folio_mark_accessed() on the read path. But it is considered not worth the effort. There have been a few attempts to support POSIX_FADV_NOREUSE, e.g., [1]. This time the goal is to fill a niche: a few desktop applications, e.g., large file transferring and video encoding/decoding, want fast file streaming with mmap() rather than direct IO. Among those applications, an SVT-AV1 regression was reported when running with MGLRU [2]. The following test can reproduce that regression. kb=$(awk '/MemTotal/ { print $2 }' /proc/meminfo) kb=$((kb - 8*1024*1024)) modprobe brd rd_nr=1 rd_size=$kb dd if=/dev/zero of=/dev/ram0 bs=1M mkfs.ext4 /dev/ram0 mount /dev/ram0 /mnt/ swapoff -a fallocate -l 8G /mnt/swapfile mkswap /mnt/swapfile swapon /mnt/swapfile wget http://ultravideo.cs.tut.fi/video/Bosphorus_3840x2160_120fps_420_8bit_YUV_Y4M.7z 7z e -o/mnt/ Bosphorus_3840x2160_120fps_420_8bit_YUV_Y4M.7z SvtAv1EncApp --preset 12 -w 3840 -h 2160 \ -i /mnt/Bosphorus_3840x2160.y4m For MGLRU, the following change showed a [9-11]% increase in FPS, which makes it on par with the active/inactive LRU. patch Source/App/EncApp/EbAppMain.c <<EOF 31a32 > #include <fcntl.h> 35d35 < #include <fcntl.h> /* _O_BINARY */ 117a118 > posix_fadvise(config->mmap.fd, 0, 0, POSIX_FADV_NOREUSE); EOF [1] https://lore.kernel.org/r/1308923350-7932-1-git-send-email-andrea@betterlinux.com/ [2] https://openbenchmarking.org/result/2209259-PTS-MGLRU8GB57 Link: https://lkml.kernel.org/r/20221230215252.2628425-2-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Righi <andrea.righi@canonical.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michael Larabel <Michael@MichaelLarabel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm: add vma_has_recency()Yu Zhao
Add vma_has_recency() to indicate whether a VMA may exhibit temporal locality that the LRU algorithm relies on. This function returns false for VMAs marked by VM_SEQ_READ or VM_RAND_READ. While the former flag indicates linear access, i.e., a special case of spatial locality, both flags indicate a lack of temporal locality, i.e., the reuse of an area within a relatively small duration. "Recency" is chosen over "locality" to avoid confusion between temporal and spatial localities. Before this patch, the active/inactive LRU only ignored the accessed bit from VMAs marked by VM_SEQ_READ. After this patch, the active/inactive LRU and MGLRU share the same logic: they both ignore the accessed bit if vma_has_recency() returns false. For the active/inactive LRU, the following fio test showed a [6, 8]% increase in IOPS when randomly accessing mapped files under memory pressure. kb=$(awk '/MemTotal/ { print $2 }' /proc/meminfo) kb=$((kb - 8*1024*1024)) modprobe brd rd_nr=1 rd_size=$kb dd if=/dev/zero of=/dev/ram0 bs=1M mkfs.ext4 /dev/ram0 mount /dev/ram0 /mnt/ swapoff -a fio --name=test --directory=/mnt/ --ioengine=mmap --numjobs=8 \ --size=8G --rw=randrw --time_based --runtime=10m \ --group_reporting The discussion that led to this patch is here [1]. Additional test results are available in that thread. [1] https://lore.kernel.org/r/Y31s%2FK8T85jh05wH@google.com/ Link: https://lkml.kernel.org/r/20221230215252.2628425-1-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Righi <andrea.righi@canonical.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michael Larabel <Michael@MichaelLarabel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm/nommu: don't use VM_MAYSHARE for MAP_PRIVATE mappingsDavid Hildenbrand
Let's stop using VM_MAYSHARE for MAP_PRIVATE mappings and use VM_MAYOVERLAY instead. Rewrite determine_vm_flags() to make the whole logic easier to digest, and to cleanly separate MAP_PRIVATE vs. MAP_SHARED. No functional change intended. Link: https://lkml.kernel.org/r/20230102160856.500584-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Nicolas Pitre <nico@fluxnic.net> Cc: Pavel Begunkov <asml.silence@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm/nommu: factor out check for NOMMU shared mappings into ↵David Hildenbrand
