Age | Commit message (Collapse) | Author |
|
Patch series "mm: MM owner tracking for large folios (!hugetlb) +
CONFIG_NO_PAGE_MAPCOUNT", v3.
Let's add an "easy" way to decide -- without false positives, without
page-mapcounts and without page table/rmap scanning -- whether a large
folio is "certainly mapped exclusively" into a single MM, or whether it
"maybe mapped shared" into multiple MMs.
Use that information to implement Copy-on-Write reuse, to convert
folio_likely_mapped_shared() to folio_maybe_mapped_share(), and to
introduce a kernel config option that lets us not use+maintain per-page
mapcounts in large folios anymore.
The bigger picture was presented at LSF/MM [1].
This series is effectively a follow-up on my early work [2], which
implemented a more precise, but also more complicated, way to identify
whether a large folio is "mapped shared" into multiple MMs or "mapped
exclusively" into a single MM.
1 Patch Organization
====================
Patch #1 -> #6: make more room in order-1 folios, so we have two
"unsigned long" available for our purposes
Patch #7 -> #11: preparations
Patch #12: MM owner tracking for large folios
Patch #13: COW reuse for PTE-mapped anon THP
Patch #14: folio_maybe_mapped_shared()
Patch #15 -> #20: introduce and implement CONFIG_NO_PAGE_MAPCOUNT
2 MM owner tracking
===================
We assign each MM a unique ID ("MM ID"), to be able to squeeze more
information in our folios. On 32bit we use 15-bit IDs, on 64bit we use
31-bit IDs.
For each large folios, we now store two MM-ID+mapcount ("slot")
combinations:
* mm0_id + mm0_mapcount
* mm1_id + mm1_mapcount
On 32bit, we use a 16-bit per-MM mapcount, on 64bit an ordinary 32bit
mapcount. This way, we require 2x "unsigned long" on 32bit and 64bit for
both slots.
Paired with the large mapcount, we can reliably identify whether one of
these MMs is the current owner (-> owns all mappings) or even holds all
folio references (-> owns all mappings, and all references are from
mappings).
As long as only two MMs map folio pages at a time, we can reliably and
precisely identify whether a large folio is "mapped shared" or "mapped
exclusively".
Any additional MM that starts mapping the folio while there are no free
slots becomes an "untracked MM". If one such "untracked MM" is the last
one mapping a folio exclusively, we will not detect the folio as "mapped
exclusively" but instead as "maybe mapped shared". (exception: only a
single mapping remains)
So that's where the approach gets imprecise.
For now, we use a bit-spinlock to sync the large mapcount + slots, and
make sure we do keep the machinery fast, to not degrade (un)map
performance drastically: for example, we make sure to only use a single
atomic (when grabbing the bit-spinlock), like we would already perform
when updating the large mapcount.
3 CONFIG_NO_PAGE_MAPCOUNT
=========================
patch #15 -> #20 spell out and document what exactly is affected when not
maintaining the per-page mapcounts in large folios anymore.
Most importantly, as we cannot maintain folio->_nr_pages_mapped anymore
when (un)mapping pages, we'll account a complete folio as mapped if a
single page is mapped. In addition, we'll not detect partially mapped
anonymous folios as such in all cases yet.
Likely less relevant changes include that we might now under-estimate the
USS (Unique Set Size) of a process, but never over-estimate it.
The goal is to make CONFIG_NO_PAGE_MAPCOUNT the default at some point, to
then slowly make it the only option, as we learn about real-life impacts
and possible ways to mitigate them.
4 Performance
=============
Detailed performance numbers were included in v1 [3], and not that much
changed between v1 and v2.
I did plenty of measurements on different systems in the meantime, that
all revealed slightly different results.
The pte-mapped-folio micro-benchmarks [4] are fairly sensitive to code
layout changes on some systems. Especially the fork() benchmark started
being more-shaky-than-before on recent kernels for some reason.
In summary, with my micro-benchmarks:
* Small folios are not impacted.
* CoW performance seems to be mostly unchanged across all folios sizes.
* CoW reuse performance of large folios now matches CoW reuse
performance of small folios, because we now actually implement the CoW
reuse optimization. On an Intel Xeon Silver 4210R I measured a ~65%
reduction in runtime, on an arm64 system I measured ~54% reduction.
* munmap() performance improves with CONFIG_NO_PAGE_MAPCOUNT. I saw
double-digit % reduction (up to ~30% on an Intel Xeon Silver 4210R and
up to ~70% on an AmpereOne A192-32X) with larger folios. The larger the
folios, the larger the performance improvement.
* munmao() performance very slightly (couple percent) degrades without
CONFIG_NO_PAGE_MAPCOUNT for smaller folios. For larger folios, there
seems to be no change at all.
* fork() performance improves with CONFIG_NO_PAGE_MAPCOUNT. I saw
double-digit % reduction (up to ~20% on an Intel Xeon Silver 4210R and
up to ~10% on an AmpereOne A192-32X) with larger folios. The larger the
folios, the larger the performance improvement.
* While fork() performance without CONFIG_NO_PAGE_MAPCOUNT seems to be
almost unchanged on some systems, I saw some degradation for smaller
folios on the AmpereOne A192-32X. I did not investigate the details
yet, but I suspect code layout changes or suboptimal code placement /
inlining.
I'm not to worried about the fork() micro-benchmarks for smaller folios
given how shaky the results are lately and by how much we improved fork()
performance recently.
