Age | Commit message (Collapse) | Author |
|
Merge misc fixes from Andrew Morton:
"The usual shower of hotfixes.
Chris's memcg patches aren't actually fixes - they're mature but a few
niggling review issues were late to arrive.
The ocfs2 fixes are quite old - those took some time to get reviewer
attention.
Subsystems affected by this patch series: ocfs2, hotfixes, mm/memcg,
mm/slab-generic"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
mm, sl[ou]b: improve memory accounting
mm, memcg: make scan aggression always exclude protection
mm, memcg: make memory.emin the baseline for utilisation determination
mm, memcg: proportional memory.{low,min} reclaim
mm/vmpressure.c: fix a signedness bug in vmpressure_register_event()
mm/page_alloc.c: fix a crash in free_pages_prepare()
mm/z3fold.c: claim page in the beginning of free
kernel/sysctl.c: do not override max_threads provided by userspace
memcg: only record foreign writebacks with dirty pages when memcg is not disabled
mm: fix -Wmissing-prototypes warnings
writeback: fix use-after-free in finish_writeback_work()
mm/memremap: drop unused SECTION_SIZE and SECTION_MASK
panic: ensure preemption is disabled during panic()
fs: ocfs2: fix a possible null-pointer dereference in ocfs2_info_scan_inode_alloc()
fs: ocfs2: fix a possible null-pointer dereference in ocfs2_write_end_nolock()
fs: ocfs2: fix possible null-pointer dereferences in ocfs2_xa_prepare_entry()
ocfs2: clear zero in unaligned direct IO
|
|
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch is an incremental improvement on the existing
memory.{low,min} relative reclaim work to base its scan pressure
calculations on how much protection is available compared to the current
usage, rather than how much the current usage is over some protection
threshold.
This change doesn't change the experience for the user in the normal
case too much. One benefit is that it replaces the (somewhat arbitrary)
100% cutoff with an indefinite slope, which makes it easier to ballpark
a memory.low value.
As well as this, the old methodology doesn't quite apply generically to
machines with varying amounts of physical memory. Let's say we have a
top level cgroup, workload.slice, and another top level cgroup,
system-management.slice. We want to roughly give 12G to
system-management.slice, so on a 32GB machine we set memory.low to 20GB
in workload.slice, and on a 64GB machine we set memory.low to 52GB.
However, because these are relative amounts to the total machine size,
while the amount of memory we want to generally be willing to yield to
system.slice is absolute (12G), we end up putting more pressure on
system.slice just because we have a larger machine and a larger workload
to fill it, which seems fairly unintuitive. With this new behaviour, we
don't end up with this unintended side effect.
Previously the way that memory.low protection works is that if you are
50% over a certain baseline, you get 50% of your normal scan pressure.
This is certainly better than the previous cliff-edge behaviour, but it
can be improved even further by always considering memory under the
currently enforced protection threshold to be out of bounds. This means
that we can set relatively low memory.low thresholds for variable or
bursty workloads while still getting a reasonable level of protection,
whereas with the previous version we may still trivially hit the 100%
clamp. The previous 100% clamp is also somewhat arbitrary, whereas this
one is more concretely based on the currently enforced protection
threshold, which is likely easier to reason about.
There is also a subtle issue with the way that proportional reclaim
worked previously -- it promotes having no memory.low, since it makes
pressure higher during low reclaim. This happens because we base our
scan pressure modulation on how far memory.current is between memory.min
and memory.low, but if memory.low is unset, we only use the overage
method. In most cromulent configurations, this then means that we end
up with *more* pressure than with no memory.low at all when we're in low
reclaim, which is not really very usable or expected.
With this patch, memory.low and memory.min affect reclaim pressure in a
more understandable and composable way. For example, from a user
standpoint, "protected" memory now remains untouchable from a reclaim
aggression standpoint, and users can also have more confidence that
bursty workloads will still receive some amount of guaranteed
protection.
Link: http://lkml.kernel.org/r/20190322160307.GA3316@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Roman points out that when when we do the low reclaim pass, we scale the
reclaim pressure relative to position between 0 and the maximum
protection threshold.
However, if the maximum protection is based on memory.elow, and
memory.emin is above zero, this means we still may get binary behaviour
on second-pass low reclaim. This is because we scale starting at 0, not
starting at memory.emin, and since we don't scan at all below emin, we
end up with cliff behaviour.
This should be a fairly uncommon case since usually we don't go into the
second pass, but it makes sense to scale our low reclaim pressure
starting at emin.
You can test this by catting two large sparse files, one in a cgroup
with emin set to some moderate size compared to physical RAM, and
another cgroup without any emin. In both cgroups, set an elow larger
than 50% of physical RAM. The one with emin will have less page
scanning, as reclaim pressure is lower.
