Age | Commit message (Collapse) | Author |
|
As a result of the asymmetric public keys subtype Kconfig option being
defined as tristate, with the existing IMA Makefile, ima_asymmetric_keys.c
could be built as a kernel module. To prevent this from happening, this
patch defines and uses an intermediate Kconfig boolean option named
IMA_MEASURE_ASYMMETRIC_KEYS.
Signed-off-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
Suggested-by: James.Bottomley <James.Bottomley@HansenPartnership.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Reported-by: kbuild test robot <lkp@intel.com> # ima_asymmetric_keys.c
is built as a kernel module.
Fixes: 88e70da170e8 ("IMA: Define an IMA hook to measure keys")
Fixes: cb1aa3823c92 ("KEYS: Call the IMA hook to measure keys")
[zohar@linux.ibm.com: updated patch description]
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
|
|
Pull networking fixes from David Miller:
1) Missing netns pointer init in arp_tables, from Florian Westphal.
2) Fix normal tcp SACK being treated as D-SACK, from Pengcheng Yang.
3) Fix divide by zero in sch_cake, from Wen Yang.
4) Len passed to skb_put_padto() is wrong in qrtr code, from Carl
Huang.
5) cmd->obj.chunk is leaked in sctp code error paths, from Xin Long.
6) cgroup bpf programs can be released out of order, fix from Roman
Gushchin.
7) Make sure stmmac debugfs entry name is changed when device name
changes, from Jiping Ma.
8) Fix memory leak in vlan_dev_set_egress_priority(), from Eric
Dumazet.
9) SKB leak in lan78xx usb driver, also from Eric Dumazet.
10) Ridiculous TCA_FQ_QUANTUM values configured can cause loops in fq
packet scheduler, reject them. From Eric Dumazet.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (69 commits)
tipc: fix wrong connect() return code
tipc: fix link overflow issue at socket shutdown
netfilter: ipset: avoid null deref when IPSET_ATTR_LINENO is present
netfilter: conntrack: dccp, sctp: handle null timeout argument
atm: eni: fix uninitialized variable warning
macvlan: do not assume mac_header is set in macvlan_broadcast()
net: sch_prio: When ungrafting, replace with FIFO
mlxsw: spectrum_qdisc: Ignore grafting of invisible FIFO
MAINTAINERS: Remove myself as co-maintainer for qcom-ethqos
gtp: fix bad unlock balance in gtp_encap_enable_socket
pkt_sched: fq: do not accept silly TCA_FQ_QUANTUM
tipc: remove meaningless assignment in Makefile
tipc: do not add socket.o to tipc-y twice
net: stmmac: dwmac-sun8i: Allow all RGMII modes
net: stmmac: dwmac-sunxi: Allow all RGMII modes
net: usb: lan78xx: fix possible skb leak
net: stmmac: Fixed link does not need MDIO Bus
vlan: vlan_changelink() should propagate errors
vlan: fix memory leak in vlan_dev_set_egress_priority
stmmac: debugfs entry name is not be changed when udev rename device name.
...
|
|
Document BPF_F_QUERY_EFFECTIVE flag, mostly to clarify how it affects
attach_flags what may not be obvious and what may lead to confision.
Specifically attach_flags is returned only for target_fd but if programs
are inherited from an ancestor cgroup then returned attach_flags for
current cgroup may be confusing. For example, two effective programs of
same attach_type can be returned but w/o BPF_F_ALLOW_MULTI in
attach_flags.
Simple repro:
# bpftool c s /sys/fs/cgroup/path/to/task
ID AttachType AttachFlags Name
# bpftool c s /sys/fs/cgroup/path/to/task effective
ID AttachType AttachFlags Name
95043 ingress tw_ipt_ingress
95048 ingress tw_ingress
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200108014006.938363-1-rdna@fb.com
|
|
Add a helper to send out a tcp-ack. It will be used in the later
bpf_dctcp implementation that requires to send out an ack
when the CE state changed.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109004551.3900448-1-kafai@fb.com
|
|
This patch makes "struct tcp_congestion_ops" to be the first user
of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops
in bpf.
The BPF implemented tcp_congestion_ops can be used like
regular kernel tcp-cc through sysctl and setsockopt. e.g.
[root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion
net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic
net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic
net.ipv4.tcp_congestion_control = bpf_cubic
There has been attempt to move the TCP CC to the user space
(e.g. CCP in TCP). The common arguments are faster turn around,
get away from long-tail kernel versions in production...etc,
which are legit points.
BPF has been the continuous effort to join both kernel and
userspace upsides together (e.g. XDP to gain the performance
advantage without bypassing the kernel). The recent BPF
advancements (in particular BTF-aware verifier, BPF trampoline,
BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc)
possible in BPF. It allows a faster turnaround for testing algorithm
in the production while leveraging the existing (and continue growing)
BPF feature/framework instead of building one specifically for
userspace TCP CC.
