summaryrefslogtreecommitdiff
path: root/include
AgeCommit message (Collapse)Author
2021-11-08Merge tag 'mtd/for-5.16' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux Pull mtd updates from Miquel Raynal: "Core: - Remove obsolete macros only used by the old nand_ecclayout struct - Don't remove debugfs directory if device is in use - MAINTAINERS: - Add entry for Qualcomm NAND controller driver - Update the devicetree documentation path of hyperbus MTD devices: - block2mtd: - Add support for an optional custom MTD label - Minor refactor to avoid hard coded constant - mtdswap: Remove redundant assignment of pointer eb CFI: - Fixup CFI on ixp4xx Raw NAND controller drivers: - Arasan: - Prevent an unsupported configuration - Xway, Socrates: plat_nand, Pasemi, Orion, mpc5121, GPIO, Au1550nd, AMS-Delta: - Keep the driver compatible with on-die ECC engines - cs553x, lpc32xx_slc, ndfc, sharpsl, tmio, txx9ndfmc: - Revert the commits: "Fix external use of SW Hamming ECC helper" - And let callers use the bare Hamming helpers - Fsmc: Fix use of SM ORDER - Intel: - Fix potential buffer overflow in probe - xway, vf610, txx9ndfm, tegra, stm32, plat_nand, oxnas, omap, mtk, hisi504, gpmi, gpio, denali, bcm6368, atmel: - Make use of the helper function devm_platform_ioremap_resource{,byname}() Onenand drivers: - Samsung: Drop Exynos4 and describe driver in KConfig Raw NAND chip drivers: - Hynix: Add support for H27UCG8T2ETR-BC MLC NAND SPI NOR core: - Add spi-nor device tree binding under SPI NOR maintainers SPI NOR manufacturer drivers: - Enable locking for n25q128a13 SPI NOR controller drivers: - Use devm_platform_ioremap_resource_byname()" * tag 'mtd/for-5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux: (50 commits) mtd: core: don't remove debugfs directory if device is in use MAINTAINERS: Update the devicetree documentation path of hyperbus mtd: block2mtd: add support for an optional custom MTD label mtd: block2mtd: minor refactor to avoid hard coded constant mtd: fixup CFI on ixp4xx mtd: rawnand: arasan: Prevent an unsupported configuration MAINTAINERS: Add entry for Qualcomm NAND controller driver mtd: rawnand: hynix: Add support for H27UCG8T2ETR-BC MLC NAND mtd: rawnand: xway: Keep the driver compatible with on-die ECC engines mtd: rawnand: socrates: Keep the driver compatible with on-die ECC engines mtd: rawnand: plat_nand: Keep the driver compatible with on-die ECC engines mtd: rawnand: pasemi: Keep the driver compatible with on-die ECC engines mtd: rawnand: orion: Keep the driver compatible with on-die ECC engines mtd: rawnand: mpc5121: Keep the driver compatible with on-die ECC engines mtd: rawnand: gpio: Keep the driver compatible with on-die ECC engines mtd: rawnand: au1550nd: Keep the driver compatible with on-die ECC engines mtd: rawnand: ams-delta: Keep the driver compatible with on-die ECC engines Revert "mtd: rawnand: cs553x: Fix external use of SW Hamming ECC helper" Revert "mtd: rawnand: lpc32xx_slc: Fix external use of SW Hamming ECC helper" Revert "mtd: rawnand: ndfc: Fix external use of SW Hamming ECC helper" ...
2021-11-08PCI: Export pci_dev_lock()Niklas Schnelle
Commit e3a9b1212b9d ("PCI: Export pci_dev_trylock() and pci_dev_unlock()") already exported pci_dev_trylock()/pci_dev_unlock() however in some circumstances such as during error recovery it makes sense to block waiting to get full access to the device so also export pci_dev_lock(). Link: https://lore.kernel.org/all/20210928181014.GA713179@bhelgaas/ Acked-by: Pierre Morel <pmorel@linux.ibm.com> Acked-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2021-11-08arm64: Track no early_pgtable_alloc() for kmemleakQian Cai
After switched page size from 64KB to 4KB on several arm64 servers here, kmemleak starts to run out of early memory pool due to a huge number of those early_pgtable_alloc() calls: kmemleak_alloc_phys() memblock_alloc_range_nid() memblock_phys_alloc_range() early_pgtable_alloc() init_pmd() alloc_init_pud() __create_pgd_mapping() __map_memblock() paging_init() setup_arch() start_kernel() Increased the default value of DEBUG_KMEMLEAK_MEM_POOL_SIZE by 4 times won't be enough for a server with 200GB+ memory. There isn't much interesting to check memory leaks for those early page tables and those early memory mappings should not reference to other memory. Hence, no kmemleak false positives, and we can safely skip tracking those early allocations from kmemleak like we did in the commit fed84c785270 ("mm/memblock.c: skip kmemleak for kasan_init()") without needing to introduce complications to automatically scale the value depends on the runtime memory size etc. After the patch, the default value of DEBUG_KMEMLEAK_MEM_POOL_SIZE becomes sufficient again. Signed-off-by: Qian Cai <quic_qiancai@quicinc.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Link: https://lore.kernel.org/r/20211105150509.7826-1-quic_qiancai@quicinc.com Signed-off-by: Will Deacon <will@kernel.org>
2021-11-08arm64: mte: change PR_MTE_TCF_NONE back into an unsigned longPeter Collingbourne
This constant was previously an unsigned long, but was changed into an int in commit 433c38f40f6a ("arm64: mte: change ASYNC and SYNC TCF settings into bitfields"). This ended up causing spurious unsigned-signed comparison warnings in expressions such as: (x & PR_MTE_TCF_MASK) != PR_MTE_TCF_NONE Therefore, change it back into an unsigned long to silence these warnings. Link: https://linux-review.googlesource.com/id/I07a72310db30227a5b7d789d0b817d78b657c639 Signed-off-by: Peter Collingbourne <pcc@google.com> Link: https://lore.kernel.org/r/20211105230829.2254790-1-pcc@google.com Signed-off-by: Will Deacon <will@kernel.org>
2021-11-08libceph, ceph: move ceph_osdc_copy_from() into cephfs codeLuís Henriques