Rebase on top of and apply the same idea as what was applied to handle
cgroup_memory=disable properly for the original proportional patch
http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name ("mm,
memcg: Handle cgroup_disable=memory when getting memcg protection").
Link: http://lkml.kernel.org/r/20190201051810.GA18895@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Suggested-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
cgroup v2 introduces two memory protection thresholds: memory.low
(best-effort) and memory.min (hard protection). While they generally do
what they say on the tin, there is a limitation in their implementation
that makes them difficult to use effectively: that cliff behaviour often
manifests when they become eligible for reclaim. This patch implements
more intuitive and usable behaviour, where we gradually mount more
reclaim pressure as cgroups further and further exceed their protection
thresholds.
This cliff edge behaviour happens because we only choose whether or not
to reclaim based on whether the memcg is within its protection limits
(see the use of mem_cgroup_protected in shrink_node), but we don't vary
our reclaim behaviour based on this information. Imagine the following
timeline, with the numbers the lruvec size in this zone:
1. memory.low=1000000, memory.current=999999. 0 pages may be scanned.
2. memory.low=1000000, memory.current=1000000. 0 pages may be scanned.
3. memory.low=1000000, memory.current=1000001. 1000001* pages may be
scanned. (?!)
* Of course, we won't usually scan all available pages in the zone even
without this patch because of scan control priority, over-reclaim
protection, etc. However, as shown by the tests at the end, these
techniques don't sufficiently throttle such an extreme change in input,
so cliff-like behaviour isn't really averted by their existence alone.
Here's an example of how this plays out in practice. At Facebook, we are
trying to protect various workloads from "system" software, like
configuration management tools, metric collectors, etc (see this[0] case
study). In order to find a suitable memory.low value, we start by
determining the expected memory range within which the workload will be
comfortable operating. This isn't an exact science -- memory usage deemed
"comfortable" will vary over time due to user behaviour, differences in
composition of work, etc, etc. As such we need to ballpark memory.low,
but doing this is currently problematic:
1. If we end up setting it too low for the workload, it won't have
*any* effect (see discussion above). The group will receive the full
weight of reclaim and won't have any priority while competing with the
less important system software, as if we had no memory.low configured
at all.
2. Because of this behaviour, we end up erring on the side of setting
it too high, such that the comfort range is reliably covered. However,
protected memory is completely unavailable to the rest of the system,
so we might cause undue memory and IO pressure there when we *know* we
have some elasticity in the workload.
3. Even if we get the value totally right, smack in the middle of the
comfort zone, we get extreme jumps between no pressure and full
pressure that cause unpredictable pressure spikes in the workload due
to the current binary reclaim behaviour.
With this patch, we can set it to our ballpark estimation without too much
worry. Any undesirable behaviour, such as too much or too little reclaim
pressure on the workload or system will be proportional to how far our
estimation is off. This means we can set memory.low much more
conservatively and thus waste less resources *without* the risk of the
workload falling off a cliff if we overshoot.
As a more abstract technical description, this unintuitive behaviour
results in having to give high-priority workloads a large protection
buffer on top of their expected usage to function reliably, as otherwise
we have abrupt periods of dramatically increased memory pressure which
hamper performance. Having to set these thresholds so high wastes
resources and generally works against the principle of work conservation.
In addition, having proportional memory reclaim behaviour has other
benefits. Most notably, before this patch it's basically mandatory to set
memory.low to a higher than desirable value because otherwise as soon as
you exceed memory.low, all protection is lost, and all pages are eligible
to scan again. By contrast, having a gradual ramp in reclaim pressure
means that you now still get some protection when thresholds are exceeded,
which means that one can now be more comfortable setting memory.low to
lower values without worrying that all protection will be lost. This is
important because workingset size is really hard to know exactly,
especially with variable workloads, so at least getting *some* protection
if your workingset size grows larger than you expect increases user
confidence in setting memory.low without a huge buffer on top being
needed.
Thanks a lot to Johannes Weiner and Tejun Heo for their advice and
assistance in thinking about how to make this work better.
In testing these changes, I intended to verify that:
1. Changes in page scanning become gradual and proportional instead of
binary.
To test this, I experimented stepping further and further down
memory.low protection on a workload that floats around 19G workingset
when under memory.low protection, watching page scan rates for the
workload cgroup:
+------------+-----------------+--------------------+--------------+
| memory.low | test (pgscan/s) | control (pgscan/s) | % of control |
+------------+-----------------+--------------------+--------------+
| 21G | 0 | 0 | N/A |
| 17G | 867 | 3799 | 23% |
| 12G | 1203 | 3543 | 34% |
| 8G | 2534 | 3979 | 64% |
| 4G | 3980 | 4147 | 96% |
| 0 | 3799 | 3980 | 95% |
+------------+-----------------+--------------------+--------------+
As you can see, the test kernel (with a kernel containing this
patch) ramps up page scanning significantly more gradually than the
control kernel (without this patch).