This patch allows write access to a few fields in tcp-sock
(in bpf_tcp_ca_btf_struct_access()).
The optional "get_info" is unsupported now. It can be added
later. One possible way is to output the info with a btf-id
to describe the content.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
|
|
The patch introduces BPF_MAP_TYPE_STRUCT_OPS. The map value
is a kernel struct with its func ptr implemented in bpf prog.
This new map is the interface to register/unregister/introspect
a bpf implemented kernel struct.
The kernel struct is actually embedded inside another new struct
(or called the "value" struct in the code). For example,
"struct tcp_congestion_ops" is embbeded in:
struct bpf_struct_ops_tcp_congestion_ops {
refcount_t refcnt;
enum bpf_struct_ops_state state;
struct tcp_congestion_ops data; /* <-- kernel subsystem struct here */
}
The map value is "struct bpf_struct_ops_tcp_congestion_ops".
The "bpftool map dump" will then be able to show the
state ("inuse"/"tobefree") and the number of subsystem's refcnt (e.g.
number of tcp_sock in the tcp_congestion_ops case). This "value" struct
is created automatically by a macro. Having a separate "value" struct
will also make extending "struct bpf_struct_ops_XYZ" easier (e.g. adding
"void (*init)(void)" to "struct bpf_struct_ops_XYZ" to do some
initialization works before registering the struct_ops to the kernel
subsystem). The libbpf will take care of finding and populating the
"struct bpf_struct_ops_XYZ" from "struct XYZ".
Register a struct_ops to a kernel subsystem:
1. Load all needed BPF_PROG_TYPE_STRUCT_OPS prog(s)
2. Create a BPF_MAP_TYPE_STRUCT_OPS with attr->btf_vmlinux_value_type_id
set to the btf id "struct bpf_struct_ops_tcp_congestion_ops" of the
running kernel.
Instead of reusing the attr->btf_value_type_id,
btf_vmlinux_value_type_id s added such that attr->btf_fd can still be
used as the "user" btf which could store other useful sysadmin/debug
info that may be introduced in the furture,
e.g. creation-date/compiler-details/map-creator...etc.
3. Create a "struct bpf_struct_ops_tcp_congestion_ops" object as described
in the running kernel btf. Populate the value of this object.
The function ptr should be populated with the prog fds.
4. Call BPF_MAP_UPDATE with the object created in (3) as
the map value. The key is always "0".
During BPF_MAP_UPDATE, the code that saves the kernel-func-ptr's
args as an array of u64 is generated. BPF_MAP_UPDATE also allows
the specific struct_ops to do some final checks in "st_ops->init_member()"
(e.g. ensure all mandatory func ptrs are implemented).
If everything looks good, it will register this kernel struct
to the kernel subsystem. The map will not allow further update
from this point.
Unregister a struct_ops from the kernel subsystem:
BPF_MAP_DELETE with key "0".
Introspect a struct_ops:
BPF_MAP_LOOKUP_ELEM with key "0". The map value returned will
have the prog _id_ populated as the func ptr.
The map value state (enum bpf_struct_ops_state) will transit from:
INIT (map created) =>
INUSE (map updated, i.e. reg) =>
TOBEFREE (map value deleted, i.e. unreg)
The kernel subsystem needs to call bpf_struct_ops_get() and
bpf_struct_ops_put() to manage the "refcnt" in the
"struct bpf_struct_ops_XYZ". This patch uses a separate refcnt
for the purose of tracking the subsystem usage. Another approach
is to reuse the map->refcnt and then "show" (i.e. during map_lookup)
the subsystem's usage by doing map->refcnt - map->usercnt to filter out
the map-fd/pinned-map usage. However, that will also tie down the
future semantics of map->refcnt and map->usercnt.
The very first subsystem's refcnt (during reg()) holds one
count to map->refcnt. When the very last subsystem's refcnt
is gone, it will also release the map->refcnt. All bpf_prog will be
freed when the map->refcnt reaches 0 (i.e. during map_free()).
Here is how the bpftool map command will look like:
[root@arch-fb-vm1 bpf]# bpftool map show
6: struct_ops name dctcp flags 0x0
key 4B value 256B max_entries 1 memlock 4096B
btf_id 6
[root@arch-fb-vm1 bpf]# bpftool map dump id 6
[{
"value": {
"refcnt": {
"refs": {
"counter": 1
}
},
"state": 1,
"data": {
"list": {
"next": 0,
"prev": 0
},
"key": 0,
"flags": 2,
"init": 24,
"release": 0,
"ssthresh": 25,
"cong_avoid": 30,
"set_state": 27,
"cwnd_event": 28,
"in_ack_event": 26,
"undo_cwnd": 29,
"pkts_acked": 0,
"min_tso_segs": 0,
"sndbuf_expand": 0,
"cong_control": 0,
"get_info": 0,
"name": [98,112,102,95,100,99,116,99,112,0,0,0,0,0,0,0
],
"owner": 0
}
}
}
]
Misc Notes:
* bpf_struct_ops_map_sys_lookup_elem() is added for syscall lookup.
