Age | Commit message (Collapse) | Author |
|
Now we use ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP config option to
indicate devdax and hugetlb vmemmap optimization support. Hence rename
that to a generic ARCH_WANT_OPTIMIZE_VMEMMAP
Link: https://lkml.kernel.org/r/20230412050025.84346-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Tarun Sahu <tsahu@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
commit 4917f55b4ef9 ("mm/sparse-vmemmap: improve memory savings for
compound devmaps") added support for using optimized vmmemap for devdax
devices. But how vmemmap mappings are created are architecture specific.
For example, powerpc with hash translation doesn't have vmemmap mappings
in init_mm page table instead they are bolted table entries in the
hardware page table
vmemmap_populate_compound_pages() used by vmemmap optimization code is not
aware of these architecture-specific mapping. Hence allow architecture to
opt for this feature. I selected architectures supporting
HUGETLB_PAGE_OPTIMIZE_VMEMMAP option as also supporting this feature.
This patch fixes the below crash on ppc64.
BUG: Unable to handle kernel data access on write at 0xc00c000100400038
Faulting instruction address: 0xc000000001269d90
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
Modules linked in:
CPU: 7 PID: 1 Comm: swapper/0 Not tainted 6.3.0-rc5-150500.34-default+ #2 5c90a668b6bbd142599890245c2fb5de19d7d28a
Hardware name: IBM,9009-42G POWER9 (raw) 0x4e0202 0xf000005 of:IBM,FW950.40 (VL950_099) hv:phyp pSeries
NIP: c000000001269d90 LR: c0000000004c57d4 CTR: 0000000000000000
REGS: c000000003632c30 TRAP: 0300 Not tainted (6.3.0-rc5-150500.34-default+)
MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 24842228 XER: 00000000
CFAR: c0000000004c57d0 DAR: c00c000100400038 DSISR: 42000000 IRQMASK: 0
....
NIP [c000000001269d90] __init_single_page.isra.74+0x14/0x4c
LR [c0000000004c57d4] __init_zone_device_page+0x44/0xd0
Call Trace:
[c000000003632ed0] [c000000003632f60] 0xc000000003632f60 (unreliable)
[c000000003632f10] [c0000000004c5ca0] memmap_init_zone_device+0x170/0x250
[c000000003632fe0] [c0000000005575f8] memremap_pages+0x2c8/0x7f0
[c0000000036330c0] [c000000000557b5c] devm_memremap_pages+0x3c/0xa0
[c000000003633100] [c000000000d458a8] dev_dax_probe+0x108/0x3e0
[c0000000036331a0] [c000000000d41430] dax_bus_probe+0xb0/0x140
[c0000000036331d0] [c000000000cef27c] really_probe+0x19c/0x520
[c000000003633260] [c000000000cef6b4] __driver_probe_device+0xb4/0x230
[c0000000036332e0] [c000000000cef888] driver_probe_device+0x58/0x120
[c000000003633320] [c000000000cefa6c] __device_attach_driver+0x11c/0x1e0
[c0000000036333a0] [c000000000cebc58] bus_for_each_drv+0xa8/0x130
[c000000003633400] [c000000000ceefcc] __device_attach+0x15c/0x250
[c0000000036334a0] [c000000000ced458] bus_probe_device+0x108/0x110
[c0000000036334f0] [c000000000ce92dc] device_add+0x7fc/0xa10
[c0000000036335b0] [c000000000d447c8] devm_create_dev_dax+0x1d8/0x530
[c000000003633640] [c000000000d46b60] __dax_pmem_probe+0x200/0x270
[c0000000036337b0] [c000000000d46bf0] dax_pmem_probe+0x20/0x70
[c0000000036337d0] [c000000000d2279c] nvdimm_bus_probe+0xac/0x2b0
[c000000003633860] [c000000000cef27c] really_probe+0x19c/0x520
[c0000000036338f0] [c000000000cef6b4] __driver_probe_device+0xb4/0x230
[c000000003633970] [c000000000cef888] driver_probe_device+0x58/0x120
[c0000000036339b0] [c000000000cefd08] __driver_attach+0x1d8/0x240
[c000000003633a30] [c000000000cebb04] bus_for_each_dev+0xb4/0x130
[c000000003633a90] [c000000000cee564] driver_attach+0x34/0x50
[c000000003633ab0] [c000000000ced878] bus_add_driver+0x218/0x300
[c000000003633b40] [c000000000cf1144] driver_register+0xa4/0x1b0
[c000000003633bb0] [c000000000d21a0c] __nd_driver_register+0x5c/0x100
[c000000003633c10] [c00000000206a2e8] dax_pmem_init+0x34/0x48
[c000000003633c30] [c0000000000132d0] do_one_initcall+0x60/0x320
[c000000003633d00] [c0000000020051b0] kernel_init_freeable+0x360/0x400
[c000000003633de0] [c000000000013764] kernel_init+0x34/0x1d0
[c000000003633e50] [c00000000000de14] ret_from_kernel_thread+0x5c/0x64
Link: https://lkml.kernel.org/r/20230411142214.64464-1-aneesh.kumar@linux.ibm.com
Fixes: 4917f55b4ef9 ("mm/sparse-vmemmap: improve memory savings for compound devmaps")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reported-by: Tarun Sahu <tsahu@linux.ibm.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Convert mfill_atomic_pte_copy(), shmem_mfill_atomic_pte() and
mfill_atomic_pte() to take in a folio pointer.
Convert mfill_atomic() to use a folio. Convert page_kaddr to kaddr in
mfill_atomic().
Link: https://lkml.kernel.org/r/20230410133932.32288-7-zhangpeng362@huawei.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Replace copy_user_huge_page() with copy_user_large_folio().
copy_user_large_folio() does the same as copy_user_huge_page(), but takes
in folios instead of pages. Remove pages_per_huge_page from
copy_user_large_folio(), because we can get that from folio_nr_pages(dst).