is_nommu_shared_mapping() Patch series "mm/nommu: don't use VM_MAYSHARE for MAP_PRIVATE mappings". Trying to reduce the confusion around VM_SHARED and VM_MAYSHARE first requires !CONFIG_MMU to stop using VM_MAYSHARE for MAP_PRIVATE mappings. CONFIG_MMU only sets VM_MAYSHARE for MAP_SHARED mappings. This paves the way for further VM_MAYSHARE and VM_SHARED cleanups: for example, renaming VM_MAYSHARED to VM_MAP_SHARED to make it cleaner what is actually means. Let's first get the weird case out of the way and not use VM_MAYSHARE in MAP_PRIVATE mappings, using a new VM_MAYOVERLAY flag instead. This patch (of 3): We want to stop using VM_MAYSHARE in private mappings to pave the way for clarifying the semantics of VM_MAYSHARE vs. VM_SHARED and reduce the confusion. While CONFIG_MMU uses VM_MAYSHARE to represent MAP_SHARED, !CONFIG_MMU also sets VM_MAYSHARE for selected R/O private file mappings that are an effective overlay of a file mapping. Let's factor out all relevant VM_MAYSHARE checks in !CONFIG_MMU code into is_nommu_shared_mapping() first. Note that whenever VM_SHARED is set, VM_MAYSHARE must be set as well (unless there is a serious BUG). So there is not need to test for VM_SHARED manually. No functional change intended. Link: https://lkml.kernel.org/r/20230102160856.500584-1-david@redhat.com Link: https://lkml.kernel.org/r/20230102160856.500584-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Nicolas Pitre <nico@fluxnic.net> Cc: Pavel Begunkov <asml.silence@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm: remove zap_page_range and create zap_vma_pagesMike Kravetz
zap_page_range was originally designed to unmap pages within an address range that could span multiple vmas. While working on [1], it was discovered that all callers of zap_page_range pass a range entirely within a single vma. In addition, the mmu notification call within zap_page range does not correctly handle ranges that span multiple vmas. When crossing a vma boundary, a new mmu_notifier_range_init/end call pair with the new vma should be made. Instead of fixing zap_page_range, do the following: - Create a new routine zap_vma_pages() that will remove all pages within the passed vma. Most users of zap_page_range pass the entire vma and can use this new routine. - For callers of zap_page_range not passing the entire vma, instead call zap_page_range_single(). - Remove zap_page_range. [1] https://lore.kernel.org/linux-mm/20221114235507.294320-2-mike.kravetz@oracle.com/ Link: https://lkml.kernel.org/r/20230104002732.232573-1-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Suggested-by: Peter Xu <peterx@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Heiko Carstens <hca@linux.ibm.com> [s390] Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm/kasan: simplify and refine kasan_cache codeFeng Tang
struct 'kasan_cache' has a member 'is_kmalloc' indicating whether its host kmem_cache is a kmalloc cache. With newly introduced is_kmalloc_cache() helper, 'is_kmalloc' and its related function can be replaced and removed. Also 'kasan_cache' is only needed by KASAN generic mode, and not by SW/HW tag modes, so refine its protection macro accordingly, suggested by Andrey Konoval. Link: https://lkml.kernel.org/r/20230104060605.930910-2-feng.tang@intel.com Signed-off-by: Feng Tang <feng.tang@intel.com> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm: fix spelling mistake in highmem.hFabio M. De Francesco
Substitute "higmem" with "highmem" in highmem.h. Link: https://lkml.kernel.org/r/20230105121305.30714-1-fmdefrancesco@gmail.com Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com> Suggested-by: "Matthew Wilcox (Oracle)" <willy@infradead.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm: remove an ambiguous sentence from kmap_local_folio() kdocsFabio M. De Francesco
In the kdocs of kmap_local_folio() there is a an ambiguous sentence which suggests to use this API "only when really necessary". On the contrary, since kmap() and kmap_atomic() are deprecated, both kmap_local_folio(), as well as kmap_local_page(), must be preferred to the previous ones. Therefore, remove the above-mentioned sentence exactly how it has previously been done for the kmap_local_page() kdocs in commit 72f1c55adf70 ("highmem: delete a sentence from kmap_local_page() kdocs"). Link: https://lkml.kernel.org/r/20230105120424.30055-1-fmdefrancesco@gmail.com Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm/uffd: detect pgtable allocation failuresPeter Xu