It does an inplace update on "*value" instead returning a pointer
to syscall.c. Otherwise, it needs a separate copy of "zero" value
for the BPF_STRUCT_OPS_STATE_INIT to avoid races.
* The bpf_struct_ops_map_delete_elem() is also called without
preempt_disable() from map_delete_elem(). It is because
the "->unreg()" may requires sleepable context, e.g.
the "tcp_unregister_congestion_control()".
* "const" is added to some of the existing "struct btf_func_model *"
function arg to avoid a compiler warning caused by this patch.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003505.3855919-1-kafai@fb.com
|
|
This patch allows the kernel's struct ops (i.e. func ptr) to be
implemented in BPF. The first use case in this series is the
"struct tcp_congestion_ops" which will be introduced in a
latter patch.
This patch introduces a new prog type BPF_PROG_TYPE_STRUCT_OPS.
The BPF_PROG_TYPE_STRUCT_OPS prog is verified against a particular
func ptr of a kernel struct. The attr->attach_btf_id is the btf id
of a kernel struct. The attr->expected_attach_type is the member
"index" of that kernel struct. The first member of a struct starts
with member index 0. That will avoid ambiguity when a kernel struct
has multiple func ptrs with the same func signature.
For example, a BPF_PROG_TYPE_STRUCT_OPS prog is written
to implement the "init" func ptr of the "struct tcp_congestion_ops".
The attr->attach_btf_id is the btf id of the "struct tcp_congestion_ops"
of the _running_ kernel. The attr->expected_attach_type is 3.
The ctx of BPF_PROG_TYPE_STRUCT_OPS is an array of u64 args saved
by arch_prepare_bpf_trampoline that will be done in the next
patch when introducing BPF_MAP_TYPE_STRUCT_OPS.
"struct bpf_struct_ops" is introduced as a common interface for the kernel
struct that supports BPF_PROG_TYPE_STRUCT_OPS prog. The supporting kernel
struct will need to implement an instance of the "struct bpf_struct_ops".
The supporting kernel struct also needs to implement a bpf_verifier_ops.
During BPF_PROG_LOAD, bpf_struct_ops_find() will find the right
bpf_verifier_ops by searching the attr->attach_btf_id.
A new "btf_struct_access" is also added to the bpf_verifier_ops such
that the supporting kernel struct can optionally provide its own specific
check on accessing the func arg (e.g. provide limited write access).
After btf_vmlinux is parsed, the new bpf_struct_ops_init() is called
to initialize some values (e.g. the btf id of the supporting kernel
struct) and it can only be done once the btf_vmlinux is available.
The R0 checks at BPF_EXIT is excluded for the BPF_PROG_TYPE_STRUCT_OPS prog
if the return type of the prog->aux->attach_func_proto is "void".
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003503.3855825-1-kafai@fb.com
|
|
The cpuidle_driver_ref() and cpuidle_driver_unref() functions are not
used and the refcnt field in struct cpuidle_driver operated by them
is not updated anywhere else (so it is permanently equal to 0), so
drop both of them along with refcnt.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
|
|
It is much more intuitive if reset is treated as asserted when GPIO value
is set to 1. All NVIDIA Tegra device-trees are properly specifying active
state of the reset-GPIO since 2013, let's clean up that part of the code.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Link: https://lore.kernel.org/r/20200106013416.9604-14-digetx@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Now drivers (like NVIDIA Tegra USB PHY for example) will be able to
benefit from the resource-managed variant, making driver's code a bit
cleaner.
Suggested-by: Thierry Reding <thierry.reding@gmail.com>
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Link: https://lore.kernel.org/r/20200106013416.9604-11-digetx@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The PHY driver should keep track of the enable state, otherwise enable
refcount is screwed if USB driver tries to enable PHY when it is already
enabled. This will be the case for ChipIdea and Tegra EHCI drivers once
PHY driver will gain support for the init/shutdown callbacks.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Link: https://lore.kernel.org/r/20200106013416.9604-5-digetx@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Defining the USB modes from the latest USB Power Delivery
Specification - USB 2.0, USB 3.2 and USB4 - as special modal
states just like the Accessory Modes.
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Link: https://lore.kernel.org/r/20191230142611.24921-14-heikki.krogerus@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Passing all the details that the alternate mode drivers
provide to the mux drivers during mode changes.
The mux drivers will in practice need to be able to make
decisions on their own. It is not enough that they get only
the requested port state. With the Thunderbolt 3 alternate
mode for example the mux driver will need to consider also
the capabilities of the cable before configuring the mux.
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Link: https://lore.kernel.org/r/20191230142611.24921-13-heikki.krogerus@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Adding definitions for USB Type-C Specification Release 1.3,
1.4 and 2.0.