Convert copy_user_gigantic_page() to take in folios.
Link: https://lkml.kernel.org/r/20230410133932.32288-6-zhangpeng362@huawei.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Convert hugetlb_mfill_atomic_pte() to take in a folio pointer instead of
a page pointer.
Convert mfill_atomic_hugetlb() to use a folio.
Link: https://lkml.kernel.org/r/20230410133932.32288-5-zhangpeng362@huawei.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Replace copy_huge_page_from_user() with copy_folio_from_user().
copy_folio_from_user() does the same as copy_huge_page_from_user(), but
takes in a folio instead of a page.
Convert page_kaddr to kaddr in copy_folio_from_user() to do indenting
cleanup.
Link: https://lkml.kernel.org/r/20230410133932.32288-4-zhangpeng362@huawei.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When !CONFIG_SHMEM smaps_shmem_walk_ops is defined but not used,
triggering a compiler warning. To avoid the warning remove the #ifdef
around the usage. This has no effect because shmem_mapping() is a stub
returning false when !CONFIG_SHMEM so the code will be compiled out,
however we now need to also provide a stub for shmem_swap_usage().
Link: https://lkml.kernel.org/r/20230405103819.151246-1-steven.price@arm.com
Fixes: 7b86ac3371b7 ("pagewalk: separate function pointers from iterator data")
Signed-off-by: Steven Price <steven.price@arm.com>
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202304031749.UiyJpxzF-lkp@intel.com/
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Similar to how copy_mc_user_highpage is implemented for copy_user_highpage
on #MC supported architecture, introduce the #MC handled version of
copy_highpage.
This helper has immediate usage when khugepaged wants to copy file-backed
memory pages and tolerate #MC.
Link: https://lkml.kernel.org/r/20230329151121.949896-3-jiaqiyan@google.com
Signed-off-by: Jiaqi Yan <jiaqiyan@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Stevens <stevensd@chromium.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Tong Tiangen <tongtiangen@huawei.com>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In workingset_refault(), we call
mem_cgroup_flush_stats_atomic_ratelimited() to read accurate stats within
an RCU read section and with sleeping disallowed. Move the call above the
RCU read section to make it non-atomic.
Flushing is an expensive operation that scales with the number of cpus and
the number of cgroups in the system, so avoid doing it atomically where
possible.
Since workingset_refault() is the only caller of
mem_cgroup_flush_stats_atomic_ratelimited(), just make it non-atomic, and
rename it to mem_cgroup_flush_stats_ratelimited().
Link: https://lkml.kernel.org/r/20230330191801.1967435-7-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vasily Averin <vasily.averin@linux.dev>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, all contexts that flush memcg stats do so with sleeping not
allowed. Some of these contexts are perfectly safe to sleep in, such as
reading cgroup files from userspace or the background periodic flusher.
Flushing is an expensive operation that scales with the number of cpus and
the number of cgroups in the system, so avoid doing it atomically where
possible.
Refactor the code to make mem_cgroup_flush_stats() non-atomic (aka
sleepable), and provide a separate atomic version. The atomic version is
used in reclaim, refault, writeback, and in mem_cgroup_usage(). All other
code paths are left to use the non-atomic version. This includes
callbacks for userspace reads and the periodic flusher.
Since refault is the only caller of mem_cgroup_flush_stats_ratelimited(),
change it to mem_cgroup_flush_stats_atomic_ratelimited(). Reclaim and
refault code paths are modified to do non-atomic flushing in separate
later patches -- so it will eventually be changed back to
mem_cgroup_flush_stats_ratelimited().
Link: https://lkml.kernel.org/r/20230330191801.1967435-6-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vasily Averin <vasily.averin@linux.dev>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
mem_cgroup_flush_stats_delayed() suggests his is using a delayed_work, but
this is actually sometimes flushing directly from the callsite.
What it's doing is ratelimited calls. A better name would be
mem_cgroup_flush_stats_ratelimited().
Link: https://lkml.kernel.org/r/20230330191801.1967435-3-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vasily Averin <vasily.averin@linux.dev>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "memcg: avoid flushing stats atomically where possible", v3.
rstat flushing is an expensive operation that scales with the number of
cpus and the number of cgroups in the system. The purpose of this series
is to minimize the contexts where we flush stats atomically.
Patches 1 and 2 are cleanups requested during reviews of prior versions of
this series.
Patch 3 makes sure we never try to flush from within an irq context.
Patches 4 to 7 introduce separate variants of mem_cgroup_flush_stats() for
atomic and non-atomic flushing, and make sure we only flush the stats
atomically when necessary.
Patch 8 is a slightly tangential optimization that limits the work done by
rstat flushing in some scenarios.
This patch (of 8):
cgroup_rstat_flush_irqsafe() can be a confusing name. It may read as
"irqs are disabled throughout", which is what the current implementation
does (currently under discussion [1]), but is not the intention. The
intention is that this function is safe to call from atomic contexts.
Name it as such.
Link: https://lkml.kernel.org/r/20230330191801.1967435-1-yosryahmed@google.com
Link: https://lkml.kernel.org/r/20230330191801.1967435-2-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vasily Averin <vasily.averin@linux.dev>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The free_area_empty() helper is only used inside mm/ so move it there to
reduce noise in include/linux/mmzone.h
Link: https://lkml.kernel.org/r/20230326160215.2674531-1-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Suggested-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Sidhartha Kumar removed the last caller of PageHeadHuge(), so we can now
remove it and make folio_test_hugetlb() the real implementation. Add
kernel-doc for folio_test_hugetlb().
Link: https://lkml.kernel.org/r/20230327151050.1787744-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "memcg, cpuisol: do not interfere pcp cache charges draining
with cpuisol workloads".