This patch moves ceph_osdc_copy_from() function out of libceph code into cephfs. There are no other users for this function, and there is the need (in another patch) to access internal ceph_osd_request struct members. Signed-off-by: Luís Henriques <lhenriques@suse.de> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2021-11-08ceph: don't rely on error_string to validate blocklisted session.Kotresh HR
The "error_string" in the metadata of MClientSession is being parsed by kclient to validate whether the session is blocklisted. The "error_string" is for humans and shouldn't be relied on it. Hence added the flag to MClientsession to indicate the session is blocklisted. [ jlayton: minor formatting cleanup ] URL: https://tracker.ceph.com/issues/47450 Signed-off-by: Kotresh HR <khiremat@redhat.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2021-11-07llc: fix out-of-bound array index in llc_sk_dev_hash()Eric Dumazet
Both ifindex and LLC_SK_DEV_HASH_ENTRIES are signed. This means that (ifindex % LLC_SK_DEV_HASH_ENTRIES) is negative if @ifindex is negative. We could simply make LLC_SK_DEV_HASH_ENTRIES unsigned. In this patch I chose to use hash_32() to get more entropy from @ifindex, like llc_sk_laddr_hashfn(). UBSAN: array-index-out-of-bounds in ./include/net/llc.h:75:26 index -43 is out of range for type 'hlist_head [64]' CPU: 1 PID: 20999 Comm: syz-executor.3 Not tainted 5.15.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 ubsan_epilogue+0xb/0x5a lib/ubsan.c:151 __ubsan_handle_out_of_bounds.cold+0x62/0x6c lib/ubsan.c:291 llc_sk_dev_hash include/net/llc.h:75 [inline] llc_sap_add_socket+0x49c/0x520 net/llc/llc_conn.c:697 llc_ui_bind+0x680/0xd70 net/llc/af_llc.c:404 __sys_bind+0x1e9/0x250 net/socket.c:1693 __do_sys_bind net/socket.c:1704 [inline] __se_sys_bind net/socket.c:1702 [inline] __x64_sys_bind+0x6f/0xb0 net/socket.c:1702 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fa503407ae9 Fixes: 6d2e3ea28446 ("llc: use a device based hash table to speed up multicast delivery") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-11-07Merge tag 'auxdisplay-for-linus-v5.16' of git://github.com/ojeda/linuxLinus Torvalds
Pull auxdisplay updates from Miguel Ojeda: - 4-digit 7-segment and quad alphanumeric display support for the ht16k33 driver, allowing the user to display and scroll text messages, from Geert Uytterhoeven. - An assortment of fixes and cleanups from Geert Uytterhoeven. - Header cleanups from Mianhan Liu. - Whitespace cleanup from Huiquan Deng. * tag 'auxdisplay-for-linus-v5.16' of git://github.com/ojeda/linux: (26 commits) MAINTAINERS: Add DT Bindings for Auxiliary Display Drivers auxdisplay: cfag12864bfb: code indent should use tabs where possible auxdisplay: ht16k33: remove superfluous header files auxdisplay: ks0108: remove superfluous header files auxdisplay: cfag12864bfb: remove superfluous header files auxdisplay: ht16k33: Make use of device properties auxdisplay: ht16k33: Add LED support dt-bindings: auxdisplay: ht16k33: Document LED subnode auxdisplay: ht16k33: Add support for segment displays auxdisplay: ht16k33: Extract frame buffer probing auxdisplay: ht16k33: Extract ht16k33_brightness_set() auxdisplay: ht16k33: Move delayed work auxdisplay: ht16k33: Add helper variable dev auxdisplay: ht16k33: Convert to simple i2c probe function auxdisplay: ht16k33: Remove unneeded error check in keypad probe() auxdisplay: ht16k33: Use HT16K33_FB_SIZE in ht16k33_initialize() auxdisplay: ht16k33: Fix frame buffer device blanking auxdisplay: ht16k33: Connect backlight to fbdev auxdisplay: linedisp: Add support for changing scroll rate auxdisplay: linedisp: Use kmemdup_nul() helper ...
2021-11-07Merge tag 'compiler-attributes-for-linus-v5.16' of git://github.com/ojeda/linuxLinus Torvalds
Pull compiler attributes update from Miguel Ojeda: "An improvement for `__compiletime_assert` and a trivial cleanup" * tag 'compiler-attributes-for-linus-v5.16' of git://github.com/ojeda/linux: compiler_types: mark __compiletime_assert failure as __noreturn Compiler Attributes: remove GCC 5.1 mention
2021-11-07Merge tag 'spi-nor/for-5.16' into mtd/nextMiquel Raynal
SPI NOR core changes: - Add spi-nor device tree binding under SPI NOR maintainers SPI NOR manufacturer drivers changes: - Enable locking for n25q128a13 SPI NOR controller drivers changes: - Use devm_platform_ioremap_resource_byname()
2021-11-06Merge tag 'fsnotify_for_v5.16-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs Pull fsnotify updates from Jan Kara: "Support for reporting filesystem errors through fanotify so that system health monitoring daemons can watch for these and act instead of scraping system logs" * tag 'fsnotify_for_v5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs: (34 commits) samples: remove duplicate include in fs-monitor.c samples: Fix warning in fsnotify sample docs: Fix formatting of literal sections in fanotify docs samples: Make fs-monitor depend on libc and headers docs: Document the FAN_FS_ERROR event samples: Add fs error monitoring example ext4: Send notifications on error fanotify: Allow users to request FAN_FS_ERROR events fanotify: Emit generic error info for error event fanotify: Report fid info for file related file system errors fanotify: WARN_ON against too large file handles fanotify: Add helpers to decide whether to report FID/DFID fanotify: Wrap object_fh inline space in a creator macro fanotify: Support merging of error events fanotify: Support enqueueing of error events fanotify: Pre-allocate pool of error events fanotify: Reserve UAPI bits for FAN_FS_ERROR fsnotify: Support FS_ERROR event type fanotify: Require fid_mode for any non-fd event fanotify: Encode empty file handle when no inode is provided ...