I also ran case-anon-cow-rand and case-anon-cow-seq part of
vm-scalability, to assess the scalability and the impact of the
bit-spinlock. My measurements on a two 2-socket 10-core Intel Xeon Silver
4210R CPU revealed no significant changes.
Similarly, running these benchmarks with 2 MiB THPs enabled on the
AmpereOne A192-32X with 192 cores, I got < 1% difference with < 1% stdev,
which is nice.
So far, I did not get my hands on a similarly large system with multiple
sockets.
I found no other fitting scalability benchmarks that seem to really hammer
on concurrent mapping/unmapping of large folio pages like
case-anon-cow-seq does.
5 Concerns
==========
5.1 Bit spinlock
----------------
I'm not quite happy about the bit-spinlock, but so far it does not seem to
affect scalability in my measurements.
If it ever becomes a problem we could either investigate improving the
locking, or simply stopping the MM tracking once there are "too many
mappings" and simply assume that the folio is "mapped shared" until it was
freed.
This would be similar (but slightly different) to the "0,1,2,stopped"
counting idea Willy had at some point. Adding that logic to "stop
tracking" adds more code to the hot path, so I avoided that for now.
5.2 folio_maybe_mapped_shared()
-------------------------------
I documented the change from folio_likely_mapped_shared() to
folio_maybe_mapped_shared() quite extensively. If we run into surprises,
I have some ideas on how to resolve them. For now, I think we should be
fine.
5.3 Added code to map/unmap hot path
------------------------------------
So far, it looks like the added code on the rmap hot path does not really
seem to matter much in the bigger picture. I'd like to further reduce it
(and possibly improve fork() performance further), but I don't easily see
how right now. Well, and I am out of puff π
Having that said, alternatives I considered (e.g., per-MM per-folio
mapcount) would add a lot more overhead to these hot paths.
6 Future Work
=============
6.1 Large mapcount
------------------
It would be very handy if the large mapcount would count how often folio
pages are actually mapped into page tables: a PMD on x86-64 would count
512 times. Calculating the average per-page mapcount will be easy, and
remapping (PMD->PTE) folios would get even faster.
That would also remove the need for the entire mapcount (except for
PMD-sized folios for memory statistics reasons ...), and allow for mapping
folios larger than PMDs (e.g., 4 MiB) easily.
We likely would also have to take the same number of folio references to
make our folio_mapcount() == folio_ref_count() work, and we'd want to be
able to avoid mapcount+refcount overflows: this could already become an
issue with pte-mapped PUD-sized folios (fsdax).
One approach we discussed in the THP cabal meeting is (1) extending the
mapcount for large folios to 64bit (at least on 64bit systems) and (2)
keeping the refcount at 32bit, but (3) having exactly one reference if the
the mapcount != 0.
It should be doable, but there are some corner cases to consider on the
unmap path; it is something that I will be looking into next.
6.2 hugetlb
-----------
I'd love to make use of the same tracking also for hugetlb.
The real problem is PMD table sharing: getting a page mapped by MM X and
unmapped by MM Y will not work. With mshare, that problem should not
exist (all mapping/unmapping will be routed through the mshare MM).
[1] https://lwn.net/Articles/974223/
[2] https://lore.kernel.org/linux-mm/a9922f58-8129-4f15-b160-e0ace581bcbe@redhat.com/T/
[3] https://lkml.kernel.org/r/20240829165627.2256514-1-david@redhat.com
[4] https://gitlab.com/davidhildenbrand/scratchspace/-/raw/main/pte-mapped-folio-benchmarks.c
This patch (of 20):
Let's factor it out into a simple helper function. This helper will also
come in handy when working with code where we know that our folio is
large.
Maybe in the future we'll have the order readily available for small and
large folios; in that case, folio_large_order() would simply translate to
folio_order().
Link: https://lkml.kernel.org/r/20250303163014.1128035-1-david@redhat.com
Link: https://lkml.kernel.org/r/20250303163014.1128035-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Lance Yang <ioworker0@gmail.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently fs dax pages are considered free when the refcount drops to one
and their refcounts are not increased when mapped via PTEs or decreased
when unmapped. This requires special logic in mm paths to detect that
these pages should not be properly refcounted, and to detect when the
refcount drops to one instead of zero.
On the other hand get_user_pages(), etc. will properly refcount fs dax
pages by taking a reference and dropping it when the page is unpinned.
Tracking this special behaviour requires extra PTE bits (eg. pte_devmap)
and introduces rules that are potentially confusing and specific to FS DAX
pages. To fix this, and to possibly allow removal of the special PTE bits
in future, convert the fs dax page refcounts to be zero based and instead
take a reference on the page each time it is mapped as is currently the
case for normal pages.
This may also allow a future clean-up to remove the pgmap refcounting that
is currently done in mm/gup.c.
Link: https://lkml.kernel.org/r/c7d886ad7468a20452ef6e0ddab6cfe220874e7c.1740713401.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Asahi Lina <lina@asahilina.net>
Cc: Balbir Singh <balbirs@nvidia.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Longterm pinning of FS DAX pages should already be disallowed by various
pXX_devmap checks. However a future change will cause these checks to be
invalid for FS DAX pages so make folio_is_longterm_pinnable() return false
for FS DAX pages.
Link: https://lkml.kernel.org/r/250a31876704b79f7c65b159f3c835e547f052df.1740713401.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Asahi Lina <lina@asahilina.net>
Cc: Balbir Singh <balbirs@nvidia.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently DAX folio/page reference counts are managed differently to
normal pages. To allow these to be managed the same as normal pages
introduce vmf_insert_folio_pmd. This will map the entire PMD-sized folio
and take references as it would for a normally mapped page.