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Link: https://lore.kernel.org/r/20191230142611.24921-12-heikki.krogerus@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Discover Identity command response has also 3 product type
specific VDOs on top of ID Header VDO, Cert Stat VDO and
Product VDO.
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Link: https://lore.kernel.org/r/20191230142611.24921-11-heikki.krogerus@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The latest version of the USB Power Delivery Specification
R3.0 added UFP and DFP product types for the Discover
Identity message. Both types can be used for example for
checking the USB capability of the partner, which means the
USB modes (USB 2.0, USB 3.0 and USB4) that the partner
device supports.
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Link: https://lore.kernel.org/r/20191230142611.24921-10-heikki.krogerus@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Version 2.0 of the USB Power Delivery Specification R3.0
defines a new message called Enter_USB, which is made with
USB4 in mind. Enter_USB message is in practice the same as
the Enter Mode command (used when entering alternate modes)
that just needs to be used when entering USB4 mode.
The message does also support entering USB 2.0 or USB 3.2
mode instead of USB4 mode, but it is only required with
USB4. I.e. with USB2 and USB3 Enter_USB message is optional.
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Link: https://lore.kernel.org/r/20191230142611.24921-9-heikki.krogerus@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Thunderbolt 3, and probable USB4 too, will need to be able
to get details about the cables. Adding typec_cable_get()
function that the alternate mode drivers can use to gain
access to gain access to the cable.
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Link: https://lore.kernel.org/r/20191230142611.24921-4-heikki.krogerus@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Enter Mode Command may contain one VDO.
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Link: https://lore.kernel.org/r/20191230142611.24921-3-heikki.krogerus@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Now that all templates provide a ->create() method which creates an
instance, installs a strongly-typed ->free() method directly to it, and
registers it, the older ->alloc() and ->free() methods in
'struct crypto_template' are no longer used. Remove them.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Convert shash_free_instance() and its users to the new way of freeing
instances, where a ->free() method is installed to the instance struct
itself. This replaces the weakly-typed method crypto_template::free().
This will allow removing support for the old way of freeing instances.
Also give shash_free_instance() a more descriptive name to reflect that
it's only for instances with a single spawn, not for any instance.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Convert the "seqiv" template to the new way of freeing instances where a
->free() method is installed to the instance struct itself. Also remove
the unused implementation of the old way of freeing instances from the
"echainiv" template, since it's already using the new way too.
In doing this, also simplify the code by making the helper function
aead_geniv_alloc() install the ->free() method, instead of making seqiv
and echainiv do this themselves. This is analogous to how
skcipher_alloc_instance_simple() works.
This will allow removing support for the old way of freeing instances.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add support to shash and ahash for the new way of freeing instances
(already used for skcipher, aead, and akcipher) where a ->free() method
is installed to the instance struct itself. These methods are more
strongly-typed than crypto_template::free(), which they replace.
This will allow removing support for the old way of freeing instances.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Now that crypto_init_spawn() is only called by crypto_grab_spawn(),
simplify things by moving its functionality into crypto_grab_spawn().
In the process of doing this, also be more consistent about when the
spawn and instance are updated, and remove the crypto_spawn::dropref
flag since now it's always set.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Now that all the templates that need ahash spawns have been converted to
use crypto_grab_ahash() rather than look up the algorithm directly,
crypto_ahash_type is no longer used outside of ahash.c. Make it static.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Remove lots of helper functions that were previously used for
instantiating crypto templates, but are now unused:
- crypto_get_attr_alg() and similar functions looked up an inner
algorithm directly from a template parameter. These were replaced
with getting the algorithm's name, then calling crypto_grab_*().
- crypto_init_spawn2() and similar functions initialized a spawn, given
an algorithm. Similarly, these were replaced with crypto_grab_*().
- crypto_alloc_instance() and similar functions allocated an instance
with a single spawn, given the inner algorithm. These aren't useful
anymore since crypto_grab_*() need the instance allocated first.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Now that all users of single-block cipher spawns have been converted to
use 'struct crypto_cipher_spawn' rather than the less specifically typed
'struct crypto_spawn', make crypto_spawn_cipher() take a pointer to a
'struct crypto_cipher_spawn' rather than a 'struct crypto_spawn'.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Make skcipher_alloc_instance_simple() use the new function
crypto_grab_cipher() to initialize its cipher spawn.
This is needed to make all spawns be initialized in a consistent way.
Also simplify the error handling by taking advantage of crypto_drop_*()
now accepting (as a no-op) spawns that haven't been initialized yet, and
by taking advantage of crypto_grab_*() now handling ERR_PTR() names.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently, "cipher" (single-block cipher) spawns are usually initialized
by using crypto_get_attr_alg() to look up the algorithm, then calling
crypto_init_spawn(). In one case, crypto_grab_spawn() is used directly.