2021-11-06Merge tag 'pci-v5.16-changes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci Pull pci updates from Bjorn Helgaas: "Enumeration: - Conserve IRQs by setting up portdrv IRQs only when there are users (Jan Kiszka) - Rework and simplify _OSC negotiation for control of PCIe features (Joerg Roedel) - Remove struct pci_dev.driver pointer since it's redundant with the struct device.driver pointer (Uwe Kleine-König) Resource management: - Coalesce contiguous host bridge apertures from _CRS to accommodate BARs that cover more than one aperture (Kai-Heng Feng) Sysfs: - Check CAP_SYS_ADMIN before parsing user input (Krzysztof Wilczyński) - Return -EINVAL consistently from "store" functions (Krzysztof Wilczyński) - Use sysfs_emit() in endpoint "show" functions to avoid buffer overruns (Kunihiko Hayashi) PCIe native device hotplug: - Ignore Link Down/Up caused by resets during error recovery so endpoint drivers can remain bound to the device (Lukas Wunner) Virtualization: - Avoid bus resets on Atheros QCA6174, where they hang the device (Ingmar Klein) - Work around Pericom PI7C9X2G switch packet drop erratum by using store and forward mode instead of cut-through (Nathan Rossi) - Avoid trying to enable AtomicOps on VFs; the PF setting applies to all VFs (Selvin Xavier) MSI: - Document that /sys/bus/pci/devices/.../irq contains the legacy INTx interrupt or the IRQ of the first MSI (not MSI-X) vector (Barry Song) VPD: - Add pci_read_vpd_any() and pci_write_vpd_any() to access anywhere in the possible VPD space; use these to simplify the cxgb3 driver (Heiner Kallweit) Peer-to-peer DMA: - Add (not subtract) the bus offset when calculating DMA address (Wang Lu) ASPM: - Re-enable LTR at Downstream Ports so they don't report Unsupported Requests when reset or hot-added devices send LTR messages (Mingchuang Qiao) Apple PCIe controller driver: - Add driver for Apple M1 PCIe controller (Alyssa Rosenzweig, Marc Zyngier) Cadence PCIe controller driver: - Return success when probe succeeds instead of falling into error path (Li Chen) HiSilicon Kirin PCIe controller driver: - Reorganize PHY logic and add support for external PHY drivers (Mauro Carvalho Chehab) - Support PERST# GPIOs for HiKey970 external PEX 8606 bridge (Mauro Carvalho Chehab) - Add Kirin 970 support (Mauro Carvalho Chehab) - Make driver removable (Mauro Carvalho Chehab) Intel VMD host bridge driver: - If IOMMU supports interrupt remapping, leave VMD MSI-X remapping enabled (Adrian Huang) - Number each controller so we can tell them apart in /proc/interrupts (Chunguang Xu) - Avoid building on UML because VMD depends on x86 bare metal APIs (Johannes Berg) Marvell Aardvark PCIe controller driver: - Define macros for PCI_EXP_DEVCTL_PAYLOAD_* (Pali Rohár) - Set Max Payload Size to 512 bytes per Marvell spec (Pali Rohár) - Downgrade PIO Response Status messages to debug level (Marek Behún) - Preserve CRS SV (Config Request Retry Software Visibility) bit in emulated Root Control register (Pali Rohár) - Fix issue in configuring reference clock (Pali Rohár) - Don't clear status bits for masked interrupts (Pali Rohár) - Don't mask unused interrupts (Pali Rohár) - Avoid code repetition in advk_pcie_rd_conf() (Marek Behún) - Retry config accesses on CRS response (Pali Rohár) - Simplify emulated Root Capabilities initialization (Pali Rohár) - Fix several link training issues (Pali Rohár) - Fix link-up checking via LTSSM (Pali Rohár) - Fix reporting of Data Link Layer Link Active (Pali Rohár) - Fix emulation of W1C bits (Marek Behún) - Fix MSI domain .alloc() method to return zero on success (Marek Behún) - Read entire 16-bit MSI vector in MSI handler, not just low 8 bits (Marek Behún) - Clear Root Port I/O Space, Memory Space, and Bus Master Enable bits at startup; PCI core will set those as necessary (Pali Rohár) - When operating as a Root Port, set class code to "PCI Bridge" instead of the default "Mass Storage Controller" (Pali Rohár) - Add emulation for PCI_BRIDGE_CTL_BUS_RESET since aardvark doesn't implement this per spec (Pali Rohár) - Add emulation of option ROM BAR since aardvark doesn't implement this per spec (Pali Rohár) MediaTek MT7621 PCIe controller driver: - Add MediaTek MT7621 PCIe host controller driver and DT binding (Sergio Paracuellos) Qualcomm PCIe controller driver: - Add SC8180x compatible string (Bjorn Andersson) - Add endpoint controller driver and DT binding (Manivannan Sadhasivam) - Restructure to use of_device_get_match_data() (Prasad Malisetty) - Add SC7280-specific pcie_1_pipe_clk_src handling (Prasad Malisetty) Renesas R-Car PCIe controller driver: - Remove unnecessary includes (Geert Uytterhoeven) Rockchip DesignWare PCIe controller driver: - Add DT binding (Simon Xue) Socionext UniPhier Pro5 controller driver: - Serialize INTx masking/unmasking (Kunihiko Hayashi) Synopsys DesignWare PCIe controller driver: - Run dwc .host_init() method before registering MSI interrupt handler so we can deal with pending interrupts left by bootloader (Bjorn Andersson) - Clean up Kconfig dependencies (Andy Shevchenko) - Export symbols to allow more modular drivers (Luca Ceresoli) TI DRA7xx PCIe controller driver: - Allow host and endpoint drivers to be modules (Luca Ceresoli) - Enable external clock if present (Luca Ceresoli) TI J721E PCIe driver: - Disable PHY when probe fails after initializing it (Christophe JAILLET) MicroSemi Switchtec management driver: - Return error to application when command execution fails because an out-of-band reset has cleared the device BARs, Memory Space Enable, etc (Kelvin Cao) - Fix MRPC error status handling issue (Kelvin Cao) - Mask out other bits when reading of management VEP instance ID (Kelvin Cao) - Return EOPNOTSUPP instead of ENOTSUPP from sysfs show functions (Kelvin Cao) - Add check of event support (Logan Gunthorpe) Miscellaneous: - Remove unused pci_pool wrappers, which have been replaced by dma_pool (Cai Huoqing) - Use 'unsigned int' instead of bare 'unsigned' (Krzysztof Wilczyński) - Use kstrtobool() directly, sans strtobool() wrapper (Krzysztof Wilczyński) - Fix some sscanf(), sprintf() format mismatches (Krzysztof Wilczyński) - Update PCI subsystem information in MAINTAINERS (Krzysztof Wilczyński) - Correct some misspellings (Krzysztof Wilczyński)" * tag 'pci-v5.16-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (137 commits) PCI: Add ACS quirk for Pericom PI7C9X2G switches PCI: apple: Configure RID to SID mapper on device addition iommu/dart: Exclude MSI doorbell from PCIe device IOVA range PCI: apple: Implement MSI support PCI: apple: Add INTx and per-port interrupt support PCI: kirin: Allow removing the driver PCI: kirin: De-init the dwc driver PCI: kirin: Disable clkreq during poweroff sequence PCI: kirin: Move the power-off code to a common routine PCI: kirin: Add power_off support for Kirin 960 PHY PCI: kirin: Allow building it as a module PCI: kirin: Add MODULE_* macros PCI: kirin: Add Kirin 970 compatible PCI: kirin: Support PERST# GPIOs for HiKey970 external PEX 8606 bridge PCI: apple: Set up reference clocks when probing PCI: apple: Add initial hardware bring-up PCI: of: Allow matching of an interrupt-map local to a PCI device of/irq: Allow matching of an interrupt-map local to an interrupt controller irqdomain: Make of_phandle_args_to_fwspec() generally available PCI: Do not enable AtomicOps on VFs ...