2. More gradual ramp up in reclaim aggression doesn't result in
premature OOMs.
To test this, I wrote a script that slowly increments the number of
pages held by stress(1)'s --vm-keep mode until a production system
entered severe overall memory contention. This script runs in a highly
protected slice taking up the majority of available system memory.
Watching vmstat revealed that page scanning continued essentially
nominally between test and control, without causing forward reclaim
progress to become arrested.
[0]: https://facebookmicrosites.github.io/cgroup2/docs/overview.html#case-study-the-fbtax2-project
[akpm@linux-foundation.org: reflow block comments to fit in 80 cols]
[chris@chrisdown.name: handle cgroup_disable=memory when getting memcg protection]
Link: http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name
Link: http://lkml.kernel.org/r/20190124014455.GA6396@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
disabled
In kdump kernel, memcg usually is disabled with 'cgroup_disable=memory'
for saving memory. Now kdump kernel will always panic when dump vmcore
to local disk:
BUG: kernel NULL pointer dereference, address: 0000000000000ab8
Oops: 0000 [#1] SMP NOPTI
CPU: 0 PID: 598 Comm: makedumpfile Not tainted 5.3.0+ #26
Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 10/02/2018
RIP: 0010:mem_cgroup_track_foreign_dirty_slowpath+0x38/0x140
Call Trace:
__set_page_dirty+0x52/0xc0
iomap_set_page_dirty+0x50/0x90
iomap_write_end+0x6e/0x270
iomap_write_actor+0xce/0x170
iomap_apply+0xba/0x11e
iomap_file_buffered_write+0x62/0x90
xfs_file_buffered_aio_write+0xca/0x320 [xfs]
new_sync_write+0x12d/0x1d0
vfs_write+0xa5/0x1a0
ksys_write+0x59/0xd0
do_syscall_64+0x59/0x1e0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
And this will corrupt the 1st kernel too with 'cgroup_disable=memory'.
Via the trace and with debugging, it is pointing to commit 97b27821b485
("writeback, memcg: Implement foreign dirty flushing") which introduced
this regression. Disabling memcg causes the null pointer dereference at
uninitialized data in function mem_cgroup_track_foreign_dirty_slowpath().
Fix it by returning directly if memcg is disabled, but not trying to
record the foreign writebacks with dirty pages.
Link: http://lkml.kernel.org/r/20190924141928.GD31919@MiWiFi-R3L-srv
Fixes: 97b27821b485 ("writeback, memcg: Implement foreign dirty flushing")
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
ip_set_get_ip_port() is only used in ip_set_bitmap_port.c. Move it
there and make it static.
Signed-off-by: Jeremy Sowden <jeremy@azazel.net>
Acked-by: Jozsef Kadlecsik <kadlec@netfilter.org>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
One inline function in ip_set_bitmap.h is only called in
ip_set_bitmap_ip.c: move it and remove inline function specifier.
Signed-off-by: Jeremy Sowden <jeremy@azazel.net>
Acked-by: Jozsef Kadlecsik <kadlec@netfilter.org>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
ip_set_put_flags is rather large for a static inline function in a
header-file. Move it to ip_set_core.c and export it.
Signed-off-by: Jeremy Sowden <jeremy@azazel.net>
Acked-by: Jozsef Kadlecsik <kadlec@netfilter.org>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
Several inline functions in ip_set.h are only called in ip_set_core.c:
move them and remove inline function specifier.
Signed-off-by: Jeremy Sowden <jeremy@azazel.net>
Acked-by: Jozsef Kadlecsik <kadlec@netfilter.org>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
Most of the functions are only called from within ip_set_core.c.
The exception is ip_set_init_comment. However, this is too complex to
be a good candidate for a static inline function. Move it to
ip_set_core.c, change its linkage to extern and export it, leaving a
declaration in ip_set.h.
ip_set_comment_free is only used as an extension destructor, so change
its prototype to match and drop cast.
Signed-off-by: Jeremy Sowden <jeremy@azazel.net>
Acked-by: Jozsef Kadlecsik <kadlec@netfilter.org>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
Use a local variable to hold comment in order to align the arguments of
ip_set_comment_free properly.
Signed-off-by: Jeremy Sowden <jeremy@azazel.net>
Acked-by: Jozsef Kadlecsik <kadlec@netfilter.org>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
If a label is defined in the device tree for this device add that
to the device specific attributes. This is useful for userspace to
be able to identify an individual device when multiple identical
chips are present in the system.