The former way is different from how skcipher, aead, and akcipher spawns
are initialized (they use crypto_grab_*()), and for no good reason.
This difference introduces unnecessary complexity.
The crypto_grab_*() functions used to have some problems, like not
holding a reference to the algorithm and requiring the caller to
initialize spawn->base.inst. But those problems are fixed now.
Also, the cipher spawns are not strongly typed; e.g., the API requires
that the user manually specify the flags CRYPTO_ALG_TYPE_CIPHER and
CRYPTO_ALG_TYPE_MASK. Though the "cipher" algorithm type itself isn't
yet strongly typed, we can start by making the spawns strongly typed.
So, let's introduce a new 'struct crypto_cipher_spawn', and functions
crypto_grab_cipher() and crypto_drop_cipher() to grab and drop them.
Later patches will convert all cipher spawns to use these, then make
crypto_spawn_cipher() take 'struct crypto_cipher_spawn' as well, instead
of a bare 'struct crypto_spawn' as it currently does.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently, ahash spawns are initialized by using ahash_attr_alg() or
crypto_find_alg() to look up the ahash algorithm, then calling
crypto_init_ahash_spawn().
This is different from how skcipher, aead, and akcipher spawns are
initialized (they use crypto_grab_*()), and for no good reason. This
difference introduces unnecessary complexity.
The crypto_grab_*() functions used to have some problems, like not
holding a reference to the algorithm and requiring the caller to
initialize spawn->base.inst. But those problems are fixed now.
So, let's introduce crypto_grab_ahash() so that we can convert all
templates to the same way of initializing their spawns.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently, shash spawns are initialized by using shash_attr_alg() or
crypto_alg_mod_lookup() to look up the shash algorithm, then calling
crypto_init_shash_spawn().
This is different from how skcipher, aead, and akcipher spawns are
initialized (they use crypto_grab_*()), and for no good reason. This
difference introduces unnecessary complexity.
The crypto_grab_*() functions used to have some problems, like not
holding a reference to the algorithm and requiring the caller to
initialize spawn->base.inst. But those problems are fixed now.
So, let's introduce crypto_grab_shash() so that we can convert all
templates to the same way of initializing their spawns.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently, crypto_spawn::inst is first used temporarily to pass the
instance to crypto_grab_spawn(). Then crypto_init_spawn() overwrites it
with crypto_spawn::next, which shares the same union. Finally,
crypto_spawn::inst is set again when the instance is registered.
Make this less convoluted by just passing the instance as an argument to
crypto_grab_spawn() instead.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Initializing a crypto_akcipher_spawn currently requires:
1. Set spawn->base.inst to point to the instance.
2. Call crypto_grab_akcipher().
But there's no reason for these steps to be separate, and in fact this
unneeded complication has caused at least one bug, the one fixed by
commit 6db43410179b ("crypto: adiantum - initialize crypto_spawn::inst")
So just make crypto_grab_akcipher() take the instance as an argument.
To keep the function call from getting too unwieldy due to this extra
argument, also introduce a 'mask' variable into pkcs1pad_create().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Initializing a crypto_aead_spawn currently requires:
1. Set spawn->base.inst to point to the instance.
2. Call crypto_grab_aead().
But there's no reason for these steps to be separate, and in fact this
unneeded complication has caused at least one bug, the one fixed by
commit 6db43410179b ("crypto: adiantum - initialize crypto_spawn::inst")
So just make crypto_grab_aead() take the instance as an argument.
To keep the function calls from getting too unwieldy due to this extra
argument, also introduce a 'mask' variable into the affected places
which weren't already using one.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Initializing a crypto_skcipher_spawn currently requires:
1. Set spawn->base.inst to point to the instance.
2. Call crypto_grab_skcipher().
But there's no reason for these steps to be separate, and in fact this
unneeded complication has caused at least one bug, the one fixed by
commit 6db43410179b ("crypto: adiantum - initialize crypto_spawn::inst")
So just make crypto_grab_skcipher() take the instance as an argument.
To keep the function calls from getting too unwieldy due to this extra
argument, also introduce a 'mask' variable into the affected places
which weren't already using one.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Define struct ahash_instance in a way analogous to struct
skcipher_instance, struct aead_instance, and struct akcipher_instance,
where the struct is defined to include both the algorithm structure at
the beginning and the additional crypto_instance fields at the end.
This is needed to allow allocating ahash instances directly using
kzalloc(sizeof(*inst) + sizeof(*ictx), ...) in the same way as skcipher,
aead, and akcipher instances. In turn, that's needed to make spawns be
initialized in a consistent way everywhere.
Also take advantage of the addition of the base instance to struct
ahash_instance by simplifying the ahash_crypto_instance() and
ahash_instance() functions.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Define struct shash_instance in a way analogous to struct
skcipher_instance, struct aead_instance, and struct akcipher_instance,
where the struct is defined to include both the algorithm structure at
the beginning and the additional crypto_instance fields at the end.