2021-11-06Merge branch 'akpm' (patches from Andrew)Linus Torvalds
Merge misc updates from Andrew Morton: "257 patches. Subsystems affected by this patch series: scripts, ocfs2, vfs, and mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache, gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools, memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm, vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram, cleanups, kfence, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits) mm/damon: remove return value from before_terminate callback mm/damon: fix a few spelling mistakes in comments and a pr_debug message mm/damon: simplify stop mechanism Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions Docs/admin-guide/mm/damon/start: simplify the content Docs/admin-guide/mm/damon/start: fix a wrong link Docs/admin-guide/mm/damon/start: fix wrong example commands mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on mm/damon: remove unnecessary variable initialization Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM) selftests/damon: support watermarks mm/damon/dbgfs: support watermarks mm/damon/schemes: activate schemes based on a watermarks mechanism tools/selftests/damon: update for regions prioritization of schemes mm/damon/dbgfs: support prioritization weights mm/damon/vaddr,paddr: support pageout prioritization mm/damon/schemes: prioritize regions within the quotas mm/damon/selftests: support schemes quotas mm/damon/dbgfs: support quotas of schemes ...
2021-11-06mm/damon: remove return value from before_terminate callbackChangbin Du
Since the return value of 'before_terminate' callback is never used, we make it have no return value. Link: https://lkml.kernel.org/r/20211029005023.8895-1-changbin.du@gmail.com Signed-off-by: Changbin Du <changbin.du@gmail.com> Reviewed-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/damon: simplify stop mechanismChangbin Du
A kernel thread can exit gracefully with kthread_stop(). So we don't need a new flag 'kdamond_stop'. And to make sure the task struct is not freed when accessing it, get reference to it before termination. Link: https://lkml.kernel.org/r/20211027130517.4404-1-changbin.du@gmail.com Signed-off-by: Changbin Du <changbin.du@gmail.com> Reviewed-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/damon/dbgfs: add adaptive_targets list check before enable monitor_onXin Hao
When the ctx->adaptive_targets list is empty, I did some test on monitor_on interface like this. # cat /sys/kernel/debug/damon/target_ids # # echo on > /sys/kernel/debug/damon/monitor_on # damon: kdamond (5390) starts Though the ctx->adaptive_targets list is empty, but the kthread_run still be called, and the kdamond.x thread still be created, this is meaningless. So there adds a judgment in 'dbgfs_monitor_on_write', if the ctx->adaptive_targets list is empty, return -EINVAL. Link: https://lkml.kernel.org/r/0a60a6e8ec9d71989e0848a4dc3311996ca3b5d4.1634720326.git.xhao@linux.alibaba.com Signed-off-by: Xin Hao <xhao@linux.alibaba.com> Reviewed-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/damon/schemes: activate schemes based on a watermarks mechanismSeongJae Park
DAMON-based operation schemes need to be manually turned on and off. In some use cases, however, the condition for turning a scheme on and off would depend on the system's situation. For example, schemes for proactive pages reclamation would need to be turned on when some memory pressure is detected, and turned off when the system has enough free memory. For easier control of schemes activation based on the system situation, this introduces a watermarks-based mechanism. The client can describe the watermark metric (e.g., amount of free memory in the system), watermark check interval, and three watermarks, namely high, mid, and low. If the scheme is deactivated, it only gets the metric and compare that to the three watermarks for every check interval. If the metric is higher than the high watermark, the scheme is deactivated. If the metric is between the mid watermark and the low watermark, the scheme is activated. If the metric is lower than the low watermark, the scheme is deactivated again. This is to allow users fall back to traditional page-granularity mechanisms. Link: https://lkml.kernel.org/r/20211019150731.16699-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/damon/vaddr,paddr: support pageout prioritizationSeongJae Park
This makes the default monitoring primitives for virtual address spaces and the physical address sapce to support memory regions prioritization for 'PAGEOUT' DAMOS action. It calculates hotness of each region as weighted sum of 'nr_accesses' and 'age' of the region and get the priority score as reverse of the hotness, so that cold regions can be paged out first. Link: https://lkml.kernel.org/r/20211019150731.16699-9-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/damon/schemes: prioritize regions within the quotasSeongJae Park
This makes DAMON apply schemes to regions having higher priority first, if it cannot apply schemes to all regions due to the quotas. The prioritization function should be implemented in the monitoring primitives. Those would commonly calculate the priority of the region using attributes of regions, namely 'size', 'nr_accesses', and 'age'. For example, some primitive would calculate the priority of each region using a weighted sum of 'nr_accesses' and 'age' of the region. The optimal weights would depend on give environments, so this makes those customizable. Nevertheless, the score calculation functions are only encouraged to respect the weights, not mandated. Link: https://lkml.kernel.org/r/20211019150731.16699-8-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/damon/schemes: implement time quotaSeongJae Park
The size quota feature of DAMOS is useful for IO resource-critical systems, but not so intuitive for CPU time-critical systems. Systems using zram or zswap-like swap device would be examples. To provide another intuitive ways for such systems, this implements time-based quota for DAMON-based Operation Schemes. If the quota is set, DAMOS tries to use only up to the user-defined quota of CPU time within a given time window. Link: https://lkml.kernel.org/r/20211019150731.16699-5-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/damon/schemes: skip already charged targets and regionsSeongJae Park
If DAMOS has stopped applying action in the middle of a group of memory regions due to its size quota, it starts the work again from the beginning of the address space in the next charge window. If there is a huge memory region at the beginning of the address space and it fulfills the scheme's target data access pattern always, the action will applied to only the region. This mitigates the case by skipping memory regions that charged in current charge window at the beginning of next charge window. Link: https://lkml.kernel.org/r/20211019150731.16699-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/damon/schemes: implement size quota for schemes application speed controlSeongJae Park
There could be arbitrarily large memory regions fulfilling the target data access pattern of a DAMON-based operation scheme. In the case, applying the action of the scheme could incur too high overhead. To provide an intuitive way for avoiding it, this implements a feature called size quota. If the quota is set, DAMON tries to apply the action only up to the given amount of memory regions within a given time window. Link: https://lkml.kernel.org/r/20211019150731.16699-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/damon/paddr: support the pageout schemeSeongJae Park