Tested-by: Michal Simek <michal.simek@xilinx.com>
Signed-off-by: Phil Reid <preid@electromag.com.au>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
|
|
For AMD compute (amdkfd) driver.
All AMD compute devices are exported via single device node /dev/kfd. As
a result devices cannot be controlled individually using device cgroup.
AMD compute devices will rely on its graphics counterpart that exposes
/dev/dri/renderN node for each device. For each task (based on its
cgroup), KFD driver will check if /dev/dri/renderN node is accessible
before exposing it.
Signed-off-by: Harish Kasiviswanathan <Harish.Kasiviswanathan@amd.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
|
|
In commit 9f79b78ef744 ("Convert filldir[64]() from __put_user() to
unsafe_put_user()") I made filldir() use unsafe_put_user(), which
improves code generation on x86 enormously.
But because we didn't have a "unsafe_copy_to_user()", the dirent name
copy was also done by hand with unsafe_put_user() in a loop, and it
turns out that a lot of other architectures didn't like that, because
unlike x86, they have various alignment issues.
Most non-x86 architectures trap and fix it up, and some (like xtensa)
will just fail unaligned put_user() accesses unconditionally. Which
makes that "copy using put_user() in a loop" not work for them at all.
I could make that code do explicit alignment etc, but the architectures
that don't like unaligned accesses also don't really use the fancy
"user_access_begin/end()" model, so they might just use the regular old
__copy_to_user() interface.
So this commit takes that looping implementation, turns it into the x86
version of "unsafe_copy_to_user()", and makes other architectures
implement the unsafe copy version as __copy_to_user() (the same way they
do for the other unsafe_xyz() accessor functions).
Note that it only does this for the copying _to_ user space, and we
still don't have a unsafe version of copy_from_user().
That's partly because we have no current users of it, but also partly
because the copy_from_user() case is slightly different and cannot
efficiently be implemented in terms of a unsafe_get_user() loop (because
gcc can't do asm goto with outputs).
It would be trivial to do this using "rep movsb", which would work
really nicely on newer x86 cores, but really badly on some older ones.
Al Viro is looking at cleaning up all our user copy routines to make
this all a non-issue, but for now we have this simple-but-stupid version
for x86 that works fine for the dirent name copy case because those
names are short strings and we simply don't need anything fancier.
Fixes: 9f79b78ef744 ("Convert filldir[64]() from __put_user() to unsafe_put_user()")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Reported-and-tested-by: Tony Luck <tony.luck@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
SPI is one of the interfaces used to access devices which have a POSIX
clock driver (real time clocks, 1588 timers etc). The fact that the SPI
bus is slow is not what the main problem is, but rather the fact that
drivers don't take a constant amount of time in transferring data over
SPI. When there is a high delay in the readout of time, there will be
uncertainty in the value that has been read out of the peripheral.
When that delay is constant, the uncertainty can at least be
approximated with a certain accuracy which is fine more often than not.
Timing jitter occurs all over in the kernel code, and is mainly caused
by having to let go of the CPU for various reasons such as preemption,
servicing interrupts, going to sleep, etc. Another major reason is CPU
dynamic frequency scaling.
It turns out that the problem of retrieving time from a SPI peripheral
with high accuracy can be solved by the use of "PTP system
timestamping" - a mechanism to correlate the time when the device has
snapshotted its internal time counter with the Linux system time at that
same moment. This is sufficient for having a precise time measurement -
it is not necessary for the whole SPI transfer to be transmitted "as
fast as possible", or "as low-jitter as possible". The system has to be
low-jitter for a very short amount of time to be effective.
This patch introduces a PTP system timestamping mechanism in struct
spi_transfer. This is to be used by SPI device drivers when they need to
know the exact time at which the underlying device's time was
snapshotted. More often than not, SPI peripherals have a very exact
timing for when their SPI-to-interconnect bridge issues a transaction
for snapshotting and reading the time register, and that will be
dependent on when the SPI-to-interconnect bridge figures out that this
is what it should do, aka as soon as it sees byte N of the SPI transfer.
Since spi_device drivers are the ones who'd know best how the peripheral
behaves in this regard, expose a mechanism in spi_transfer which allows
them to specify which word (or word range) from the transfer should be
timestamped.
Add a default implementation of the PTP system timestamping in the SPI
core. This is not going to be satisfactory performance-wise, but should
at least increase the likelihood that SPI device drivers will use PTP
system timestamping in the future.
There are 3 entry points from the core towards the SPI controller
drivers:
- transfer_one: The driver is passed individual spi_transfers to
execute. This is the easiest to timestamp.