This is needed to allow allocating shash instances directly using
kzalloc(sizeof(*inst) + sizeof(*ictx), ...) in the same way as skcipher,
aead, and akcipher instances. In turn, that's needed to make spawns be
initialized in a consistent way everywhere.
Also take advantage of the addition of the base instance to struct
shash_instance by simplifying the shash_crypto_instance() and
shash_instance() functions.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The CRYPTO_TFM_RES_* flags were apparently meant as a way to make the
->setkey() functions provide more information about errors. But these
flags weren't actually being used or tested, and in many cases they
weren't being set correctly anyway. So they've now been removed.
Also, if someone ever actually needs to start better distinguishing
->setkey() errors (which is somewhat unlikely, as this has been unneeded
for a long time), we'd be much better off just defining different return
values, like -EINVAL if the key is invalid for the algorithm vs.
-EKEYREJECTED if the key was rejected by a policy like "no weak keys".
That would be much simpler, less error-prone, and easier to test.
So just remove CRYPTO_TFM_RES_MASK and all the unneeded logic that
propagates these flags around.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The CRYPTO_TFM_RES_WEAK_KEY flag was apparently meant as a way to make
the ->setkey() functions provide more information about errors.
However, no one actually checks for this flag, which makes it pointless.
There are also no tests that verify that all algorithms actually set (or
don't set) it correctly.
This is also the last remaining CRYPTO_TFM_RES_* flag, which means that
it's the only thing still needing all the boilerplate code which
propagates these flags around from child => parent tfms.
And if someone ever needs to distinguish this error in the future (which
is somewhat unlikely, as it's been unneeded for a long time), it would
be much better to just define a new return value like -EKEYREJECTED.
That would be much simpler, less error-prone, and easier to test.
So just remove this flag.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The CRYPTO_TFM_RES_BAD_KEY_LEN flag was apparently meant as a way to
make the ->setkey() functions provide more information about errors.
However, no one actually checks for this flag, which makes it pointless.
Also, many algorithms fail to set this flag when given a bad length key.
Reviewing just the generic implementations, this is the case for
aes-fixed-time, cbcmac, echainiv, nhpoly1305, pcrypt, rfc3686, rfc4309,
rfc7539, rfc7539esp, salsa20, seqiv, and xcbc. But there are probably
many more in arch/*/crypto/ and drivers/crypto/.
Some algorithms can even set this flag when the key is the correct
length. For example, authenc and authencesn set it when the key payload
is malformed in any way (not just a bad length), the atmel-sha and ccree
drivers can set it if a memory allocation fails, and the chelsio driver
sets it for bad auth tag lengths, not just bad key lengths.
So even if someone actually wanted to start checking this flag (which
seems unlikely, since it's been unused for a long time), there would be
a lot of work needed to get it working correctly. But it would probably
be much better to go back to the drawing board and just define different
return values, like -EINVAL if the key is invalid for the algorithm vs.
-EKEYREJECTED if the key was rejected by a policy like "no weak keys".
That would be much simpler, less error-prone, and easier to test.
So just remove this flag.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The flag CRYPTO_TFM_RES_BAD_BLOCK_LEN is never checked for, and it's
only set by one driver. And even that single driver's use is wrong
because the driver is setting the flag from ->encrypt() and ->decrypt()
with no locking, which is unsafe because ->encrypt() and ->decrypt() can
be executed by many threads in parallel on the same tfm.
Just remove this flag.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The tfm result flags CRYPTO_TFM_RES_BAD_KEY_SCHED and
CRYPTO_TFM_RES_BAD_FLAGS are never used, so remove them.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
skcipher_walk_aead() is unused and is identical to
skcipher_walk_aead_encrypt(), so remove it.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
It is possible to stack multiple DSA switches in a way that they are not
part of the tree (disjoint) but the DSA master of a switch is a DSA
slave of another. When that happens switch drivers may have to know this
is the case so as to determine whether their tagging protocol has a
remove chance of working.
This is useful for specific switch drivers such as b53 where devices
have been known to be stacked in the wild without the Broadcom tag
protocol supporting that feature. This allows b53 to continue supporting
those devices by forcing the disabling of Broadcom tags on the outermost
switches if necessary.
The get_tag_protocol() function is therefore updated to gain an
additional enum dsa_tag_protocol argument which denotes the current
tagging protocol used by the DSA master we are attached to, else
DSA_TAG_PROTO_NONE for the top of the dsa_switch_tree.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
It is possible that a reporter recovery completion do not finish
successfully when recovery is triggered via
devlink_health_reporter_recover as recovery could be processed in
different context. In such scenario an error is returned by driver when
recover hook is invoked and successful recovery completion is
intimated later.
Expose devlink recover done API to update recovery stats.
Signed-off-by: Vikas Gupta <vikas.gupta@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Pablo Neira Ayuso says:
====================
Netfilter fixes for net
The following patchset contains Netfilter fixes for net:
1) Missing netns context in arp_tables, from Florian Westphal.