Introduction ============ This patchset 1) makes the engine for general data access pattern-oriented memory management (DAMOS) be more useful for production environments, and 2) implements a static kernel module for lightweight proactive reclamation using the engine. Proactive Reclamation --------------------- On general memory over-committed systems, proactively reclaiming cold pages helps saving memory and reducing latency spikes that incurred by the direct reclaim or the CPU consumption of kswapd, while incurring only minimal performance degradation[2]. A Free Pages Reporting[8] based memory over-commit virtualization system would be one more specific use case. In the system, the guest VMs reports their free memory to host, and the host reallocates the reported memory to other guests. As a result, the system's memory utilization can be maximized. However, the guests could be not so memory-frugal, because some kernel subsystems and user-space applications are designed to use as much memory as available. Then, guests would report only small amount of free memory to host, results in poor memory utilization. Running the proactive reclamation in such guests could help mitigating this problem. Google has also implemented this idea and using it in their data center. They further proposed upstreaming it in LSFMM'19, and "the general consensus was that, while this sort of proactive reclaim would be useful for a number of users, the cost of this particular solution was too high to consider merging it upstream"[3]. The cost mainly comes from the coldness tracking. Roughly speaking, the implementation periodically scans the 'Accessed' bit of each page. For the reason, the overhead linearly increases as the size of the memory and the scanning frequency grows. As a result, Google is known to dedicating one CPU for the work. That's a reasonable option to someone like Google, but it wouldn't be so to some others. DAMON and DAMOS: An engine for data access pattern-oriented memory management ----------------------------------------------------------------------------- DAMON[4] is a framework for general data access monitoring. Its adaptive monitoring overhead control feature minimizes its monitoring overhead. It also let the upper-bound of the overhead be configurable by clients, regardless of the size of the monitoring target memory. While monitoring 70 GiB memory of a production system every 5 milliseconds, it consumes less than 1% single CPU time. For this, it could sacrify some of the quality of the monitoring results. Nevertheless, the lower-bound of the quality is configurable, and it uses a best-effort algorithm for better quality. Our test results[5] show the quality is practical enough. From the production system monitoring, we were able to find a 4 KiB region in the 70 GiB memory that shows highest access frequency. We normally don't monitor the data access pattern just for fun but to improve something like memory management. Proactive reclamation is one such usage. For such general cases, DAMON provides a feature called DAMon-based Operation Schemes (DAMOS)[6]. It makes DAMON an engine for general data access pattern oriented memory management. Using this, clients can ask DAMON to find memory regions of specific data access pattern and apply some memory management action (e.g., page out, move to head of the LRU list, use huge page, ...). We call the request 'scheme'. Proactive Reclamation on top of DAMON/DAMOS ------------------------------------------- Therefore, by using DAMON for the cold pages detection, the proactive reclamation's monitoring overhead issue can be solved. Actually, we previously implemented a version of proactive reclamation using DAMOS and achieved noticeable improvements with our evaluation setup[5]. Nevertheless, it more for a proof-of-concept, rather than production uses. It supports only virtual address spaces of processes, and require additional tuning efforts for given workloads and the hardware. For the tuning, we introduced a simple auto-tuning user space tool[8]. Google is also known to using a ML-based similar approach for their fleets[2]. But, making it just works with intuitive knobs in the kernel would be helpful for general users. To this end, this patchset improves DAMOS to be ready for such production usages, and implements another version of the proactive reclamation, namely DAMON_RECLAIM, on top of it. DAMOS Improvements: Aggressiveness Control, Prioritization, and Watermarks -------------------------------------------------------------------------- First of all, the current version of DAMOS supports only virtual address spaces. This patchset makes it supports the physical address space for the page out action. Next major problem of the current version of DAMOS is the lack of the aggressiveness control, which can results in arbitrary overhead. For example, if huge memory regions having the data access pattern of interest are found, applying the requested action to all of the regions could incur significant overhead. It can be controlled by tuning the target data access pattern with manual or automated approaches[2,7]. But, some people would prefer the kernel to just work with only intuitive tuning or default values. For such cases, this patchset implements a safeguard, namely time/size quota. Using this, the clients can specify up to how much time can be used for applying the action, and/or up to how much memory regions the action can be applied within a user-specified time duration. A followup question is, to which memory regions should the action applied within the limits? We implement a simple regions prioritization mechanism for each action and make DAMOS to apply the action to high priority regions first. It also allows clients tune the prioritization mechanism to use different weights for size, access frequency, and age of memory regions. This means we could use not only LRU but also LFU or some fancy algorithms like CAR[9] with lightweight overhead. Though DAMON is lightweight, someone would want to remove even the cold pages monitoring overhead when it is unnecessary. Currently, it should manually turned on and off by clients, but some clients would simply want to turn it on and off based on some metrics like free memory ratio or memory fragmentation. For such cases, this patchset implements a watermarks-based automatic activation feature. It allows the clients configure the metric of their interest, and three watermarks of the metric. If the metric is higher than the high watermark or lower than the low watermark, the scheme is deactivated. If the metric is lower than the mid watermark but higher than the low watermark, the scheme is activated. DAMON-based Reclaim ------------------- Using the improved version of DAMOS, this patchset implements a static kernel module called 'damon_reclaim'. It finds memory regions that didn't accessed for specific time duration and page out. Consuming too much CPU for the paging out operations, or doing pageout too frequently can be critical for systems configuring their swap devices with software-defined in-memory block devices like zram/zswap or total number of writes limited devices like SSDs, respectively. To avoid the problems, the time/size quotas can be configured. Under the quotas, it pages out memory regions that didn't accessed longer first. Also, to remove the monitoring overhead under peaceful situation, and to fall back to the LRU-list based page granularity reclamation when it doesn't make progress, the three watermarks based activation mechanism is used, with the free memory ratio as the watermark metric. For convenient