- transfer_one_message: The core passes the driver an entire spi_message
(a potential batch of spi_transfers). The core puts the same pre and
post timestamp to all transfers within a message. This is not ideal,
but nothing better can be done by default anyway, since the core has
no insight into how the driver batches the transfers.
- transfer: Like transfer_one_message, but for unqueued drivers (i.e.
the driver implements its own queue scheduling).
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/20190905010114.26718-3-olteanv@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
nvmem_device_find provides a way to search for nvmem devices with
the help of a match function simlair to bus_find_device.
Reviewed-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Lee Jones <lee.jones@linaro.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@vger.kernel.org
Cc: netdev@vger.kernel.org
Cc: linux-rtc@vger.kernel.org
Cc: linux-serial@vger.kernel.org
|
|
The module namespace produces __strtab_ns_<sym> symbols to store
namespace strings, but it does not guarantee the name uniqueness.
This is a potential problem because we have exported symbols starting
with "ns_".
For example, kernel/capability.c exports the following symbols:
EXPORT_SYMBOL(ns_capable);
EXPORT_SYMBOL(capable);
Assume a situation where those are converted as follows:
EXPORT_SYMBOL_NS(ns_capable, some_namespace);
EXPORT_SYMBOL_NS(capable, some_namespace);
The former expands to "__kstrtab_ns_capable" and "__kstrtab_ns_ns_capable",
and the latter to "__kstrtab_capable" and "__kstrtab_ns_capable".
Then, we have the duplicated "__kstrtab_ns_capable".
To ensure the uniqueness, rename "__kstrtab_ns_*" to "__kstrtabns_*".
Reviewed-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
|
|
Currently, EXPORT_SYMBOL_NS(_GPL) constructs the kernel symbol as
follows:
__ksymtab_SYMBOL.NAMESPACE
The sym_extract_namespace() in modpost allocates memory for the part
SYMBOL.NAMESPACE when '.' is contained. One problem is that the pointer
returned by strdup() is lost because the symbol name will be copied to
malloc'ed memory by alloc_symbol(). No one will keep track of the
pointer of strdup'ed memory.
sym->namespace still points to the NAMESPACE part. So, you can free it
with complicated code like this:
free(sym->namespace - strlen(sym->name) - 1);
It complicates memory free.
To fix it elegantly, I swapped the order of the symbol and the
namespace as follows:
__ksymtab_NAMESPACE.SYMBOL
then, simplified sym_extract_namespace() so that it allocates memory
only for the NAMESPACE part.
I prefer this order because it is intuitive and also matches to major
languages. For example, NAMESPACE::NAME in C++, MODULE.NAME in Python.
Reviewed-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
|
|
Add support to restore the secure configuration for qcm_scm-32.c. This
is needed by the On Chip MEMory (OCMEM) that is present on some
Snapdragon devices.
Signed-off-by: Rob Clark <robdclark@gmail.com>
[masneyb@onstation.org: ported to latest kernel; set ctx_bank_num to
spare parameter.]
Signed-off-by: Brian Masney <masneyb@onstation.org>
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Tested-by: Gabriel Francisco <frc.gabrielgmail.com>
Signed-off-by: Rob Clark <robdclark@chromium.org>
|
|
Add support for the OCMEM lock/unlock interface that is needed by the
On Chip MEMory (OCMEM) that is present on some Snapdragon devices.
Signed-off-by: Rob Clark <robdclark@gmail.com>
[masneyb@onstation.org: ported to latest kernel; minor reformatting.]
Signed-off-by: Brian Masney <masneyb@onstation.org>
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Tested-by: Gabriel Francisco <frc.gabrielgmail.com>
Signed-off-by: Rob Clark <robdclark@chromium.org>
|
|
blk_mq_request_completed() and blk_mq_request_started() are
short, inline it.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The meaning of several member variables of these two data structures is
nontrivial. Hence document all member variables using the kernel-doc
syntax.
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Hannes Reinecke <hare@suse.com>
Cc: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Commit 897bb0c7f1ea ("blk-mq: Use proper cpumask iterator"; v4.6)
removed the last use of request_queue.nr_queues from outside
blk_mq_init_allocate_queue(). Remove this member variable to make
struct request_queue smaller. This patch does not change any
functionality.
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Hannes Reinecke <hare@suse.com>
Cc: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Don't use bool array in struct sk_msg_sg, save 12 bytes.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Dirk van der Merwe <dirk.vandermerwe@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
A few RTCs handle dates from year 0 to year 9999. Add a timestamp even if
years before 1970 will probably never be used.