Leonardo has reported [1] that pcp memcg charge draining can interfere
with cpu isolated workloads. The said draining is done from a WQ context
with a pcp worker scheduled on each CPU which holds any cached charges for
a specific memcg hierarchy. Operation is not really a common operation
[2]. It can be triggered from the userspace though so some care is
definitely due.
Leonardo has tried to address the issue by allowing remote charge draining
[3]. This approach requires an additional locking to synchronize pcp
caches sync from a remote cpu from local pcp consumers. Even though the
proposed lock was per-cpu there is still potential for contention and less
predictable behavior.
This patchset addresses the issue from a different angle. Rather than
dealing with a potential synchronization, cpus which are isolated are
simply never scheduled to be drained. This means that a small amount of
charges could be laying around and waiting for a later use or they are
flushed when a different memcg is charged from the same cpu. More details
are in patch 2. The first patch from Frederic is implementing an
abstraction to tell whether a specific cpu has been isolated and therefore
require a special treatment.
This patch (of 2):
Provide this new API to check if a CPU has been isolated either through
isolcpus= or nohz_full= kernel parameter.
It aims at avoiding kernel load deemed to be safely spared on CPUs running
sensitive workload that can't bear any disturbance, such as pcp cache
draining.
Link: https://lkml.kernel.org/r/20230317134448.11082-1-mhocko@kernel.org
Link: https://lkml.kernel.org/r/20230317134448.11082-2-mhocko@kernel.org
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Leonardo Bras <leobras@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
clang produces a build failure on x86 for some randconfig builds after a
change that moves around code to mm/mm_init.c:
Cannot find symbol for section 2: .text.
mm/mm_init.o: failed
I have not been able to figure out why this happens, but the __weak
annotation on arch_has_descending_max_zone_pfns() is the trigger here.
Removing the weak function in favor of an open-coded Kconfig option check
avoids the problem and becomes clearer as well as better to optimize by
the compiler.
[arnd@arndb.de: fix logic bug]
Link: https://lkml.kernel.org/r/20230415081904.969049-1-arnd@kernel.org
Link: https://lkml.kernel.org/r/20230414080418.110236-1-arnd@kernel.org
Fixes: 9420f89db2dd ("mm: move most of core MM initialization to mm/mm_init.c")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: SeongJae Park <sj@kernel.org>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
Similarly to kmsan_vmap_pages_range_noflush(), kmsan_ioremap_page_range()
must also properly handle allocation/mapping failures. In the case of
such, it must clean up the already created metadata mappings and return an
error code, so that the error can be propagated to ioremap_page_range().
Without doing so, KMSAN may silently fail to bring the metadata for the
page range into a consistent state, which will result in user-visible
crashes when trying to access them.
Link: https://lkml.kernel.org/r/20230413131223.4135168-2-glider@google.com
Fixes: b073d7f8aee4 ("mm: kmsan: maintain KMSAN metadata for page operations")
Signed-off-by: Alexander Potapenko <glider@google.com>
Reported-by: Dipanjan Das <mail.dipanjan.das@gmail.com>
Link: https://lore.kernel.org/linux-mm/CANX2M5ZRrRA64k0hOif02TjmY9kbbO2aCBPyq79es34RXZ=cAw@mail.gmail.com/
Reviewed-by: Marco Elver <elver@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
As reported by Dipanjan Das, when KMSAN is used together with kernel fault
injection (or, generally, even without the latter), calls to kcalloc() or
__vmap_pages_range_noflush() may fail, leaving the metadata mappings for
the virtual mapping in an inconsistent state. When these metadata
mappings are accessed later, the kernel crashes.
To address the problem, we return a non-zero error code from
kmsan_vmap_pages_range_noflush() in the case of any allocation/mapping
failure inside it, and make vmap_pages_range_noflush() return an error if
KMSAN fails to allocate the metadata.
This patch also removes KMSAN_WARN_ON() from vmap_pages_range_noflush(),
as these allocation failures are not fatal anymore.
Link: https://lkml.kernel.org/r/20230413131223.4135168-1-glider@google.com
Fixes: b073d7f8aee4 ("mm: kmsan: maintain KMSAN metadata for page operations")
Signed-off-by: Alexander Potapenko <glider@google.com>
Reported-by: Dipanjan Das <mail.dipanjan.das@gmail.com>
Link: https://lore.kernel.org/linux-mm/CANX2M5ZRrRA64k0hOif02TjmY9kbbO2aCBPyq79es34RXZ=cAw@mail.gmail.com/
Reviewed-by: Marco Elver <elver@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Fundamentally semaphores are a counted primitive, but
DEFINE_SEMAPHORE() does not expose this and explicitly creates a
binary semaphore.
Change DEFINE_SEMAPHORE() to take a number argument and use that in the
few places that open-coded it using __SEMAPHORE_INITIALIZER().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[mcgrof: add some tribal knowledge about why some folks prefer
binary sempahores over mutexes]
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
The PCI core has just been amended to create a pci_doe_mb struct for
every DOE instance on device enumeration. CXL (the only in-tree DOE
user so far) has been migrated to use those mailboxes instead of
creating its own.
That leaves pcim_doe_create_mb() and pci_doe_for_each_off() without any
callers, so drop them.
pci_doe_supports_prot() is now only used internally, so declare it
static.
pci_doe_destroy_mb() is no longer used as callback for
devm_add_action(), so refactor it to accept a struct pci_doe_mb pointer
instead of a generic void pointer.
Because pci_doe_create_mb() is only called on device enumeration, i.e.
before driver binding, the workqueue name never contains a driver name.
So replace dev_driver_string() with dev_bus_name() when generating the
workqueue name.
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Ming Li <ming4.li@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Link: https://lore.kernel.org/r/64f614b6584982986c55d2c6229b4ee2b276dd59.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Currently a DOE instance cannot be shared by multiple drivers because
each driver creates its own pci_doe_mb struct for a given DOE instance.