configurations, it provides several module parameters. Using these, sysadmins can enable/disable it, and tune its parameters including the coldness identification time threshold, the time/size quotas and the three watermarks. Evaluation ========== In short, DAMON_RECLAIM with 50ms/s time quota and regions prioritization on v5.15-rc5 Linux kernel with ZRAM swap device achieves 38.58% memory saving with only 1.94% runtime overhead. For this, DAMON_RECLAIM consumes only 4.97% of single CPU time. Setup ----- We evaluate DAMON_RECLAIM to show how each of the DAMOS improvements make effect. For this, we measure DAMON_RECLAIM's CPU consumption, entire system memory footprint, total number of major page faults, and runtime of 24 realistic workloads in PARSEC3 and SPLASH-2X benchmark suites on my QEMU/KVM based virtual machine. The virtual machine runs on an i3.metal AWS instance, has 130GiB memory, and runs a linux kernel built on latest -mm tree[1] plus this patchset. It also utilizes a 4 GiB ZRAM swap device. We repeats the measurement 5 times and use averages. [1] https://github.com/hnaz/linux-mm/tree/v5.15-rc5-mmots-2021-10-13-19-55 Detailed Results ---------------- The results are summarized in the below table. With coldness identification threshold of 5 seconds, DAMON_RECLAIM without the time quota-based speed limit achieves 47.21% memory saving, but incur 4.59% runtime slowdown to the workloads on average. For this, DAMON_RECLAIM consumes about 11.28% single CPU time. Applying time quotas of 200ms/s, 50ms/s, and 10ms/s without the regions prioritization reduces the slowdown to 4.89%, 2.65%, and 1.5%, respectively. Time quota of 200ms/s (20%) makes no real change compared to the quota unapplied version, because the quota unapplied version consumes only 11.28% CPU time. DAMON_RECLAIM's CPU utilization also similarly reduced: 11.24%, 5.51%, and 2.01% of single CPU time. That is, the overhead is proportional to the speed limit. Nevertheless, it also reduces the memory saving because it becomes less aggressive. In detail, the three variants show 48.76%, 37.83%, and 7.85% memory saving, respectively. Applying the regions prioritization (page out regions that not accessed longer first within the time quota) further reduces the performance degradation. Runtime slowdowns and total number of major page faults increase has been 4.89%/218,690% -> 4.39%/166,136% (200ms/s), 2.65%/111,886% -> 1.94%/59,053% (50ms/s), and 1.5%/34,973.40% -> 2.08%/8,781.75% (10ms/s). The runtime under 10ms/s time quota has increased with prioritization, but apparently that's under the margin of error. time quota prioritization memory_saving cpu_util slowdown pgmajfaults overhead N N 47.21% 11.28% 4.59% 194,802% 200ms/s N 48.76% 11.24% 4.89% 218,690% 50ms/s N 37.83% 5.51% 2.65% 111,886% 10ms/s N 7.85% 2.01% 1.5% 34,793.40% 200ms/s Y 50.08% 10.38% 4.39% 166,136% 50ms/s Y 38.58% 4.97% 1.94% 59,053% 10ms/s Y 3.63% 1.73% 2.08% 8,781.75% Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree (v5.15-rc5-mmots-2021-10-13-19-55). You can also clone the complete git tree from: $ git clone git://github.com/sjp38/linux -b damon_reclaim/patches/v1 The web is also available: https://git.kernel.org/pub/scm/linux/kernel/git/sj/linux.git/tag/?h=damon_reclaim/patches/v1 Sequence Of Patches =================== The first patch makes DAMOS support the physical address space for the page out action. Following five patches (patches 2-6) implement the time/size quotas. Next four patches (patches 7-10) implement the memory regions prioritization within the limit. Then, three following patches (patches 11-13) implement the watermarks-based schemes activation. Finally, the last two patches (patches 14-15) implement and document the DAMON-based reclamation using the advanced DAMOS. [1] https://www.kernel.org/doc/html/v5.15-rc1/vm/damon/index.html [2] https://research.google/pubs/pub48551/ [3] https://lwn.net/Articles/787611/ [4] https://damonitor.github.io [5] https://damonitor.github.io/doc/html/latest/vm/damon/eval.html [6] https://lore.kernel.org/linux-mm/20211001125604.29660-1-sj@kernel.org/ [7] https://github.com/awslabs/damoos [8] https://www.kernel.org/doc/html/latest/vm/free_page_reporting.html [9] https://www.usenix.org/conference/fast-04/car-clock-adaptive-replacement This patch (of 15): This makes the DAMON primitives for physical address space support the pageout action for DAMON-based Operation Schemes. With this commit, hence, users can easily implement system-level data access-aware reclamations using DAMOS. [sj@kernel.org: fix missing-prototype build warning] Link: https://lkml.kernel.org/r/20211025064220.13904-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211019150731.16699-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211019150731.16699-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Greg Thelen <gthelen@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: David Rientjes <rientjes@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/damon: implement primitives for physical address space monitoringSeongJae Park
This implements the monitoring primitives for the physical memory address space. Internally, it uses the PTE Accessed bit, similar to that of the virtual address spaces monitoring primitives. It supports only user memory pages, as idle pages tracking does. If the monitoring target physical memory address range contains non-user memory pages, access check of the pages will do nothing but simply treat the pages as not accessed. Link: https://lkml.kernel.org/r/20211012205711.29216-6-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/damon/schemes: implement statistics featureSeongJae Park
To tune the DAMON-based operation schemes, knowing how many and how large regions are affected by each of the schemes will be helful. Those stats could be used for not only the tuning, but also monitoring of the working set size and the number of regions, if the scheme does not change the program behavior too much. For the reason, this implements the statistics for the schemes. The total number and size of the regions that each scheme is applied are exported to users via '->stat_count' and '->stat_sz' of 'struct damos'. Admins can also check the number by reading 'schemes' debugfs file. The last two integers now represents the stats. To allow collecting the stats without changing the program behavior, this also adds new scheme action, 'DAMOS_STAT'. Note that 'DAMOS_STAT' is not only making no memory operation actions, but also does not reset the age of regions. Link: https://lkml.kernel.org/r/20211001125604.29660-6-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/damon/vaddr: support DAMON-based Operation SchemesSeongJae Park
This makes DAMON's default primitives for virtual address spaces to support DAMON-based Operation Schemes (DAMOS) by implementing actions application functions and registering it to the monitoring context. The implementation simply links 'madvise()' for related DAMOS actions. That is, 'madvise(MADV_WILLNEED)' is called for 'WILLNEED' DAMOS action and similar for other actions ('COLD', 'PAGEOUT', 'HUGEPAGE', 'NOHUGEPAGE'). So, the kernel space DAMON users can now use the DAMON-based optimizations with only small amount of code. Link: https://lkml.kernel.org/r/20211001125604.29660-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/damon/core: implement DAMON-based Operation Schemes (DAMOS)SeongJae Park
In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/damon/core: account age of target regionsSeongJae Park