Link: https://lore.kernel.org/r/20191007134724.15505-1-alexandre.belloni@bootlin.com
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
|
|
This function de-facto returns a bool, so let's change the return type
accordingly.
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
If __calc_tpm2_event_size() fails to parse an event it will return 0,
resulting tpm2_calc_event_log_size() returning -1. Currently there is
no check of this return value, and 'efi_tpm_final_log_size' can end up
being set to this negative value resulting in a crash like this one:
BUG: unable to handle page fault for address: ffffbc8fc00866ad
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
RIP: 0010:memcpy_erms+0x6/0x10
Call Trace:
tpm_read_log_efi()
tpm_bios_log_setup()
tpm_chip_register()
tpm_tis_core_init.cold.9+0x28c/0x466
tpm_tis_plat_probe()
platform_drv_probe()
...
Also __calc_tpm2_event_size() returns a size of 0 when it fails
to parse an event, so update function documentation to reflect this.
The root cause of the issue that caused the failure of event parsing
in this case is resolved by Peter Jone's patchset dealing with large
event logs where crossing over a page boundary causes the page with
the event count to be unmapped.
Signed-off-by: Jerry Snitselaar <jsnitsel@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Ben Dooks <ben.dooks@codethink.co.uk>
Cc: Dave Young <dyoung@redhat.com>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lukas Wunner <lukas@wunner.de>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Matthew Garrett <mjg59@google.com>
Cc: Octavian Purdila <octavian.purdila@intel.com>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Talbert <swt@techie.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Cc: linux-integrity@vger.kernel.org
Cc: stable@vger.kernel.org
Fixes: c46f3405692de ("tpm: Reserve the TPM final events table")
Link: https://lkml.kernel.org/r/20191002165904.8819-6-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Some machines generate a lot of event log entries. When we're
iterating over them, the code removes the old mapping and adds a
new one, so once we cross the page boundary we're unmapping the page
with the count on it. Hilarity ensues.
This patch keeps the info from the header in local variables so we don't
need to access that page again or keep track of if it's mapped.
Tested-by: Lyude Paul <lyude@redhat.com>
Signed-off-by: Peter Jones <pjones@redhat.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Acked-by: Matthew Garrett <mjg59@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Ben Dooks <ben.dooks@codethink.co.uk>
Cc: Dave Young <dyoung@redhat.com>
Cc: Jerry Snitselaar <jsnitsel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lukas Wunner <lukas@wunner.de>
Cc: Octavian Purdila <octavian.purdila@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Talbert <swt@techie.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Cc: linux-integrity@vger.kernel.org
Cc: stable@vger.kernel.org
Fixes: 44038bc514a2 ("tpm: Abstract crypto agile event size calculations")
Link: https://lkml.kernel.org/r/20191002165904.8819-4-ard.biesheuvel@linaro.org
[ Minor edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Old early platform device support is now sh-specific. Before moving on
to implementing new early platform framework based on real platform
devices, prefix all early platform symbols with 'sh_'.
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Cc: Rich Felker <dalias@libc.org>
Link: https://lore.kernel.org/r/20191003092913.10731-3-brgl@bgdev.pl
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
SuperH is the only user of the current implementation of early platform
device support. We want to introduce a more robust approach to early
probing. As the first step - move all the current early platform code
to arch/sh.
In order not to export internal drivers/base functions to arch code for
this temporary solution - copy the two needed routines for driver
matching from drivers/base/platform.c to arch/sh/drivers/platform_early.c.
Also: call early_platform_cleanup() from subsys_initcall() so that it's
called after all early devices are probed.
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Cc: Rich Felker <dalias@libc.org>
Link: https://lore.kernel.org/r/20191003092913.10731-2-brgl@bgdev.pl
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Some drivers (e.g dwc3) first try to get an IRQ byname and then fall
back to the one at index 0. In this case we do not want the error(s)
printed by platform_get_irq_byname(). This commit adds a new
platform_get_irq_byname_optional(), which does not print errors, for this.
While at it also improve the kdoc text for platform_get_irq_byname() a bit.
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=205037
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20191005210449.3926-2-hdegoede@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
During an actual call_rcu() flood, there would be frequent trips to
userspace (in-kernel call_rcu() floods must be otherwise housebroken).
Userspace execution on nohz_full CPUs implies an RCU dyntick idle/not-idle
transition pair, so this commit adds emulation of that pair.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
When multi_cpu_stop() loops waiting for other tasks, it can trigger an RCU
CPU stall warning. This can be misleading because what is instead needed
is information on whatever task is blocking multi_cpu_stop(). This commit
therefore inserts an RCU quiescent state into the multi_cpu_stop()
function's waitloop.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
If a nohz_full CPU is looping in the kernel, the scheduling-clock tick
might nevertheless remain disabled. In !PREEMPT kernels, this can
prevent RCU's attempts to enlist the aid of that CPU's executions of
cond_resched(), which can in turn result in an arbitrarily delayed grace
period and thus an OOM. RCU therefore needs a way to enable a holdout
nohz_full CPU's scheduler-clock interrupt.