This is distinct from the current mechanism, vmf_insert_pfn_pmd, which
simply inserts a special devmap PMD entry into the page table without
holding a reference to the page for the mapping.
It is not currently useful to implement a more generic vmf_insert_folio()
which selects the correct behaviour based on folio_order(). This is
because PTE faults require only a subpage of the folio to be PTE mapped
rather than the entire folio. It would be possible to add this context
somewhere but callers already need to handle PTE faults and PMD faults
separately so a more generic function is not useful.
Link: https://lkml.kernel.org/r/7bf92a2e68225d13ea368d53bbfee327314d1c40.1740713401.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Asahi Lina <lina@asahilina.net>
Cc: Balbir Singh <balbirs@nvidia.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: Dan Wiliams <dan.j.williams@intel.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently DAX folio/page reference counts are managed differently to
normal pages. To allow these to be managed the same as normal pages
introduce vmf_insert_folio_pud. This will map the entire PUD-sized folio
and take references as it would for a normally mapped page.
This is distinct from the current mechanism, vmf_insert_pfn_pud, which
simply inserts a special devmap PUD entry into the page table without
holding a reference to the page for the mapping.
Link: https://lkml.kernel.org/r/649a1ef91d556593948351e94f51ef73a14f6794.1740713401.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Asahi Lina <lina@asahilina.net>
Cc: Balbir Singh <balbirs@nvidia.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The rmap doesn't currently support adding a PUD mapping of a folio. This
patch adds support for entire PUD mappings of folios, primarily to allow
for more standard refcounting of device DAX folios. Currently DAX is the
only user of this and it doesn't require support for partially mapped
PUD-sized folios so we don't support for that for now.
Link: https://lkml.kernel.org/r/248582c07896e30627d1aeaeebc6949cfd91b851.1740713401.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Asahi Lina <lina@asahilina.net>
Cc: Balbir Singh <balbirs@nvidia.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently to map a DAX page the DAX driver calls vmf_insert_pfn. This
creates a special devmap PTE entry for the pfn but does not take a
reference on the underlying struct page for the mapping. This is because
DAX page refcounts are treated specially, as indicated by the presence of
a devmap entry.
To allow DAX page refcounts to be managed the same as normal page
refcounts introduce vmf_insert_page_mkwrite(). This will take a reference
on the underlying page much the same as vmf_insert_page, except it also
permits upgrading an existing mapping to be writable if
requested/possible.
Link: https://lkml.kernel.org/r/4ce3aa984c060f370105e0bfef1035869578be47.1740713401.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Asahi Lina <lina@asahilina.net>
Cc: Balbir Singh <balbirs@nvidia.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: Dan Wiliams <dan.j.williams@intel.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Zone device pages are used to represent various type of device memory
managed by device drivers. Currently compound zone device pages are not
supported. This is because MEMORY_DEVICE_FS_DAX pages are the only user
of higher order zone device pages and have their own page reference
counting.
A future change will unify FS DAX reference counting with normal page
reference counting rules and remove the special FS DAX reference counting.
Supporting that requires compound zone device pages.
Supporting compound zone device pages requires compound_head() to
distinguish between head and tail pages whilst still preserving the
special struct page fields that are specific to zone device pages.
A tail page is distinguished by having bit zero being set in
page->compound_head, with the remaining bits pointing to the head page.
For zone device pages page->compound_head is shared with page->pgmap.
The page->pgmap field must be common to all pages within a folio, even if
the folio spans memory sections. Therefore pgmap is the same for both
head and tail pages and can be moved into the folio and we can use the
standard scheme to find compound_head from a tail page.
Link: https://lkml.kernel.org/r/67055d772e6102accf85161d0b57b0b3944292bf.1740713401.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Balbir Singh <balbirs@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Asahi Lina <lina@asahilina.net>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The page ->mapping pointer can have magic values like
PAGE_MAPPING_DAX_SHARED and PAGE_MAPPING_ANON for page owner specific
usage. Currently PAGE_MAPPING_DAX_SHARED and PAGE_MAPPING_ANON alias to
the same value. This isn't a problem because FS DAX pages are never seen
by the anonymous mapping code and vice versa.
However a future change will make FS DAX pages more like normal pages, so
folio_test_anon() must not return true for a FS DAX page.
We could explicitly test for a FS DAX page in folio_test_anon(), etc.
however the PAGE_MAPPING_DAX_SHARED flag isn't actually needed. Instead
we can use the page->mapping field to implicitly track the first mapping
of a page. If page->mapping is non-NULL it implies the page is associated
with a single mapping at page->index. If the page is associated with a
second mapping clear page->mapping and set page->share to 1.
This is possible because a shared mapping implies the file-system
implements dax_holder_operations which makes the ->mapping and ->index,
which is a union with ->share, unused.
The page is considered shared when page->mapping == NULL and page->share >
0 or page->mapping != NULL, implying it is present in at least one address
space. This also makes it easier for a future change to detect when a
page is first mapped into an address space which requires special
handling.
Link: https://lkml.kernel.org/r/c22f699202db0acee2f7039eb026e68261ce42d6.1740713401.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Cc: Asahi Lina <lina@asahilina.net>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: Dan Wiliams <dan.j.williams@intel.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Balbir Singh <balbirs@nvidia.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
File systems call dax_break_mapping() prior to reallocating file system
blocks to ensure the page is not undergoing any DMA or other accesses.