For the same reason a DOE instance cannot be shared between the PCI core
and a driver.
Moreover, finding out which protocols a DOE instance supports requires
creating a pci_doe_mb for it. If a device has multiple DOE instances,
a driver looking for a specific protocol may need to create a pci_doe_mb
for each of the device's DOE instances and then destroy those which
do not support the desired protocol. That's obviously an inefficient
way to do things.
Overcome these issues by creating mailboxes in the PCI core on device
enumeration.
Provide a pci_find_doe_mailbox() API call to allow drivers to get a
pci_doe_mb for a given (pci_dev, vendor, protocol) triple. This API is
modeled after pci_find_capability() and can later be amended with a
pci_find_next_doe_mailbox() call to iterate over all mailboxes of a
given pci_dev which support a specific protocol.
On removal, destroy the mailboxes in pci_destroy_dev(), after the driver
is unbound. This allows drivers to use DOE in their ->remove() hook.
On surprise removal, cancel ongoing DOE exchanges and prevent new ones
from being scheduled. Thereby ensure that a hot-removed device doesn't
needlessly wait for a running exchange to time out.
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Ming Li <ming4.li@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Link: https://lore.kernel.org/r/40a6f973f72ef283d79dd55e7e6fddc7481199af.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
A synchronous API for DOE has just been introduced. CXL (the only
in-tree DOE user so far) was converted to use it instead of the
asynchronous API.
Consequently, pci_doe_submit_task() as well as the pci_doe_task struct
are only used internally, so make them private.
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Ming Li <ming4.li@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Link: https://lore.kernel.org/r/cc19544068483681e91dfe27545c2180cd09f931.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The DOE API only allows asynchronous exchanges and forces callers to
provide a completion callback. Yet all existing callers only perform
synchronous exchanges. Upcoming commits for CMA (Component Measurement
and Authentication, PCIe r6.0 sec 6.31) likewise require only
synchronous DOE exchanges.
Provide a synchronous pci_doe() API call which builds on the internal
asynchronous machinery.
Convert the internal pci_doe_discovery() to the new call.
The new API allows submission of const-declared requests, necessitating
the addition of a const qualifier in struct pci_doe_task.
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Ming Li <ming4.li@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Link: https://lore.kernel.org/r/0f444206da9615c56301fbaff459c0f45d27f122.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Support virtual mailbox controllers and clients which are not platform
devices or come from the devicetree by allowing them to match client to
channel via some other mechanism.
Tested-by: Sudeep Holla <sudeep.holla@arm.com> (pcc)
Signed-off-by: Elliot Berman <quic_eberman@quicinc.com>
Signed-off-by: Jassi Brar <jaswinder.singh@linaro.org>
|
|
Commit cited in "fixes" tag added bulk support for flow counters but it
didn't account that's also possible to query a counter using a non-base id
if the counter was allocated as bulk.
When a user performs a query, validate the flow counter id given in the
mailbox is inside the valid range taking bulk value into account.
Fixes: 208d70f562e5 ("IB/mlx5: Support flow counters offset for bulk counters")
Signed-off-by: Mark Bloch <mbloch@nvidia.com>
Reviewed-by: Maor Gottlieb <maorg@nvidia.com>
Link: https://lore.kernel.org/r/79d7fbe291690128e44672418934256254d93115.1681377114.git.leon@kernel.org
Signed-off-by: Leon Romanovsky <leon@kernel.org>
|
|
Extend packet reformat types and flow table capabilities with
IPsec packet offload tunnel bits.
Reviewed-by: Simon Horman <simon.horman@corigine.com>
Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Reviewed-by: Sridhar Samudrala <sridhar.samudrala@intel.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
There are some use-cases where it is desirable to use bpf_redirect()
in combination with ifb device, which currently is not supported, for
example, around filtering inbound traffic with BPF to then push it to
ifb which holds the qdisc for shaping in contrast to doing that on the
egress device.
Toke mentions the following case related to OpenWrt:
Because there's not always a single egress on the other side. These are
mainly home routers, which tend to have one or more WiFi devices bridged
to one or more ethernet ports on the LAN side, and a single upstream WAN
port. And the objective is to control the total amount of traffic going
over the WAN link (in both directions), to deal with bufferbloat in the
ISP network (which is sadly still all too prevalent).
In this setup, the traffic can be split arbitrarily between the links
on the LAN side, and the only "single bottleneck" is the WAN link. So we
install both egress and ingress shapers on this, configured to something
like 95-98% of the true link bandwidth, thus moving the queues into the
qdisc layer in the router. It's usually necessary to set the ingress
bandwidth shaper a bit lower than the egress due to being "downstream"
of the bottleneck link, but it does work surprisingly well.
We usually use something like a matchall filter to put all ingress
traffic on the ifb, so doing the redirect from BPF has not been an
immediate requirement thus far. However, it does seem a bit odd that
this is not possible, and we do have a BPF-based filter that layers on
top of this kind of setup, which currently uses u32 as the ingress
filter and so it could presumably be improved to use BPF instead if
that was available.
Reported-by: Toke Høiland-Jørgensen <toke@redhat.com>
Reported-by: Yafang Shao <laoar.shao@gmail.com>
Reported-by: Tonghao Zhang <xiangxia.m.yue@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://git.openwrt.org/?p=project/qosify.git;a=blob;f=README
Link: https://lore.kernel.org/bpf/875y9yzbuy.fsf@toke.dk
Link: https://lore.kernel.org/r/8cebc8b2b6e967e10cbafe2ffd6795050e74accd.1681739137.git.daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
With changes to how Hyper-V guest VMs flip memory between private
(encrypted) and shared (decrypted), creating a second kernel virtual
mapping for shared memory is no longer necessary. Everything needed
for the transition to shared is handled by set_memory_decrypted().