2) Underflow in flowtable reference counter, from wenxu.
3) Fix incorrect ethernet destination address in flowtable offload,
from wenxu.
4) Check for status of neighbour entry, from wenxu.
5) Fix NAT port mangling, from wenxu.
6) Unbind callbacks from destroy path to cleanup hardware properly
on flowtable removal.
7) Fix missing casting statistics timestamp, add nf_flowtable_time_stamp
and use it.
8) NULL pointer exception when timeout argument is null in conntrack
dccp and sctp protocol helpers, from Florian Westphal.
9) Possible nul-dereference in ipset with IPSET_ATTR_LINENO, also from
Florian.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
As part of the continual effort to remove direct usage of skb->next and
skb->prev, this patch adds a helper for iterating through the
singly-linked variant of skb lists, which are used for lists of GSO
packet. The name "skb_list_..." has been chosen to match the existing
function, "kfree_skb_list, which also operates on these singly-linked
lists, and the "..._walk_safe" part is the same idiom as elsewhere in
the kernel.
This patch removes the helper from wireguard and puts it into
linux/skbuff.h, while making it a bit more robust for general usage. In
particular, parenthesis are added around the macro argument usage, and it
now accounts for trying to iterate through an already-null skb pointer,
which will simply run the iteration zero times. This latter enhancement
means it can be used to replace both do { ... } while and while (...)
open-coded idioms.
This should take care of these three possible usages, which match all
current methods of iterations.
skb_list_walk_safe(segs, skb, next) { ... }
skb_list_walk_safe(skb, skb, next) { ... }
skb_list_walk_safe(segs, skb, segs) { ... }
Gcc appears to generate efficient code for each of these.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Use of eth_hdr() in tx path is error prone.
Many drivers call skb_reset_mac_header() before using it,
but others do not.
Commit 6d1ccff62780 ("net: reset mac header in dev_start_xmit()")
attempted to fix this generically, but commit d346a3fae3ff
("packet: introduce PACKET_QDISC_BYPASS socket option") brought
back the macvlan bug.
Lets add a new helper, so that tx paths no longer have
to call skb_reset_mac_header() only to get a pointer
to skb->data.
Hopefully we will be able to revert 6d1ccff62780
("net: reset mac header in dev_start_xmit()") and save few cycles
in transmit fast path.
BUG: KASAN: use-after-free in __get_unaligned_cpu32 include/linux/unaligned/packed_struct.h:19 [inline]
BUG: KASAN: use-after-free in mc_hash drivers/net/macvlan.c:251 [inline]
BUG: KASAN: use-after-free in macvlan_broadcast+0x547/0x620 drivers/net/macvlan.c:277
Read of size 4 at addr ffff8880a4932401 by task syz-executor947/9579
CPU: 0 PID: 9579 Comm: syz-executor947 Not tainted 5.5.0-rc4-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x197/0x210 lib/dump_stack.c:118
print_address_description.constprop.0.cold+0xd4/0x30b mm/kasan/report.c:374
__kasan_report.cold+0x1b/0x41 mm/kasan/report.c:506
kasan_report+0x12/0x20 mm/kasan/common.c:639
__asan_report_load_n_noabort+0xf/0x20 mm/kasan/generic_report.c:145
__get_unaligned_cpu32 include/linux/unaligned/packed_struct.h:19 [inline]
mc_hash drivers/net/macvlan.c:251 [inline]
macvlan_broadcast+0x547/0x620 drivers/net/macvlan.c:277
macvlan_queue_xmit drivers/net/macvlan.c:520 [inline]
macvlan_start_xmit+0x402/0x77f drivers/net/macvlan.c:559
__netdev_start_xmit include/linux/netdevice.h:4447 [inline]
netdev_start_xmit include/linux/netdevice.h:4461 [inline]
dev_direct_xmit+0x419/0x630 net/core/dev.c:4079
packet_direct_xmit+0x1a9/0x250 net/packet/af_packet.c:240
packet_snd net/packet/af_packet.c:2966 [inline]
packet_sendmsg+0x260d/0x6220 net/packet/af_packet.c:2991
sock_sendmsg_nosec net/socket.c:639 [inline]
sock_sendmsg+0xd7/0x130 net/socket.c:659
__sys_sendto+0x262/0x380 net/socket.c:1985
__do_sys_sendto net/socket.c:1997 [inline]
__se_sys_sendto net/socket.c:1993 [inline]
__x64_sys_sendto+0xe1/0x1a0 net/socket.c:1993
do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x442639
Code: 18 89 d0 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 5b 10 fc ff c3 66 2e 0f 1f 84 00 00 00 00
RSP: 002b:00007ffc13549e08 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 0000000000442639
RDX: 000000000000000e RSI: 0000000020000080 RDI: 0000000000000003
RBP: 0000000000000004 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000403bb0 R14: 0000000000000000 R15: 0000000000000000