This commit therefore provides a new TICK_DEP_BIT_RCU value which RCU can
pass to tick_dep_set_cpu() and friends to force on the scheduler-clock
interrupt for a specified CPU or task. In some cases, rcutorture needs
to turn on the scheduler-clock tick, so this commit also exports the
relevant symbols to GPL-licensed modules.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Pull networking fixes from David Miller:
1) Fix ieeeu02154 atusb driver use-after-free, from Johan Hovold.
2) Need to validate TCA_CBQ_WRROPT netlink attributes, from Eric
Dumazet.
3) txq null deref in mac80211, from Miaoqing Pan.
4) ionic driver needs to select NET_DEVLINK, from Arnd Bergmann.
5) Need to disable bh during nft_connlimit GC, from Pablo Neira Ayuso.
6) Avoid division by zero in taprio scheduler, from Vladimir Oltean.
7) Various xgmac fixes in stmmac driver from Jose Abreu.
8) Avoid 64-bit division in mlx5 leading to link errors on 32-bit from
Michal Kubecek.
9) Fix bad VLAN check in rtl8366 DSA driver, from Linus Walleij.
10) Fix sleep while atomic in sja1105, from Vladimir Oltean.
11) Suspend/resume deadlock in stmmac, from Thierry Reding.
12) Various UDP GSO fixes from Josh Hunt.
13) Fix slab out of bounds access in tcp_zerocopy_receive(), from Eric
Dumazet.
14) Fix OOPS in __ipv6_ifa_notify(), from David Ahern.
15) Memory leak in NFC's llcp_sock_bind, from Eric Dumazet.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (72 commits)
selftests/net: add nettest to .gitignore
net: qlogic: Fix memory leak in ql_alloc_large_buffers
nfc: fix memory leak in llcp_sock_bind()
sch_dsmark: fix potential NULL deref in dsmark_init()
net: phy: at803x: use operating parameters from PHY-specific status
net: phy: extract pause mode
net: phy: extract link partner advertisement reading
net: phy: fix write to mii-ctrl1000 register
ipv6: Handle missing host route in __ipv6_ifa_notify
net: phy: allow for reset line to be tied to a sleepy GPIO controller
net: ipv4: avoid mixed n_redirects and rate_tokens usage
r8152: Set macpassthru in reset_resume callback
cxgb4:Fix out-of-bounds MSI-X info array access
Revert "ipv6: Handle race in addrconf_dad_work"
net: make sock_prot_memory_pressure() return "const char *"
rxrpc: Fix rxrpc_recvmsg tracepoint
qmi_wwan: add support for Cinterion CLS8 devices
tcp: fix slab-out-of-bounds in tcp_zerocopy_receive()
lib: textsearch: fix escapes in example code
udp: only do GSO if # of segs > 1
...
|
|
Extract the update of phylib's software pause mode state from
genphy_read_status(), so that we can re-use this functionality with
PHYs that have alternative ways to read the negotiation results.
Tested-by: tinywrkb <tinywrkb@gmail.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Move reading the link partner advertisement out of genphy_read_status()
into its own separate function. This will allow re-use of this code by
PHY drivers that are able to read the resolved status from the PHY.
Tested-by: tinywrkb <tinywrkb@gmail.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When userspace writes to the MII_ADVERTISE register, we update phylib's
advertising mask and trigger a renegotiation. However, writing to the
MII_CTRL1000 register, which contains the gigabit advertisement, does
neither. This can lead to phylib's copy of the advertisement becoming
de-synced with the values in the PHY register set, which can result in
incorrect negotiation resolution.
Fixes: 5502b218e001 ("net: phy: use phy_resolve_aneg_linkmode in genphy_read_status")
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Some drivers need to be able to know the current polling interval for
devices working in polling mode, let's allow them fetching it.
Acked-By: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Tested-by: Michal Vokáč <michal.vokac@ysoft.com>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
|
|
Pull KVM fixes from Paolo Bonzini:
"ARM and x86 bugfixes of all kinds.