As such, remove swiotlb_unencrypted_base and the associated
code.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/1679838727-87310-8-git-send-email-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
|
|
acpi_sleep_state_supported() is defined only when CONFIG_ACPI=y. The
function is in acpi_bus.h, and acpi_bus.h can only be used in
CONFIG_ACPI=y cases. Add the stub function to linux/acpi.h to make
compilation successful for !CONFIG_ACPI cases.
Signed-off-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/1679298460-11855-3-git-send-email-ssengar@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
|
|
This was only ever used by btrfs, and the usage just went away.
This effectively reverts df91f56adce1 ("libcrc32c: Add crc32c_impl
function").
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
REQ_CGROUP_PUNT is a bit annoying as it is hard to follow and adds
a branch to the bio submission hot path. To fix this, export
blkcg_punt_bio_submit and let btrfs call it directly. Add a new
REQ_FS_PRIVATE flag for btrfs to indicate to it's own low-level
bio submission code that a punt to the cgroup submission helper
is required.
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
punt_to_cgroup is only used by extent_write_locked_range, but that
function also directly controls the bio flags for the actual submission.
Remove th punt_to_cgroup field, and just set REQ_CGROUP_PUNT directly
in extent_write_locked_range.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/thermal/linux
Pull more thermal control changes for 6.4-rc1 from Daniel Lezcano:
"- Do preparating cleaning and DT bindings for RK3588 support
(Sebastian Reichel)
- Add driver support for RK3588 (Finley Xiao)
- Use devm_reset_control_array_get_exclusive() for the Rockchip driver
(Ye Xingchen)
- Detect power gated thermal zones and return -EAGAIN when reading the
temperature (Mikko Perttunen)
- Remove thermal_bind_params structure as it is unused (Zhang Rui)
- Drop unneeded quotes in DT bindings allowing to run yamllint (Rob
Herring)
- Update the power allocator documentation according to the thermal
trace relocation (Lukas Bulwahn)
- Fix sensor 1 interrupt status bitmask for the Mediatek LVTS sensor
(Chen-Yu Tsai)
- Use the dev_err_probe() helper in the Amlogic driver (Ye Xingchen)
- Add AP domain support to LVTS thermal controllers for mt8195
(Balsam CHIHI)
- Remove buggy call to thermal_of_zone_unregister() (Daniel Lezcano)
- Make thermal_of_zone_[un]register() private to the thermal OF code
(Daniel Lezcano)
- Create a private copy of the thermal zone device parameters
structure when registering a thermal zone (Daniel Lezcano)"
* tag 'thermal-v6.4-rc1-2' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/thermal/linux:
thermal/core: Alloc-copy-free the thermal zone parameters structure
thermal/of: Unexport unused OF functions
thermal/drivers/bcm2835: Remove buggy call to thermal_of_zone_unregister
thermal/drivers/mediatek/lvts_thermal: Add AP domain for mt8195
dt-bindings: thermal: mediatek: Add AP domain to LVTS thermal controllers for mt8195
thermal: amlogic: Use dev_err_probe()
thermal/drivers/mediatek/lvts_thermal: Fix sensor 1 interrupt status bitmask
MAINTAINERS: adjust entry in THERMAL/POWER_ALLOCATOR after header movement
dt-bindings: thermal: Drop unneeded quotes
thermal/core: Remove thermal_bind_params structure
thermal/drivers/tegra-bpmp: Handle offline zones
thermal/drivers/rockchip: use devm_reset_control_array_get_exclusive()
dt-bindings: rockchip-thermal: Support the RK3588 SoC compatible
thermal/drivers/rockchip: Support RK3588 SoC in the thermal driver
thermal/drivers/rockchip: Support dynamic sized sensor array
thermal/drivers/rockchip: Simplify channel id logic
thermal/drivers/rockchip: Use dev_err_probe
thermal/drivers/rockchip: Simplify clock logic
thermal/drivers/rockchip: Simplify getting match data
|
|
nftables can be built as a module, so fix the preprocessor conditional
accordingly.
Fixes: 478b360a47b7 ("netfilter: nf_tables: fix nf_trace always-on with XT_TRACE=n")
Reported-by: Florian Fainelli <f.fainelli@gmail.com>
Reported-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
|
|
We have a long chain of memory dereferencing just to whether or not
this disk has a special submit_bio helper. As that's not necessarily
the common case, add a bd_has_submit_bio state in the bdev to avoid
traversing this memory dependency chain if we don't need to.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This moves struct device out-of-line as it's just used at open/close
time, so we can keep some of the commonly used fields closer together.
On a standard setup, it also reduces the size from 864 bytes to 848
bytes. Yes, struct device is a pig...
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
We've managed to improve the UX for kptrs significantly over the last 9
months. All of the existing use cases which previously had KF_KPTR_GET
kfuncs (struct bpf_cpumask *, struct task_struct *, and struct cgroup *)
have all been updated to be synchronized using RCU. In other words,
their KF_KPTR_GET kfuncs have been removed in favor of KF_RCU |
KF_ACQUIRE kfuncs, with the pointers themselves also being readable from
maps in an RCU read region thanks to the types being RCU safe.