Generally this is needed when a file is truncated to ensure that if a
block is reallocated nothing is writing to it. However filesystems
currently don't call this when an FS DAX inode is evicted.
This can cause problems when the file system is unmounted as a page can
continue to be under going DMA or other remote access after unmount. This
means if the file system is remounted any truncate or other operation
which requires the underlying file system block to be freed will not wait
for the remote access to complete. Therefore a busy block may be
reallocated to a new file leading to corruption.
Link: https://lkml.kernel.org/r/2d3cf575bbd095084993154be2f0aa7442e5cd28.1740713401.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Asahi Lina <lina@asahilina.net>
Cc: Balbir Singh <balbirs@nvidia.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: Dan Wiliams <dan.j.williams@intel.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Prior to any truncation operations file systems call dax_break_mapping()
to ensure pages in the range are not under going DMA. Later DAX
page-cache entries will be removed by truncate_folio_batch_exceptionals()
in the generic page-cache code.
However this makes it possible for folios to be removed from the
page-cache even though they are still DMA busy if the file-system hasn't
called dax_break_mapping(). It also means they can never be waited on in
future because FS DAX will lose track of them once the page-cache entry
has been deleted.
Instead it is better to delete the FS DAX entry when the file-system calls
dax_break_mapping() as part of it's truncate operation. This ensures only
idle pages can be removed from the FS DAX page-cache and makes it easy to
detect if a file-system hasn't called dax_break_mapping() prior to a
truncate operation.
Link: https://lkml.kernel.org/r/3be6115eaaa8d28fee37fcba3287be4f226a7d24.1740713401.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Asahi Lina <lina@asahilina.net>
Cc: Balbir Singh <balbirs@nvidia.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Prior to freeing a block file systems supporting FS DAX must check that
the associated pages are both unmapped from user-space and not undergoing
DMA or other access from eg. get_user_pages(). This is achieved by
unmapping the file range and scanning the FS DAX page-cache to see if any
pages within the mapping have an elevated refcount.
This is done using two functions - dax_layout_busy_page_range() which
returns a page to wait for the refcount to become idle on. Rather than
open-code this introduce a common implementation to both unmap and wait
for the page to become idle.
Link: https://lkml.kernel.org/r/c4d381e41fc618296cee2820403c166d80599d5c.1740713401.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Asahi Lina <lina@asahilina.net>
Cc: Balbir Singh <balbirs@nvidia.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
A FS DAX page is considered idle when its refcount drops to one. This is
currently open-coded in all file systems supporting FS DAX. Move the idle
detection to a common function to make future changes easier.
Link: https://lkml.kernel.org/r/c2c9d269110b90224eeb1dc661ffbc1d82aa20c9.1740713401.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Theodore Ts'o <tytso@mit.edu>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Asahi Lina <lina@asahilina.net>
Cc: Balbir Singh <balbirs@nvidia.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since the function jbd2_journal_unfile_buffer() is no longer called
anywhere after commit e5a120aeb57f ("jbd2: remove journal_head from
descriptor buffers"), so let's remove it.
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Zhang Yi <yi.zhang@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://patch.msgid.link/20250306063240.157884-1-libaokun@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Enable the Linux NFS client to observe the progress of an offloaded
asynchronous COPY operation. This new operation will be put to use
in a subsequent patch.
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Benjamin Coddington <bcodding@redhat.com>
Link: https://lore.kernel.org/r/20250113153235.48706-14-cel@kernel.org
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
Add XDR encoding and decoding functions for the NFSv4.2
OFFLOAD_STATUS operation.
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Benjamin Coddington <bcodding@redhat.com>
Link: https://lore.kernel.org/r/20250113153235.48706-13-cel@kernel.org
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
The amount of looping through the list of delegations is occasionally
leading to soft lockups. If the state manager was asked to manage the
delayed return of delegations, then only scan those filesystems
containing delegations that were marked as being delayed.
Fixes: be20037725d1 ("NFSv4: Fix delegation return in cases where we have to retry")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
The amount of looping through the list of delegations is occasionally
leading to soft lockups. If the state manager was asked to reap the
expired delegations, it should scan only those filesystems that hold
delegations that need to be reaped.
Fixes: 7f156ef0bf45 ("NFSv4: Clean up nfs_delegation_reap_expired()")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
The amount of looping through the list of delegations is occasionally
leading to soft lockups. If the state manager was asked to return
delegations asynchronously, it should only scan those filesystems that
hold delegations that need to be returned.
Fixes: af3b61bf6131 ("NFSv4: Clean up nfs_client_return_marked_delegations()")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
Expand on the requirements of the .pcs_config() method documentation,
specifically mentioning that it should cause minimal disruption to
an established link, and that it should return a positive non-zero
value when requiring the .pcs_an_restart() method to be called.
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Link: https://patch.msgid.link/E1trb24-005oVq-Is@rmk-PC.armlinux.org.uk
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
The interval_tree_subtree_search() holds the loop invariant:
start <= node->ITSUBTREE
Let's say we have a following tree:
node
/ \
left right
So we know node->ITSUBTREE is contributed by one of the following:
* left->ITSUBTREE
* ITLAST(node)
* right->ITSUBTREE
When we come to the right node, we are sure the first two don't
contribute to node->ITSUBTREE and it must be the right node does the
job.
So skip the check before go to the right subtree.