Patch series "Implement Data Access Monitoring-based Memory Operation Schemes". Introduction ============ DAMON[1] can be used as a primitive for data access aware memory management optimizations. For that, users who want such optimizations should run DAMON, read the monitoring results, analyze it, plan a new memory management scheme, and apply the new scheme by themselves. Such efforts will be inevitable for some complicated optimizations. However, in many other cases, the users would simply want the system to apply a memory management action to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB keeping only rare accesses more than 2 minutes", or "Do not use THP for a memory region larger than 2 MiB rarely accessed for more than 1 seconds". To make the works easier and non-redundant, this patchset implements a new feature of DAMON, which is called Data Access Monitoring-based Operation Schemes (DAMOS). Using the feature, users can describe the normal schemes in a simple way and ask DAMON to execute those on its own. [1] https://damonitor.github.io Evaluations =========== DAMOS is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the showcase web site's evaluation document[1] for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/v34/vm/damon/eval.html Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://git.kernel.org/sj/h/damon/for-v5.4.y - For v5.10.y: https://git.kernel.org/sj/h/damon/for-v5.10.y Sequence Of Patches =================== The 1st patch accounts age of each region. The 2nd patch implements the core of the DAMON-based operation schemes feature. The 3rd patch makes the default monitoring primitives for virtual address spaces to support the schemes. From this point, the kernel space users can use DAMOS. The 4th patch exports the feature to the user space via the debugfs interface. The 5th patch implements schemes statistics feature for easier tuning of the schemes and runtime access pattern analysis, and the 6th patch adds selftests for these changes. Finally, the 7th patch documents this new feature. This patch (of 7): DAMON can be used for data access pattern aware memory management optimizations. For that, users should run DAMON, read the monitoring results, analyze it, plan a new memory management scheme, and apply the new scheme by themselves. It would not be too hard, but still require some level of effort. For complicated cases, this effort is inevitable. That said, in many cases, users would simply want to apply an actions to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". For such optimizations, users will need to first account the age of each region themselves. To reduce such efforts, this implements a simple age account of each region in DAMON. For each aggregation step, DAMON compares the access frequency with that from last aggregation and reset the age of the region if the change is significant. Else, the age is incremented. Also, in case of the merge of regions, the region size-weighted average of the ages is set as the age of merged new region. Link: https://lkml.kernel.org/r/20211001125604.29660-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211001125604.29660-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Greg Thelen <gthelen@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: David Rienjes <rientjes@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06include/linux/damon.h: fix kernel-doc comments for 'damon_callback'SeongJae Park
A few Kernel-doc comments in 'damon.h' are broken. This fixes them. Link: https://lkml.kernel.org/r/20210917123958.3819-5-sj@kernel.org Signed-off-by: SeongJae Park <sjpark@amazon.de> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06kfence: always use static branches to guard kfence_alloc()Marco Elver
Regardless of KFENCE mode (CONFIG_KFENCE_STATIC_KEYS: either using static keys to gate allocations, or using a simple dynamic branch), always use a static branch to avoid the dynamic branch in kfence_alloc() if KFENCE was disabled at boot. For CONFIG_KFENCE_STATIC_KEYS=n, this now avoids the dynamic branch if KFENCE was disabled at boot. To simplify, also unifies the location where kfence_allocation_gate is read-checked to just be inline in kfence_alloc(). Link: https://lkml.kernel.org/r/20211019102524.2807208-1-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jann Horn <jannh@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06stacktrace: move filter_irq_stacks() to kernel/stacktrace.cMarco Elver
filter_irq_stacks() has little to do with the stackdepot implementation, except that it is usually used by users (such as KASAN) of stackdepot to reduce the stack trace. However, filter_irq_stacks() itself is not useful without a stack trace as obtained by stack_trace_save() and friends. Therefore, move filter_irq_stacks() to kernel/stacktrace.c, so that new users of filter_irq_stacks() do not have to start depending on STACKDEPOT only for filter_irq_stacks(). Link: https://lkml.kernel.org/r/20210923104803.2620285-1-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Acked-by: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Jann Horn <jannh@google.com> Cc: Aleksandr Nogikh <nogikh@google.com> Cc: Taras Madan <tarasmadan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06include/linux/mm.h: move nr_free_buffer_pages from swap.h to mm.hMianhan Liu
nr_free_buffer_pages could be exposed through mm.h instead of swap.h. The advantage of this change is that it can reduce the obsolete includes. For example, net/ipv4/tcp.c wouldn't need swap.h any more since it has already included mm.h. Similarly, after checking all the other files, it comes that tcp.c, udp.c meter.c ,... follow the same rule, so these files can have swap.h removed too. Moreover, after preprocessing all the files that use nr_free_buffer_pages, it turns out that those files have already included mm.h.Thus, we can move nr_free_buffer_pages from swap.h to mm.h safely. This change will not affect the compilation of other files. Link: https://lkml.kernel.org/r/20210912133640.1624-1-liumh1@shanghaitech.edu.cn Signed-off-by: Mianhan Liu <liumh1@shanghaitech.edu.cn> Cc: Jakub Kicinski <kuba@kernel.org> CC: Ulf Hansson <ulf.hansson@linaro.org> Cc: "David S . Miller" <davem@davemloft.net> Cc: Simon Horman <horms@verge.net.au> Cc: Pravin B Shelar <pshelar@ovn.org> Cc: Vlad Yasevich <vyasevich@gmail.com> Cc: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: remove HARDENED_USERCOPY_FALLBACKStephen Kitt
This has served its purpose and is no longer used. All usercopy violations appear to have been handled by now, any remaining instances (or new bugs) will cause copies to be rejected. This isn't a direct revert of commit 2d891fbc3bb6 ("usercopy: Allow strict enforcement of whitelists"); since usercopy_fallback is effectively 0, the fallback handling is removed too. This also removes the usercopy_fallback module parameter on slab_common. Link: https://github.com/KSPP/linux/issues/153 Link: https://lkml.kernel.org/r/20210921061149.1091163-1-steve@sk2.org Signed-off-by: Stephen Kitt <steve@sk2.org> Suggested-by: Kees Cook <keescook@chromium.org> Acked-by: Kees Cook <keescook@chromium.org> Reviewed-by: Joel Stanley <joel@jms.id.au> [defconfig change] Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: James Morris <jmorris@namei.org> Cc: "Serge E . Hallyn" <serge@hallyn.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/highmem: remove deprecated kmap_atomicIra Weiny