Allocated by task 9389:
save_stack+0x23/0x90 mm/kasan/common.c:72
set_track mm/kasan/common.c:80 [inline]
__kasan_kmalloc mm/kasan/common.c:513 [inline]
__kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:486
kasan_kmalloc+0x9/0x10 mm/kasan/common.c:527
__do_kmalloc mm/slab.c:3656 [inline]
__kmalloc+0x163/0x770 mm/slab.c:3665
kmalloc include/linux/slab.h:561 [inline]
tomoyo_realpath_from_path+0xc5/0x660 security/tomoyo/realpath.c:252
tomoyo_get_realpath security/tomoyo/file.c:151 [inline]
tomoyo_path_perm+0x230/0x430 security/tomoyo/file.c:822
tomoyo_inode_getattr+0x1d/0x30 security/tomoyo/tomoyo.c:129
security_inode_getattr+0xf2/0x150 security/security.c:1222
vfs_getattr+0x25/0x70 fs/stat.c:115
vfs_statx_fd+0x71/0xc0 fs/stat.c:145
vfs_fstat include/linux/fs.h:3265 [inline]
__do_sys_newfstat+0x9b/0x120 fs/stat.c:378
__se_sys_newfstat fs/stat.c:375 [inline]
__x64_sys_newfstat+0x54/0x80 fs/stat.c:375
do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Freed by task 9389:
save_stack+0x23/0x90 mm/kasan/common.c:72
set_track mm/kasan/common.c:80 [inline]
kasan_set_free_info mm/kasan/common.c:335 [inline]
__kasan_slab_free+0x102/0x150 mm/kasan/common.c:474
kasan_slab_free+0xe/0x10 mm/kasan/common.c:483
__cache_free mm/slab.c:3426 [inline]
kfree+0x10a/0x2c0 mm/slab.c:3757
tomoyo_realpath_from_path+0x1a7/0x660 security/tomoyo/realpath.c:289
tomoyo_get_realpath security/tomoyo/file.c:151 [inline]
tomoyo_path_perm+0x230/0x430 security/tomoyo/file.c:822
tomoyo_inode_getattr+0x1d/0x30 security/tomoyo/tomoyo.c:129
security_inode_getattr+0xf2/0x150 security/security.c:1222
vfs_getattr+0x25/0x70 fs/stat.c:115
vfs_statx_fd+0x71/0xc0 fs/stat.c:145
vfs_fstat include/linux/fs.h:3265 [inline]
__do_sys_newfstat+0x9b/0x120 fs/stat.c:378
__se_sys_newfstat fs/stat.c:375 [inline]
__x64_sys_newfstat+0x54/0x80 fs/stat.c:375
do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294
entry_SYSCALL_64_after_hwframe+0x49/0xbe
The buggy address belongs to the object at ffff8880a4932000
which belongs to the cache kmalloc-4k of size 4096
The buggy address is located 1025 bytes inside of
4096-byte region [ffff8880a4932000, ffff8880a4933000)
The buggy address belongs to the page:
page:ffffea0002924c80 refcount:1 mapcount:0 mapping:ffff8880aa402000 index:0x0 compound_mapcount: 0
raw: 00fffe0000010200 ffffea0002846208 ffffea00028f3888 ffff8880aa402000
raw: 0000000000000000 ffff8880a4932000 0000000100000001 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8880a4932300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880a4932380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff8880a4932400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8880a4932480: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880a4932500: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
Fixes: b863ceb7ddce ("[NET]: Add macvlan driver")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In order to enforce suspend/resume ordering, this commit creates link
between phy consumers and phy devices. This link avoids to suspend phy
before phy consumers.
Signed-off-by: Alexandre Torgue <alexandre.torgue@st.com>
[jonathanh@nvidia.com: Fix an abort when of_phy_get() returns error]
Signed-off-by: Jonathan Hunter <jonathanh@nvidia.com>
Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com>
|
|
Some SPI master controllers always drive a native chip select when
performing a transfer. Hence when using both native and GPIO chip
selects, at least one native chip select must be left unused, to be
driven when performing transfers with slave devices using GPIO chip
selects.
Currently, to find an unused native chip select, SPI controller drivers
need to parse and process cs-gpios theirselves. This is not only
duplicated in each driver that needs it, but also duplicates part of the
work done later at SPI controller registration time. Note that this
cannot be done after spi_register_controller() returns, as at that time,
slave devices may have been probed already.
Hence add generic support to the SPI subsystem for finding an unused
native chip select. Optionally, this unused native chip select, and all
other in-use native chip selects, can be validated against the maximum
number of native chip selects available on the controller hardware.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Link: https://lore.kernel.org/r/20200102133822.29346-2-geert+renesas@glider.be
Signed-off-by: Mark Brown <broonie@kernel.org>
|