Link: https://lkml.kernel.org/r/20250310074938.26756-7-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michel Lespinasse <michel@lespinasse.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Current test use pseudo rand function with fixed seed, which means the
test data is the same pattern each time.
Add random seed parameter to randomize the test.
Link: https://lkml.kernel.org/r/20250310074938.26756-4-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michel Lespinasse <michel@lespinasse.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
These functions have never had a user, so remove them.
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Link: https://patch.msgid.link/5792e2cd-6f0a-4f7d-a5ef-b932f94d82f3@gmail.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
phylib.h
These functions are used by PHY drivers only, therefore move their
declaration to phylib.h.
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Link: https://patch.msgid.link/406c8a20-b62e-4ee3-b174-b566724a0876@gmail.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
Add support for HW Steering action of flow meter range. Flow meters
range can use one HWS action for the whole range. Thus, share a cached
HWS action among rules that use same flow meter object range. Hold
refcount for each rule using the cached action.
Signed-off-by: Moshe Shemesh <moshe@nvidia.com>
Reviewed-by: Mark Bloch <mbloch@nvidia.com>
Signed-off-by: Tariq Toukan <tariqt@nvidia.com>
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Link: https://patch.msgid.link/1741543663-22123-3-git-send-email-tariqt@nvidia.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
Since commit dd348f054b24 ("jbd2: switch to using the crc32c library"),
jbd2_journal_has_csum_v2or3() and jbd2_journal_has_csum_v2or3_feature()
are the same. Remove jbd2_journal_has_csum_v2or3_feature() and just
keep jbd2_journal_has_csum_v2or3().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Link: https://patch.msgid.link/20250207031424.42755-1-ebiggers@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Handling the CWR flag differs between RFC 3168 ECN and AccECN.
With RFC 3168 ECN aware TSO (NETIF_F_TSO_ECN) CWR flag is cleared
starting from 2nd segment which is incompatible how AccECN handles
the CWR flag. Such super-segments are indicated by SKB_GSO_TCP_ECN.
With AccECN, CWR flag (or more accurately, the ACE field that also
includes ECE & AE flags) changes only when new packet(s) with CE
mark arrives so the flag should not be changed within a super-skb.
The new skb/feature flags are necessary to prevent such TSO engines
corrupting AccECN ACE counters by clearing the CWR flag (if the
CWR handling feature cannot be turned off).
If NIC is completely unaware of RFC3168 ECN (doesn't support
NETIF_F_TSO_ECN) or its TSO engine can be set to not touch CWR flag
despite supporting also NETIF_F_TSO_ECN, TSO could be safely used
with AccECN on such NIC. This should be evaluated per NIC basis
(not done in this patch series for any NICs).
For the cases, where TSO cannot keep its hands off the CWR flag,
a GSO fallback is provided by this patch.
Signed-off-by: Ilpo JΓ€rvinen <ij@kernel.org>
Signed-off-by: Chia-Yu Chang <chia-yu.chang@nokia-bell-labs.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
On many Qualcomm platforms the PMIC RTC control and time registers are
read-only so that the RTC time can not be updated. Instead an offset
needs be stored in some machine-specific non-volatile memory, which the
driver can take into account.
Add support for storing a 32-bit offset from the GPS time epoch in a
UEFI variable so that the RTC time can be set on such platforms.
The UEFI variable is
882f8c2b-9646-435f-8de5-f208ff80c1bd-RTCInfo
and holds a 12-byte structure where the first four bytes is a GPS time
offset in little-endian byte order.
Note that this format is not arbitrary as the variable is shared with
the UEFI firmware (and Windows).
Tested-by: Jens Glathe <jens.glathe@oldschoolsolutions.biz>
Tested-by: Steev Klimaszewski <steev@kali.org>
Tested-by: Joel Stanley <joel@jms.id.au>
Tested-by: Sebastian Reichel <sre@kernel.org> # Lenovo T14s Gen6
Signed-off-by: Johan Hovold <johan+linaro@kernel.org>
Link: https://lore.kernel.org/r/20250219134118.31017-3-johan+linaro@kernel.org
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
|
|
With bcecd5a529c1 ("percpu: repurpose __percpu tag as a named address
space qualifier") the normal compilers start caring about the __percpu
annotation, as such f67d1ffd841f ("perf/core: Detach 'struct
perf_cpu_pmu_context' and 'struct pmu' lifetimes") needs a fixup.
Fixes: f67d1ffd841f ("perf/core: Detach 'struct perf_cpu_pmu_context' and 'struct pmu' lifetimes")
Fixes: bcecd5a529c1 ("percpu: repurpose __percpu tag as a named address space qualifier")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: jirislaby@kernel.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
dl_rebuild_rd_accounting() is defined in cpuset.c, so it makes more
sense to move related declarations to cpuset.h.
Implement the move.
Suggested-by: Waiman Long <llong@redhat.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Waiman Long <llong@redhat.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Waiman Long <longman@redhat.com>
Tested-by: Jon Hunter <jonathanh@nvidia.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/Z9MSOVMpU7jpVrMU@jlelli-thinkpadt14gen4.remote.csb
|
|
The are no callers of partition_sched_domains_locked() outside
topology.c.
Stop exposing such function.
Suggested-by: Waiman Long <llong@redhat.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Waiman Long <longman@redhat.com>
Tested-by: Jon Hunter <jonathanh@nvidia.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/Z9MSC96a8FcqWV3G@jlelli-thinkpadt14gen4.remote.csb
|
|
Rebuilding of root domains accounting information (total_bw) is
currently broken on some cases, e.g. suspend/resume on aarch64. Problem
is that the way we keep track of domain changes and try to add bandwidth
back is convoluted and fragile.