The most visible one is that migrating a nested hypervisor has always
been busted on Broadwell and newer processors, and that has finally
been fixed"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (22 commits)
KVM: x86: omit "impossible" pmu MSRs from MSR list
KVM: nVMX: Fix consistency check on injected exception error code
KVM: x86: omit absent pmu MSRs from MSR list
selftests: kvm: Fix libkvm build error
kvm: vmx: Limit guest PMCs to those supported on the host
kvm: x86, powerpc: do not allow clearing largepages debugfs entry
KVM: selftests: x86: clarify what is reported on KVM_GET_MSRS failure
KVM: VMX: Set VMENTER_L1D_FLUSH_NOT_REQUIRED if !X86_BUG_L1TF
selftests: kvm: add test for dirty logging inside nested guests
KVM: x86: fix nested guest live migration with PML
KVM: x86: assign two bits to track SPTE kinds
KVM: x86: Expose XSAVEERPTR to the guest
kvm: x86: Enumerate support for CLZERO instruction
kvm: x86: Use AMD CPUID semantics for AMD vCPUs
kvm: x86: Improve emulation of CPUID leaves 0BH and 1FH
KVM: X86: Fix userspace set invalid CR4
kvm: x86: Fix a spurious -E2BIG in __do_cpuid_func
KVM: LAPIC: Loosen filter for adaptive tuning of lapic_timer_advance_ns
KVM: arm/arm64: vgic: Use the appropriate TRACE_INCLUDE_PATH
arm64: KVM: Kill hyp_alternate_select()
...
|
|
Since errors are propagated all the way up to the caller, propagate
possible extack of the caller all the way down to the notifier block
callback.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Currently all users of FIB notifier only cares about events in init_net.
Later in this patchset, users get interested in other namespaces too.
However, for every registered block user is interested only about one
namespace. Make the FIB notifier registration per-netns and avoid
unnecessary calls of notifier block for other namespaces.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This sync_state driver/bus callback is called once all the consumers
of a supplier have probed successfully.
This allows the supplier device's driver/bus to sync the supplier
device's state to the software state with the guarantee that all the
consumers are actively managing the resources provided by the supplier
device.
To maintain backwards compatibility and ease transition from existing
frameworks and resource cleanup schemes, late_initcall_sync is the
earliest when the sync_state callback might be called.
There is no upper bound on the time by which the sync_state callback
has to be called. This is because if a consumer device never probes,
the supplier has to maintain its resources in the state left by the
bootloader. For example, if the bootloader leaves the display
backlight at a fixed voltage and the backlight driver is never probed,
you don't want the backlight to ever be turned off after boot up.
Also, when multiple devices are added after kernel init, some
suppliers could be added before their consumer devices get added. In
these instances, the supplier devices could get their sync_state
callback called right after they probe because the consumers devices
haven't had a chance to create device links to the suppliers.
To handle this correctly, this change also provides APIs to
pause/resume sync state callbacks so that when multiple devices are
added, their sync_state callback evaluation can be postponed to happen
after all of them are added.
kbuild test robot reported missing documentation for device.state_synced
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20190904211126.47518-5-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The firmware corresponding to a device (dev.fwnode) might be able to
provide functional dependency information between a device and its
supplier and consumer devices. Tracking this functional dependency
allows optimizing device probe order and informing a supplier when all
its consumers have probed (and thereby actively managing their
resources).
The existing device links feature allows tracking and using
supplier-consumer relationships. So, this patch adds the add_links()
fwnode callback to allow firmware to create device links for each
device as the device is added.
However, when consumer devices are added, they might not have a supplier
device to link to despite needing mandatory resources/functionality from
one or more suppliers. A waiting_for_suppliers list is created to track
such consumers and retry linking them when new devices get added.
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20190904211126.47518-3-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
It's often useful to look up a device that corresponds to a fwnode. So
add an API to do that irrespective of the bus on which the device has
been added to.
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20190904211126.47518-2-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Enhanced addressing mode is only required when more than 32 bits need to
be addressed. Add a DMA configuration parameter to enable this mode only
when needed.
Signed-off-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This renames the very specific audit_log_link_denied() to
audit_log_path_denied() and adds the AUDIT_* type as an argument. This
allows for the creation of the new AUDIT_ANOM_CREAT that can be used to
report the fifo/regular file creation restrictions that were introduced
in commit 30aba6656f61 ("namei: allow restricted O_CREAT of FIFOs and
regular files").
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
The secure monitor driver is currently a frankenstein driver which is
registered as a platform driver but its functionality goes through a
global struct accessed by the consumer drivers using exported helper
functions.
Try to tidy up the driver moving the firmware struct into the driver
data and make the consumer drivers referencing the secure-monitor using
a new property in the DT.
Currently only the nvmem driver is using this API so we can fix it in
the same commit.
Reviewed-by: Jerome Brunet <jbrunet@baylibre.com>
Signed-off-by: Carlo Caione <ccaione@baylibre.com>
Signed-off-by: Kevin Hilman <khilman@baylibre.com>
|