Before this patch, when there's any pgtable allocation issues happened during change_protection(), the error will be ignored from the syscall. For shmem, there will be an error dumped into the host dmesg. Two issues with that: (1) Doing a trace dump when allocation fails is not anything close to grace. (2) The user should be notified with any kind of such error, so the user can trap it and decide what to do next, either by retrying, or stop the process properly, or anything else. For userfault users, this will change the API of UFFDIO_WRITEPROTECT when pgtable allocation failure happened. It should not normally break anyone, though. If it breaks, then in good ways. One man-page update will be on the way to introduce the new -ENOMEM for UFFDIO_WRITEPROTECT. Not marking stable so we keep the old behavior on the 5.19-till-now kernels. [akpm@linux-foundation.org: coding-style cleanups] Link: https://lkml.kernel.org/r/20230104225207.1066932-4-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reported-by: James Houghton <jthoughton@google.com> Acked-by: James Houghton <jthoughton@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm/mprotect: use long for page accountings and retvalPeter Xu
Switch to use type "long" for page accountings and retval across the whole procedure of change_protection(). The change should have shrinked the possible maximum page number to be half comparing to previous (ULONG_MAX / 2), but it shouldn't overflow on any system either because the maximum possible pages touched by change protection should be ULONG_MAX / PAGE_SIZE. Two reasons to switch from "unsigned long" to "long": 1. It suites better on count_vm_numa_events(), whose 2nd parameter takes a long type. 2. It paves way for returning negative (error) values in the future. Currently the only caller that consumes this retval is change_prot_numa(), where the unsigned long was converted to an int. Since at it, touching up the numa code to also take a long, so it'll avoid any possible overflow too during the int-size convertion. Link: https://lkml.kernel.org/r/20230104225207.1066932-3-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: James Houghton <jthoughton@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm: memcg: add folio_memcg_check()Matthew Wilcox
Patch series "mm: convert page_idle/damon to use folios", v4. This patch (of 8): Convert page_memcg_check() into folio_memcg_check() and add a page_memcg_check() wrapper. The behaviour of page_memcg_check() is unchanged; tail pages always had a NULL ->memcg_data. Link: https://lkml.kernel.org/r/20221230070849.63358-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20221230070849.63358-2-wangkefeng.wang@huawei.com Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: SeongJae Park <sj@kernel.org> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm: remove generic_writepagesChristoph Hellwig
Now that all external callers are gone, just fold it into do_writepages. Link: https://lkml.kernel.org/r/20221229161031.391878-7-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Joel Becker <jlbec@evilplan.org> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Konstantin Komarov <almaz.alexandrovich@paragon-software.com> Cc: Mark Fasheh <mark@fasheh.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18jbd2,ocfs2: move jbd2_journal_submit_inode_data_buffers to ocfs2Christoph Hellwig
jbd2_journal_submit_inode_data_buffers is only used by ocfs2, so move it there to prepare for removing generic_writepages. Link: https://lkml.kernel.org/r/20221229161031.391878-5-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: Jan Kara <jack@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Konstantin Komarov <almaz.alexandrovich@paragon-software.com> Cc: Mark Fasheh <mark@fasheh.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm: fix comment of page table counterKele Huang