Fix it by simplify things by making sure bandwidth accounting is cleared
and completely restored after root domains changes (after root domains
are again stable).
To be sure we always call dl_rebuild_rd_accounting while holding
cpuset_mutex we also add cpuset_reset_sched_domains() wrapper.
Fixes: 53916d5fd3c0 ("sched/deadline: Check bandwidth overflow earlier for hotplug")
Reported-by: Jon Hunter <jonathanh@nvidia.com>
Co-developed-by: Waiman Long <llong@redhat.com>
Signed-off-by: Waiman Long <llong@redhat.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/Z9MRfeJKJUOyUSto@jlelli-thinkpadt14gen4.remote.csb
|
|
Bandwidth checks and updates that work on root domains currently employ
a cookie mechanism for efficiency. This mechanism is very much tied to
when root domains are first created and initialized.
Generalize the cookie mechanism so that it can be used also later at
runtime while updating root domains. Also, additionally guard it with
sched_domains_mutex, since domains need to be stable while updating them
(and it will be required for further dynamic changes).
Fixes: 53916d5fd3c0 ("sched/deadline: Check bandwidth overflow earlier for hotplug")
Reported-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Waiman Long <longman@redhat.com>
Tested-by: Jon Hunter <jonathanh@nvidia.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/Z9MQaiXPvEeW_v7x@jlelli-thinkpadt14gen4.remote.csb
|
|
Create wrappers for sched_domains_mutex so that it can transparently be
used on both CONFIG_SMP and !CONFIG_SMP, as some function will need to
do.
Fixes: 53916d5fd3c0 ("sched/deadline: Check bandwidth overflow earlier for hotplug")
Reported-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Waiman Long <longman@redhat.com>
Tested-by: Jon Hunter <jonathanh@nvidia.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/Z9MP5Oq9RB8jBs3y@jlelli-thinkpadt14gen4.remote.csb
|
|
The pmu specific data is saved in task_struct now. Remove it from event
context structure.
Remove swap_task_ctx() as well.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250314172700.438923-7-kan.liang@linux.intel.com
|
|
The individual architectures often add the preemption model to the begin
of the backtrace. This is the case on X86 or ARM64 for the "die" case
but not for regular warning. With the addition of DYNAMIC_PREEMPT for
PREEMPT_RT we end up with CONFIG_PREEMPT and CONFIG_PREEMPT_RT set
simultaneously. That means that everyone who tried to add that piece of
information gets it wrong for PREEMPT_RT because PREEMPT is checked
first.
Provide a generic function which returns the current scheduling model
considering LAZY preempt and the current state of PREEMPT_DYNAMIC.
The resulting strings are:
βββββββββββββ³βββββββββββββββ³ββββββββββββββββββββ³βββββββββββββββββββββ³ββββββββββββββββββββ
β Model β -RT -DYN β +RT -DYN β -RT +DYN β +RT +DYN β
β‘ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©
βNONE β NONE β n/a β PREEMPT(none) β n/a β
βββββββββββββΌβββββββββββββββΌββββββββββββββββββββΌβββββββββββββββββββββΌββββββββββββββββββββ€
βVOLUNTARY β VOLUNTARY β n/a β PREEMPT(voluntary) β n/a β
βββββββββββββΌβββββββββββββββΌββββββββββββββββββββΌβββββββββββββββββββββΌββββββββββββββββββββ€
βFULL β PREEMPT β PREEMPT_RT β PREEMPT(full) β PREEMPT_{RT,full} β
βββββββββββββΌβββββββββββββββΌββββββββββββββββββββΌβββββββββββββββββββββΌββββββββββββββββββββ€
βLAZY β PREEMPT_LAZY β PREEMPT_{RT,LAZY} β PREEMPT(lazy) β PREEMPT_{RT,lazy} β
βββββββββββββ΄βββββββββββββββ΄ββββββββββββββββββββ΄βββββββββββββββββββββ΄ββββββββββββββββββββ
[ The dynamic building of the string can lead to an empty string if the
function is invoked simultaneously on two CPUs. ]
Co-developed-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Co-developed-by: "Steven Rostedt (Google)" <rostedt@goodmis.org>
Signed-off-by: "Steven Rostedt (Google)" <rostedt@goodmis.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20250314160810.2373416-2-bigeasy@linutronix.de
|
|
To save/restore LBR call stack data in system-wide mode, the task_struct
information is required.
Extend the parameters of sched_task() to supply task_struct information.
When schedule in, the LBR call stack data for new task will be restored.
When schedule out, the LBR call stack data for old task will be saved.
Only need to pass the required task_struct information.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250314172700.438923-4-kan.liang@linux.intel.com
|
|
The LBR call stack data has to be saved/restored during context switch
to fix the shorter LBRs call stacks issue in the system-wide mode.
Allocate PMU specific data and attach them to the corresponding
task_struct during LBR call stack monitoring.
When a LBR call stack event is accounted, the perf_ctx_data for the
related tasks will be allocated/attached by attach_perf_ctx_data().
When a LBR call stack event is unaccounted, the perf_ctx_data for
related tasks will be detached/freed by detach_perf_ctx_data().
The LBR call stack event could be a per-task event or a system-wide
event.