While KF_KPTR_GET was a logical starting point for kptrs, it's become
clear that they're not the correct abstraction. KF_KPTR_GET is a flag
that essentially does nothing other than enforcing that the argument to
a function is a pointer to a referenced kptr map value. At first glance,
that's a useful thing to guarantee to a kfunc. It gives kfuncs the
ability to try and acquire a reference on that kptr without requiring
the BPF prog to do something like this:
struct kptr_type *in_map, *new = NULL;
in_map = bpf_kptr_xchg(&map->value, NULL);
if (in_map) {
new = bpf_kptr_type_acquire(in_map);
in_map = bpf_kptr_xchg(&map->value, in_map);
if (in_map)
bpf_kptr_type_release(in_map);
}
That's clearly a pretty ugly (and racy) UX, and if using KF_KPTR_GET is
the only alternative, it's better than nothing. However, the problem
with any KF_KPTR_GET kfunc lies in the fact that it always requires some
kind of synchronization in order to safely do an opportunistic acquire
of the kptr in the map. This is because a BPF program running on another
CPU could do a bpf_kptr_xchg() on that map value, and free the kptr
after it's been read by the KF_KPTR_GET kfunc. For example, the
now-removed bpf_task_kptr_get() kfunc did the following:
struct task_struct *bpf_task_kptr_get(struct task_struct **pp)
{
struct task_struct *p;
rcu_read_lock();
p = READ_ONCE(*pp);
/* If p is non-NULL, it could still be freed by another CPU,
* so we have to do an opportunistic refcount_inc_not_zero()
* and return NULL if the task will be freed after the
* current RCU read region.
*/
|f (p && !refcount_inc_not_zero(&p->rcu_users))
p = NULL;
rcu_read_unlock();
return p;
}
In other words, the kfunc uses RCU to ensure that the task remains valid
after it's been peeked from the map. However, this is completely
redundant with just defining a KF_RCU kfunc that itself does a
refcount_inc_not_zero(), which is exactly what bpf_task_acquire() now
does.
So, the question of whether KF_KPTR_GET is useful is actually, "Are
there any synchronization mechanisms / safety flags that are required by
certain kptrs, but which are not provided by the verifier to kfuncs?"
The answer to that question today is "No", because every kptr we
currently care about is RCU protected.
Even if the answer ever became "yes", the proper way to support that
referenced kptr type would be to add support for whatever
synchronization mechanism it requires in the verifier, rather than
giving kfuncs a flag that says, "Here's a pointer to a referenced kptr
in a map, do whatever you need to do."
With all that said -- so as to allow us to consolidate the kfunc API,
and simplify the verifier a bit, this patch removes KF_KPTR_GET, and all
relevant logic from the verifier.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230416084928.326135-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The syscall user dispatch configuration can only be set by the task itself,
but lacks a ptrace set/get interface which makes it impossible to implement
checkpoint/restore for it.
Add the required ptrace requests and the get/set functions in the syscall
user dispatch code to make that possible.
Signed-off-by: Gregory Price <gregory.price@memverge.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20230407171834.3558-4-gregory.price@memverge.com
|
|
Rename existing HCA capability relaxed_ordering_read to
relaxed_ordering_read_pci_enabled. This is in accordance with recent PRM
change to better describe the capability, as it's set only if both the
device supports relaxed ordering (RO) read and RO is enabled in PCI
config space.
In addition, add new HCA capability relaxed_ordering_read which is set
if the device supports RO read, regardless of RO in PCI config space.
This will be used in the following patch to allow RO in VFs and VMs.
Signed-off-by: Avihai Horon <avihaih@nvidia.com>
Reviewed-by: Shay Drory <shayd@nvidia.com>
Link: https://lore.kernel.org/r/caa0002fd8135086357dfcc368e2f5cc73b08480.1681131553.git.leon@kernel.org
Reviewed-by: Jacob Keller <jacob.e.keller@intel.com>
Signed-off-by: Leon Romanovsky <leon@kernel.org>
|
|
swiotlb currently reports the total number of slabs and the instantaneous
in-use slabs in debugfs. But with increased usage of swiotlb for all I/O
in Confidential Computing (coco) VMs, it has become difficult to know
how much memory to allocate for swiotlb bounce buffers, either via the
automatic algorithm in the kernel or by specifying a value on the
kernel boot line. The current automatic algorithm generously allocates
swiotlb bounce buffer memory, and may be wasting significant memory in
many use cases.
To support better understanding of swiotlb usage, add tracking of the
the high water mark for usage of the default swiotlb bounce buffer memory
pool and any reserved memory pools. Report these high water marks in
debugfs along with the other swiotlb pool metrics. Allow the high water
marks to be reset to zero at runtime by writing to them.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
All btf_fields in an object are 0-initialized by memset in
bpf_obj_init. This might not be a valid initial state for some field
types, in which case kfuncs that use the type will properly initialize
their input if it's been 0-initialized. Some BPF graph collection types
and kfuncs do this: bpf_list_{head,node} and bpf_rb_node.
An earlier patch in this series added the bpf_refcount field, for which
the 0 state indicates that the refcounted object should be free'd.
bpf_obj_init treats this field specially, setting refcount to 1 instead
of relying on scattered "refcount is 0? Must have just been initialized,
let's set to 1" logic in kfuncs.
This patch extends this treatment to list and rbtree field types,
allowing most scattered initialization logic in kfuncs to be removed.
Note that bpf_{list_head,rb_root} may be inside a BPF map, in which case
they'll be 0-initialized without passing through the newly-added logic,
so scattered initialization logic must remain for these collection root
types.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-9-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Consider this code snippet:
struct node {
long key;
bpf_list_node l;
bpf_rb_node r;
bpf_refcount ref;
}
int some_bpf_prog(void *ctx)
{
struct node *n = bpf_obj_new(/*...*/), *m;
bpf_spin_lock(&glock);
bpf_rbtree_add(&some_tree, &n->r, /* ... */);
m = bpf_refcount_acquire(n);
bpf_rbtree_add(&other_tree, &m->r, /* ... */);
bpf_spin_unlock(&glock);
/* ... */
}
After bpf_refcount_acquire, n and m point to the same underlying memory,
and that node's bpf_rb_node field is being used by the some_tree insert,
so overwriting it as a result of the second insert is an error. In order
to properly support refcounted nodes, the rbtree and list insert
functions must be allowed to fail. This patch adds such support.