Commit af5b0f6a09e42 ("mm: consolidate page table accounting") consolidates page table accounting to a single counter in struct mm_struct {} as mm->pgtables_bytes. So the meanning of this counter should be the size of all page tables now. Link: https://lkml.kernel.org/r/20221224060233.417827-1-kele.huang@columbia.edu Signed-off-by: Kele Huang <kele.huang@columbia.edu> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Colin Cross <ccross@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm/mprotect: drop pgprot_t parameter from change_protection()David Hildenbrand
Being able to provide a custom protection opens the door for inconsistencies and BUGs: for example, accidentally allowing for more permissions than desired by other mechanisms (e.g., softdirty tracking). vma->vm_page_prot should be the single source of truth. Only PROT_NUMA is special: there is no way we can erroneously allow for more permissions when removing all permissions. Special-case using the MM_CP_PROT_NUMA flag. [david@redhat.com: PAGE_NONE might not be defined without CONFIG_NUMA_BALANCING] Link: https://lkml.kernel.org/r/5084ff1c-ebb3-f918-6a60-bacabf550a88@redhat.com Link: https://lkml.kernel.org/r/20221223155616.297723-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm: multi-gen LRU: per-node lru_gen_folio listsYu Zhao
For each node, memcgs are divided into two generations: the old and the young. For each generation, memcgs are randomly sharded into multiple bins to improve scalability. For each bin, an RCU hlist_nulls is virtually divided into three segments: the head, the tail and the default. An onlining memcg is added to the tail of a random bin in the old generation. The eviction starts at the head of a random bin in the old generation. The per-node memcg generation counter, whose reminder (mod 2) indexes the old generation, is incremented when all its bins become empty. There are four operations: 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its current generation (old or young) and updates its "seg" to "head"; 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its current generation (old or young) and updates its "seg" to "tail"; 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old generation, updates its "gen" to "old" and resets its "seg" to "default"; 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the young generation, updates its "gen" to "young" and resets its "seg" to "default". The events that trigger the above operations are: 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 2. The first attempt to reclaim an memcg below low, which triggers MEMCG_LRU_TAIL; 3. The first attempt to reclaim an memcg below reclaimable size threshold, which triggers MEMCG_LRU_TAIL; 4. The second attempt to reclaim an memcg below reclaimable size threshold, which triggers MEMCG_LRU_YOUNG; 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG; 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 7. Offlining an memcg, which triggers MEMCG_LRU_OLD. Note that memcg LRU only applies to global reclaim, and the round-robin incrementing of their max_seq counters ensures the eventual fairness to all eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). Link: https://lkml.kernel.org/r/20221222041905.2431096-7-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm: multi-gen LRU: rename lrugen->lists[] to lrugen->folios[]Yu Zhao
lru_gen_folio will be chained into per-node lists by the coming lrugen->list. Link: https://lkml.kernel.org/r/20221222041905.2431096-3-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm: multi-gen LRU: rename lru_gen_struct to lru_gen_folioYu Zhao
Patch series "mm: multi-gen LRU: memcg LRU", v3. Overview ======== An memcg LRU is a per-node LRU of memcgs. It is also an LRU of LRUs, since each node and memcg combination has an LRU of folios (see mem_cgroup_lruvec()). Its goal is to improve the scalability of global reclaim, which is critical to system-wide memory overcommit in data centers. Note that memcg reclaim is currently out of scope. Its memory bloat is a pointer to each lruvec and negligible to each pglist_data. In terms of traversing memcgs during global reclaim, it improves the best-case complexity from O(n) to O(1) and does not affect the worst-case complexity O(n). Therefore, on average, it has a sublinear complexity in contrast to the current linear complexity. The basic structure of an memcg LRU can be understood by an analogy to the