- For a per-task event, perf only allocates the perf_ctx_data for the
current task. If the allocation fails, perf will error out.
- For a system-wide event, perf has to allocate the perf_ctx_data for
both the existing tasks and the upcoming tasks.
The allocation for the existing tasks is done in perf_event_alloc().
If any allocation fails, perf will error out.
The allocation for the new tasks will be done in perf_event_fork().
A global reader/writer semaphore, global_ctx_data_rwsem, is added to
address the global race.
- The perf_ctx_data only be freed by the last LBR call stack event.
The number of the per-task events is tracked by refcount of each task.
Since the system-wide events impact all tasks, it's not practical to
go through the whole task list to update the refcount for each
system-wide event. The number of system-wide events is tracked by a
global variable global_ctx_data_ref.
Suggested-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250314172700.438923-3-kan.liang@linux.intel.com
|
|
To simplify the usage of the percpu rw semaphore.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250314172700.438923-2-kan.liang@linux.intel.com
|
|
Some PMU specific data has to be saved/restored during context switch,
e.g. LBR call stack data. Currently, the data is saved in event context
structure, but only for per-process event. For system-wide event,
because of missing the LBR call stack data after context switch, LBR
callstacks are always shorter in comparison to per-process mode.
For example,
Per-process mode:
$perf record --call-graph lbr -- taskset -c 0 ./tchain_edit
- 99.90% 99.86% tchain_edit tchain_edit [.] f3
99.86% _start
__libc_start_main
generic_start_main
main
f1
- f2
f3
System-wide mode:
$perf record --call-graph lbr -a -- taskset -c 0 ./tchain_edit
- 99.88% 99.82% tchain_edit tchain_edit [.] f3
- 62.02% main
f1
f2
f3
- 28.83% f1
- f2
f3
- 28.83% f1
- f2
f3
- 8.88% generic_start_main
main
f1
f2
f3
It isn't practical to simply allocate the data for system-wide event in
CPU context structure for all tasks. We have no idea which CPU a task
will be scheduled to. The duplicated LBR data has to be maintained on
every CPU context structure. That's a huge waste. Otherwise, the LBR
data still lost if the task is scheduled to another CPU.
Save the pmu specific data in task_struct. The size of pmu specific data
is 788 bytes for LBR call stack. Usually, the overall amount of threads
doesn't exceed a few thousands. For 10K threads, keeping LBR data would
consume additional ~8MB. The additional space will only be allocated
during LBR call stack monitoring. It will be released when the
monitoring is finished.
Furthermore, moving task_ctx_data from perf_event_context to task_struct
can reduce complexity and make things clearer. E.g. perf doesn't need to
swap task_ctx_data on optimized context switch path.
This patch set is just the first step. There could be other
optimization/extension on top of this patch set. E.g. for cgroup
profiling, perf just needs to save/store the LBR call stack information
for tasks in specific cgroup. That could reduce the additional space.
Also, the LBR call stack can be available for software events, or allow
even debugging use cases, like LBRs on crash later.
Because of the alignment requirement of Intel Arch LBR, the Kmem cache
is used to allocate the PMU specific data. It's required when child task
allocates the space. Save it in struct perf_ctx_data.
The refcount in struct perf_ctx_data is used to track the users of pmu
specific data.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexey Budankov <alexey.budankov@linux.intel.com>
Link: https://lore.kernel.org/r/20250314172700.438923-1-kan.liang@linux.intel.com
|
|
The commit 97c79a38cd45 ("perf core: Per event callchain limit")
introduced a per-event term to allow finer tuning of the depth of
callchains to save space.
It should be applied to the branch stack as well. For example, autoFDO
collections require maximum LBR entries. In the meantime, other
system-wide LBR users may only be interested in the latest a few number
of LBRs. A per-event LBR depth would save the perf output buffer.
The patch simply drops the uninterested branches, but HW still collects
the maximum branches. There may be a model-specific optimization that
can reduce the HW depth for some cases to reduce the overhead further.
But it isn't included in the patch set. Because it's not useful for all
cases. For example, ARCH LBR can utilize the PEBS and XSAVE to collect
LBRs. The depth should have less impact on the collecting overhead.
The model-specific optimization may be implemented later separately.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20250310181536.3645382-1-kan.liang@linux.intel.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux into gpio/for-next
Linux 6.14-rc7
|
|
zpool_malloc_support_movable() always returns true for zsmalloc, the only
remaining zpool driver. Remove it and set the gfp flags in
zswap_compress() accordingly. Opportunistically use GFP_NOWAIT instead of
__GFP_NOWARN | __GFP_KSWAPD_RECLAIM for conciseness as they are
equivalent.
Link: https://lkml.kernel.org/r/20250305061134.4105762-6-yosry.ahmed@linux.dev
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
zs_map_object() and zs_unmap_object() are no longer used, remove them.
Since these are the only users of per-CPU mapping_areas, remove them and
the associated CPU hotplug callbacks too.
[yosry.ahmed@linux.dev: update the docs]
Link: https://lkml.kernel.org/r/Z8ier-ZZp8T6MOTH@google.com
Link: https://lkml.kernel.org/r/20250305061134.4105762-5-yosry.ahmed@linux.dev
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Acked-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
zpool_map_handle(), zpool_unmap_handle(), and zpool_can_sleep_mapped() are
no longer used. Remove them with the underlying driver callbacks.
Link: https://lkml.kernel.org/r/20250305061134.4105762-4-yosry.ahmed@linux.dev
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Switch zswap to object read/write APIs".