The kfuncs bpf_rbtree_add, bpf_list_push_{front,back} are modified to
return an int indicating success/failure, with 0 -> success, nonzero ->
failure.
bpf_obj_drop on failure
=======================
Currently the only reason an insert can fail is the example above: the
bpf_{list,rb}_node is already in use. When such a failure occurs, the
insert kfuncs will bpf_obj_drop the input node. This allows the insert
operations to logically fail without changing their verifier owning ref
behavior, namely the unconditional release_reference of the input
owning ref.
With insert that always succeeds, ownership of the node is always passed
to the collection, since the node always ends up in the collection.
With a possibly-failed insert w/ bpf_obj_drop, ownership of the node
is always passed either to the collection (success), or to bpf_obj_drop
(failure). Regardless, it's correct to continue unconditionally
releasing the input owning ref, as something is always taking ownership
from the calling program on insert.
Keeping owning ref behavior unchanged results in a nice default UX for
insert functions that can fail. If the program's reaction to a failed
insert is "fine, just get rid of this owning ref for me and let me go
on with my business", then there's no reason to check for failure since
that's default behavior. e.g.:
long important_failures = 0;
int some_bpf_prog(void *ctx)
{
struct node *n, *m, *o; /* all bpf_obj_new'd */
bpf_spin_lock(&glock);
bpf_rbtree_add(&some_tree, &n->node, /* ... */);
bpf_rbtree_add(&some_tree, &m->node, /* ... */);
if (bpf_rbtree_add(&some_tree, &o->node, /* ... */)) {
important_failures++;
}
bpf_spin_unlock(&glock);
}
If we instead chose to pass ownership back to the program on failed
insert - by returning NULL on success or an owning ref on failure -
programs would always have to do something with the returned ref on
failure. The most likely action is probably "I'll just get rid of this
owning ref and go about my business", which ideally would look like:
if (n = bpf_rbtree_add(&some_tree, &n->node, /* ... */))
bpf_obj_drop(n);
But bpf_obj_drop isn't allowed in a critical section and inserts must
occur within one, so in reality error handling would become a
hard-to-parse mess.
For refcounted nodes, we can replicate the "pass ownership back to
program on failure" logic with this patch's semantics, albeit in an ugly
way:
struct node *n = bpf_obj_new(/* ... */), *m;
bpf_spin_lock(&glock);
m = bpf_refcount_acquire(n);
if (bpf_rbtree_add(&some_tree, &n->node, /* ... */)) {
/* Do something with m */
}
bpf_spin_unlock(&glock);
bpf_obj_drop(m);
bpf_refcount_acquire is used to simulate "return owning ref on failure".
This should be an uncommon occurrence, though.
Addition of two verifier-fixup'd args to collection inserts
===========================================================
The actual bpf_obj_drop kfunc is
bpf_obj_drop_impl(void *, struct btf_struct_meta *), with bpf_obj_drop
macro populating the second arg with 0 and the verifier later filling in
the arg during insn fixup.
Because bpf_rbtree_add and bpf_list_push_{front,back} now might do
bpf_obj_drop, these kfuncs need a btf_struct_meta parameter that can be
passed to bpf_obj_drop_impl.
Similarly, because the 'node' param to those insert functions is the
bpf_{list,rb}_node within the node type, and bpf_obj_drop expects a
pointer to the beginning of the node, the insert functions need to be
able to find the beginning of the node struct. A second
verifier-populated param is necessary: the offset of {list,rb}_node within the
node type.
These two new params allow the insert kfuncs to correctly call
__bpf_obj_drop_impl:
beginning_of_node = bpf_rb_node_ptr - offset
if (already_inserted)
__bpf_obj_drop_impl(beginning_of_node, btf_struct_meta->record);
Similarly to other kfuncs with "hidden" verifier-populated params, the
insert functions are renamed with _impl prefix and a macro is provided
for common usage. For example, bpf_rbtree_add kfunc is now
bpf_rbtree_add_impl and bpf_rbtree_add is now a macro which sets
"hidden" args to 0.
Due to the two new args BPF progs will need to be recompiled to work
with the new _impl kfuncs.
This patch also rewrites the "hidden argument" explanation to more
directly say why the BPF program writer doesn't need to populate the
arguments with anything meaningful.
How does this new logic affect non-owning references?
=====================================================
Currently, non-owning refs are valid until the end of the critical
section in which they're created. We can make this guarantee because, if
a non-owning ref exists, the referent was added to some collection. The
collection will drop() its nodes when it goes away, but it can't go away
while our program is accessing it, so that's not a problem. If the
referent is removed from the collection in the same CS that it was added
in, it can't be bpf_obj_drop'd until after CS end. Those are the only
two ways to free the referent's memory and neither can happen until
after the non-owning ref's lifetime ends.
On first glance, having these collection insert functions potentially
bpf_obj_drop their input seems like it breaks the "can't be
bpf_obj_drop'd until after CS end" line of reasoning. But we care about
the memory not being _freed_ until end of CS end, and a previous patch
in the series modified bpf_obj_drop such that it doesn't free refcounted
nodes until refcount == 0. So the statement can be more accurately
rewritten as "can't be free'd until after CS end".
We can prove that this rewritten statement holds for any non-owning
reference produced by collection insert functions:
* If the input to the insert function is _not_ refcounted
* We have an owning reference to the input, and can conclude it isn't
in any collection
* Inserting a node in a collection turns owning refs into
non-owning, and since our input type isn't refcounted, there's no
way to obtain additional owning refs to the same underlying
memory
* Because our node isn't in any collection, the insert operation
cannot fail, so bpf_obj_drop will not execute
* If bpf_obj_drop is guaranteed not to execute, there's no risk of
memory being free'd
* Otherwise, the input to the insert function is refcounted
* If the insert operation fails due to the node's list_head or rb_root
already being in some collection, there was some previous successful
insert which passed refcount to the collection
* We have an owning reference to the input, it must have been
acquired via bpf_refcount_acquire, which bumped the refcount
* refcount must be >= 2 since there's a valid owning reference and the
node is already in a collection
* Insert triggering bpf_obj_drop will decr refcount to >= 1, never
resulting in a free
So although we may do bpf_obj_drop during the critical section, this
will never result in memory being free'd, and no changes to non-owning
ref logic are needed in this patch.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-6-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
A local kptr is considered 'refcounted' when it is of a type that has a
bpf_refcount field. When such a kptr is created, its refcount should be
initialized to 1; when destroyed, the object should be free'd only if a
refcount decr results in 0 refcount.