active/inactive LRU (of folios): 1. It has the young and the old (generations), i.e., the counterparts to the active and the inactive; 2. The increment of max_seq triggers promotion, i.e., the counterpart to activation; 3. Other events trigger similar operations, e.g., offlining an memcg triggers demotion, i.e., the counterpart to deactivation. In terms of global reclaim, it has two distinct features: 1. Sharding, which allows each thread to start at a random memcg (in the old generation) and improves parallelism; 2. Eventual fairness, which allows direct reclaim to bail out at will and reduces latency without affecting fairness over some time. The commit message in patch 6 details the workflow: https://lore.kernel.org/r/20221222041905.2431096-7-yuzhao@google.com/ The following is a simple test to quickly verify its effectiveness. Test design: 1. Create multiple memcgs. 2. Each memcg contains a job (fio). 3. All jobs access the same amount of memory randomly. 4. The system does not experience global memory pressure. 5. Periodically write to the root memory.reclaim. Desired outcome: 1. All memcgs have similar pgsteal counts, i.e., stddev(pgsteal) over mean(pgsteal) is close to 0%. 2. The total pgsteal is close to the total requested through memory.reclaim, i.e., sum(pgsteal) over sum(requested) is close to 100%. Actual outcome [1]: MGLRU off MGLRU on stddev(pgsteal) / mean(pgsteal) 75% 20% sum(pgsteal) / sum(requested) 425% 95% #################################################################### MEMCGS=128 for ((memcg = 0; memcg < $MEMCGS; memcg++)); do mkdir /sys/fs/cgroup/memcg$memcg done start() { echo $BASHPID > /sys/fs/cgroup/memcg$memcg/cgroup.procs fio -name=memcg$memcg --numjobs=1 --ioengine=mmap \ --filename=/dev/zero --size=1920M --rw=randrw \ --rate=64m,64m --random_distribution=random \ --fadvise_hint=0 --time_based --runtime=10h \ --group_reporting --minimal } for ((memcg = 0; memcg < $MEMCGS; memcg++)); do start & done sleep 600 for ((i = 0; i < 600; i++)); do echo 256m >/sys/fs/cgroup/memory.reclaim sleep 6 done for ((memcg = 0; memcg < $MEMCGS; memcg++)); do grep "pgsteal " /sys/fs/cgroup/memcg$memcg/memory.stat done #################################################################### [1]: This was obtained from running the above script (touches less than 256GB memory) on an EPYC 7B13 with 512GB DRAM for over an hour. This patch (of 8): The new name lru_gen_folio will be more distinct from the coming lru_gen_memcg. Link: https://lkml.kernel.org/r/20221222041905.2431096-1-yuzhao@google.com Link: https://lkml.kernel.org/r/20221222041905.2431096-2-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm: move FOLL_* defs to mm_types.hDavid Howells
Move FOLL_* definitions to linux/mm_types.h to make them more accessible without having to drag in all of linux/mm.h and everything that drags in too[1]. Link: https://lkml.kernel.org/r/2161258.1671657894@warthog.procyon.org.uk Signed-off-by: David Howells <dhowells@redhat.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm: new primitive kvmemdup()Hao Sun
Similar to kmemdup(), but support large amount of bytes with kvmalloc() and does *not* guarantee that the result will be physically contiguous. Use only in cases where kvmalloc() is needed and free it with kvfree(). Also adapt policy_unpack.c in case someone bisect into this. Link: https://lkml.kernel.org/r/20221221144245.27164-1-sunhao.th@gmail.com Signed-off-by: Hao Sun <sunhao.th@gmail.com> Suggested-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Nick Terrell <terrelln@fb.com> Cc: John Johansen <john.johansen@canonical.com> Cc: Paul Moore <paul@paul-moore.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-01-18mm/swap: convert deactivate_page() to folio_deactivate()Vishal Moola (Oracle)
Deactivate_page() has already been converted to use folios, this change converts it to take in a folio argument instead of calling page_folio(). It also renames the function folio_deactivate() to be more consistent with other folio functions. [akpm@linux-foundation.org: fix left-over comments, per Yu Zhao] Link: https://lkml.kernel.org/r/20221221180848.20774-5-vishal.moola@gmail.com Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>