This patch series updates zswap to use the new object read/write APIs
defined by zsmalloc in [1], and remove the old object mapping APIs and the
related code from zpool and zsmalloc.
This patch (of 5):
Zsmalloc introduced new APIs to read/write objects besides mapping them.
Add the necessary zpool interfaces.
Link: https://lkml.kernel.org/r/20250305061134.4105762-1-yosry.ahmed@linux.dev
Link: https://lkml.kernel.org/r/20250305061134.4105762-2-yosry.ahmed@linux.dev
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Current default allow/reject behavior of filters handling stage has made
before introduction of the allow behavior. For allow-filters usage, it is
confusing and inefficient.
It is more intuitive to decide the default filtering stage allow/reject
behavior as opposite to the last filter's behavior. The decision should
be made separately for core and operations layers' filtering stages, since
last core layer-handled filter is not really a last filter if there are
operations layer handling filters.
Keeping separate decisions for the two categories can make the logic
simpler. Add fields for storing the two decisions.
Link: https://lkml.kernel.org/r/20250304211913.53574-7-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/damon: make allow filters after reject filters useful and
intuitive".
DAMOS filters do allow or reject elements of memory for given DAMOS scheme
only if those match the filter criterias. For elements that don't match
any DAMOS filter, 'allowing' is the default behavior. This makes
allow-filters that don't have any reject-filter after them meaningless
sources of overhead. The decision was made to keep the behavior
consistent with that before the introduction of allow-filters. This,
however, makes usage of DAMOS filters confusing and inefficient. It is
more intuitive and still consistent behavior to reject by default unless
there is no filter at all or the last filter is a reject filter. Update
the filtering logic in the way and update documents to clarify the
behavior.
Note that this is changing the old behavior. But the old behavior for the
problematic filter combination was definitely confusing, inefficient and
anyway useless. Also, the behavior has relatively recently introduced.
It is difficult to anticipate any user that depends on the behavior.
Hence this is not a user-breaking behavior change but an obvious
improvement.
This patch (of 9):
DAMOS filters can be categorized into two groups depending on which layer
they are handled, namely core layer and ops layer. The groups are
important because the filtering behavior depends on evaluation sequence of
filters, and core layer-handled filters are evaluated before operations
layer-handled ones.
The behavior is clearly documented, but the implementation is bit
inefficient and complicated. All filters are maintained in a single list
(damos->filters) in mix. Filters evaluation logics in core layer and
operations layer iterates all the filters on the list, while skipping
filters that should be not handled by the layer of the logic. It is
inefficient. Making future extensions having differentiations for filters
of different handling layers will also be complicated.
Add a new list that will be used for having all operations layer-handled
DAMOS filters to DAMOS scheme data structure. Also add the support of its
initialization and basic traversal functions.
Link: https://lkml.kernel.org/r/20250304211913.53574-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20250304211913.53574-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In the commit dcc25ae76eb7 ("writeback: move global_dirty_limit into
wb_domain") of the cgroup writeback backpressure propagation patchset,
Tejun made some adaptations to trace_balance_dirty_pages() for cgroup
writeback. However, this adaptation was incomplete and Tejun missed
further adaptation in the subsequent patches.
In the cgroup writeback scenario, if sdtc in balance_dirty_pages() is
assigned to mdtc, then upon entering trace_balance_dirty_pages(),
__entry->limit should be assigned based on the dirty_limit of the
corresponding memcg's wb_domain, rather than global_wb_domain.
To address this issue and simplify the implementation, introduce a 'limit'
field in struct dirty_throttle_control to store the hard_limit value
computed in wb_position_ratio() by calling hard_dirty_limit(). This field
will then be used in trace_balance_dirty_pages() to assign the value to
__entry->limit.
Link: https://lkml.kernel.org/r/20250304110318.159567-4-yizhou.tang@shopee.com
Fixes: dcc25ae76eb7 ("writeback: move global_dirty_limit into wb_domain")
Signed-off-by: Tang Yizhou <yizhou.tang@shopee.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Fix calculations in trace_balance_dirty_pages() for cgwb", v2.
In my experiment, I found that the output of trace_balance_dirty_pages()
in the cgroup writeback scenario was strange because
trace_balance_dirty_pages() always uses global_wb_domain.dirty_limit for
related calculations instead of the dirty_limit of the corresponding
memcg's wb_domain.
The basic idea of the fix is to store the hard dirty limit value computed
in wb_position_ratio() into struct dirty_throttle_control and use it for
calculations in trace_balance_dirty_pages().
This patch (of 3):
Currently, trace_balance_dirty_pages() already has 12 parameters. In the
patch #3, I initially attempted to introduce an additional parameter.
However, in include/linux/trace_events.h, bpf_trace_run12() only supports
up to 12 parameters and bpf_trace_run13() does not exist.
To reduce the number of parameters in trace_balance_dirty_pages(), we can
make it accept a pointer to struct dirty_throttle_control as a parameter.
To achieve this, we need to move the definition of struct
dirty_throttle_control from mm/page-writeback.c to
include/linux/writeback.h.
Link: https://lkml.kernel.org/r/20250304110318.159567-1-yizhou.tang@shopee.com
Link: https://lkml.kernel.org/r/20250304110318.159567-2-yizhou.tang@shopee.com
Signed-off-by: Tang Yizhou <yizhou.tang@shopee.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Jan Kara <jack@suse.cz>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Tang Yizhou <yizhou.tang@shopee.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|