Existing logic always frees the underlying memory when destroying a
local kptr, and 0-initializes all btf_record fields. This patch adds
checks for "is local kptr refcounted?" and new logic for that case in
the appropriate places.
This patch focuses on changing existing semantics and thus conspicuously
does _not_ provide a way for BPF programs in increment refcount. That
follows later in the series.
__bpf_obj_drop_impl is modified to do the right thing when it sees a
refcounted type. Container types for graph nodes (list, tree, stashed in
map) are migrated to use __bpf_obj_drop_impl as a destructor for their
nodes instead of each having custom destruction code in their _free
paths. Now that "drop" isn't a synonym for "free" when the type is
refcounted it makes sense to centralize this logic.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
A 'struct bpf_refcount' is added to the set of opaque uapi/bpf.h types
meant for use in BPF programs. Similarly to other opaque types like
bpf_spin_lock and bpf_rbtree_node, the verifier needs to know where in
user-defined struct types a bpf_refcount can be located, so necessary
btf_record plumbing is added to enable this. bpf_refcount is sized to
hold a refcount_t.
Similarly to bpf_spin_lock, the offset of a bpf_refcount is cached in
btf_record as refcount_off in addition to being in the field array.
Caching refcount_off makes sense for this field because further patches
in the series will modify functions that take local kptrs (e.g.
bpf_obj_drop) to change their behavior if the type they're operating on
is refcounted. So enabling fast "is this type refcounted?" checks is
desirable.
No such verifier behavior changes are introduced in this patch, just
logic to recognize 'struct bpf_refcount' in btf_record.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The btf_field_offs struct contains (offset, size) for btf_record fields,
sorted by offset. btf_field_offs is always used in conjunction with
btf_record, which has btf_field 'fields' array with (offset, type), the
latter of which btf_field_offs' size is derived from via
btf_field_type_size.
This patch adds a size field to struct btf_field and sorts btf_record's
fields by offset, making it possible to get rid of btf_field_offs. Less
data duplication and less code complexity results.
Since btf_field_offs' lifetime closely followed the btf_record used to
populate it, most complexity wins are from removal of initialization
code like:
if (btf_record_successfully_initialized) {
foffs = btf_parse_field_offs(rec);
if (IS_ERR_OR_NULL(foffs))
// free the btf_record and return err
}
Other changes in this patch are pretty mechanical:
* foffs->field_off[i] -> rec->fields[i].offset
* foffs->field_sz[i] -> rec->fields[i].size
* Sort rec->fields in btf_parse_fields before returning
* It's possible that this is necessary independently of other
changes in this patch. btf_record_find in syscall.c expects
btf_record's fields to be sorted by offset, yet there's no
explicit sorting of them before this patch, record's fields are
populated in the order they're read from BTF struct definition.
BTF docs don't say anything about the sortedness of struct fields.
* All functions taking struct btf_field_offs * input now instead take
struct btf_record *. All callsites of these functions already have
access to the correct btf_record.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Instead of waiting for rsrc_data->refs to be downed to zero, check
whether there are rsrc nodes queued for completion, that's easier then
maintaining references.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/8e33fd143d83e11af3e386aea28eb6d6c6a1be10.1681395792.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Replace completions with waitqueues for rsrc data quiesce, the main
wakeup condition is when data refs hit zero. Note that data refs are
only changes under ->uring_lock, so we prepare before mutex_unlock()
reacquire it after taking the lock back. This change will be needed
in the next patch.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/1d0dbc74b3b4fd67c8f01819e680c5e0da252956.1681395792.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Recent patches to mlx5 mentioned a regression when moving from
driver local page pool to only using the generic page pool code.
Page pool has two recycling paths (1) direct one, which runs in
safe NAPI context (basically consumer context, so producing
can be lockless); and (2) via a ptr_ring, which takes a spin
lock because the freeing can happen from any CPU; producer
and consumer may run concurrently.
Since the page pool code was added, Eric introduced a revised version
of deferred skb freeing. TCP skbs are now usually returned to the CPU
which allocated them, and freed in softirq context. This places the
freeing (producing of pages back to the pool) enticingly close to
the allocation (consumer).
If we can prove that we're freeing in the same softirq context in which
the consumer NAPI will run - lockless use of the cache is perfectly fine,
no need for the lock.
Let drivers link the page pool to a NAPI instance. If the NAPI instance
is scheduled on the same CPU on which we're freeing - place the pages
in the direct cache.
With that and patched bnxt (XDP enabled to engage the page pool, sigh,
bnxt really needs page pool work :() I see a 2.6% perf boost with
a TCP stream test (app on a different physical core than softirq).
The CPU use of relevant functions decreases as expected:
page_pool_refill_alloc_cache 1.17% -> 0%
_raw_spin_lock 2.41% -> 0.98%
Only consider lockless path to be safe when NAPI is scheduled
- in practice this should cover majority if not all of steady state
workloads. It's usually the NAPI kicking in that causes the skb flush.
The main case we'll miss out on is when application runs on the same
CPU as NAPI. In that case we don't use the deferred skb free path.
Reviewed-by: Tariq Toukan <tariqt@nvidia.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Dragos Tatulea <dtatulea@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|