kmap_atomic() is being deprecated in favor of kmap_local_page(). Replace the uses of kmap_atomic() within the highmem code. On profiling clear_huge_page() using ftrace an improvement of 62% was observed on the below setup. Setup:- Below data has been collected on Qualcomm's SM7250 SoC THP enabled (kernel v4.19.113) with only CPU-0(Cortex-A55) and CPU-7(Cortex-A76) switched on and set to max frequency, also DDR set to perf governor. FTRACE Data:- Base data:- Number of iterations: 48 Mean of allocation time: 349.5 us std deviation: 74.5 us v4 data:- Number of iterations: 48 Mean of allocation time: 131 us std deviation: 32.7 us The following simple userspace experiment to allocate 100MB(BUF_SZ) of pages and writing to it gave us a good insight, we observed an improvement of 42% in allocation and writing timings. ------------------------------------------------------------- Test code snippet ------------------------------------------------------------- clock_start(); buf = malloc(BUF_SZ); /* Allocate 100 MB of memory */ for(i=0; i < BUF_SZ_PAGES; i++) { *((int *)(buf + (i*PAGE_SIZE))) = 1; } clock_end(); ------------------------------------------------------------- Malloc test timings for 100MB anon allocation:- Base data:- Number of iterations: 100 Mean of allocation time: 31831 us std deviation: 4286 us v4 data:- Number of iterations: 100 Mean of allocation time: 18193 us std deviation: 4915 us [willy@infradead.org: fix zero_user_segments()] Link: https://lkml.kernel.org/r/YYVhHCJcm2DM2G9u@casper.infradead.org Link: https://lkml.kernel.org/r/20210204073255.20769-2-prathu.baronia@oneplus.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Prathu Baronia <prathu.baronia@oneplus.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06memblock: add MEMBLOCK_DRIVER_MANAGED to mimic IORESOURCE_SYSRAM_DRIVER_MANAGEDDavid Hildenbrand
Let's add a flag that corresponds to IORESOURCE_SYSRAM_DRIVER_MANAGED, indicating that we're dealing with a memory region that is never indicated in the firmware-provided memory map, but always detected and added by a driver. Similar to MEMBLOCK_HOTPLUG, most infrastructure has to treat such memory regions like ordinary MEMBLOCK_NONE memory regions -- for example, when selecting memory regions to add to the vmcore for dumping in the crashkernel via for_each_mem_range(). However, especially kexec_file is not supposed to select such memblocks via for_each_free_mem_range() / for_each_free_mem_range_reverse() to place kexec images, similar to how we handle IORESOURCE_SYSRAM_DRIVER_MANAGED without CONFIG_ARCH_KEEP_MEMBLOCK. We'll make sure that memory hotplug code sets the flag where applicable (IORESOURCE_SYSRAM_DRIVER_MANAGED) next. This prepares architectures that need CONFIG_ARCH_KEEP_MEMBLOCK, such as arm64, for virtio-mem support. Note that kexec *must not* indicate this memory to the second kernel and *must not* place kexec-images on this memory. Let's add a comment to kexec_walk_memblock(), documenting how we handle MEMBLOCK_DRIVER_MANAGED now just like using IORESOURCE_SYSRAM_DRIVER_MANAGED in locate_mem_hole_callback() for kexec_walk_resources(). Also note that MEMBLOCK_HOTPLUG cannot be reused due to different semantics: MEMBLOCK_HOTPLUG: memory is indicated as "System RAM" in the firmware-provided memory map and added to the system early during boot; kexec *has to* indicate this memory to the second kernel and can place kexec-images on this memory. After memory hotunplug, kexec has to be re-armed. We mostly ignore this flag when "movable_node" is not set on the kernel command line, because then we're told to not care about hotunpluggability of such memory regions. MEMBLOCK_DRIVER_MANAGED: memory is not indicated as "System RAM" in the firmware-provided memory map; this memory is always detected and added to the system by a driver; memory might not actually be physically hotunpluggable. kexec *must not* indicate this memory to the second kernel and *must not* place kexec-images on this memory. Link: https://lkml.kernel.org/r/20211004093605.5830-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Jianyong Wu <Jianyong.Wu@arm.com> Cc: Jiaxun Yang <jiaxun.yang@flygoat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Shahab Vahedi <shahab@synopsys.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06memblock: allow to specify flags with memblock_add_node()David Hildenbrand
We want to specify flags when hotplugging memory. Let's prepare to pass flags to memblock_add_node() by adjusting all existing users. Note that when hotplugging memory the system is already up and running and we might have concurrent memblock users: for example, while we're hotplugging memory, kexec_file code might search for suitable memory regions to place kexec images. It's important to add the memory directly to memblock via a single call with the right flags, instead of adding the memory first and apply flags later: otherwise, concurrent memblock users might temporarily stumble over memblocks with wrong flags, which will be important in a follow-up patch that introduces a new flag to properly handle add_memory_driver_managed(). Link: https://lkml.kernel.org/r/20211004093605.5830-4-david@redhat.com Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Shahab Vahedi <shahab@synopsys.com> [arch/arc] Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Jianyong Wu <Jianyong.Wu@arm.com> Cc: Jiaxun Yang <jiaxun.yang@flygoat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06memblock: improve MEMBLOCK_HOTPLUG documentationDavid Hildenbrand
The description of MEMBLOCK_HOTPLUG is currently short and consequently misleading: we're actually dealing with a memory region that might get hotunplugged later (i.e., the platform+firmware supports it), yet it is indicated in the firmware-provided memory map as system ram that will just get used by the system for any purpose when not taking special care. The firmware marked this memory region as a hot(un)plugged (e.g., hotplugged before reboot), implying that it might get hotunplugged again later. Whether we consider this information depends on the "movable_node" kernel commandline parameter: only with "movable_node" set, we'll try keeping this memory hotunpluggable, for example, by not serving early allocations from this memory region and by letting the buddy manage it using the ZONE_MOVABLE. Let's make this clearer by extending the documentation. Note: kexec *has to* indicate this memory to the second kernel. With "movable_node" set, we don't want to place kexec-images on this memory. Without "movable_node" set, we don't care and can place kexec-images on this memory. In both cases, after successful memory hotunplug, kexec has to be re-armed to update the memory map for the second kernel and to place the kexec-images somewhere else. Link: https://lkml.kernel.org/r/20211004093605.5830-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Jianyong Wu <Jianyong.Wu@arm.com> Cc: Jiaxun Yang <jiaxun.yang@flygoat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Shahab Vahedi <shahab@synopsys.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/memory_hotplug: remove stale function declarationsDavid Hildenbrand
These functions no longer exist. Link: https://lkml.kernel.org/r/20210929143600.49379-6-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alex Shi <alexs@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/memory_hotplug: remove HIGHMEM leftoversDavid Hildenbrand
We don't support CONFIG_MEMORY_HOTPLUG on 32 bit and consequently not HIGHMEM. Let's remove any leftover code -- including the unused "status_change_nid_high" field part of the memory notifier. Link: https://lkml.kernel.org/r/20210929143600.49379-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alex Shi <alexs@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/memory_hotplug: remove CONFIG_MEMORY_HOTPLUG_SPARSEDavid Hildenbrand
CONFIG_MEMORY_HOTPLUG depends on CONFIG_SPARSEMEM, so there is no need for CONFIG_MEMORY_HOTPLUG_SPARSE anymore; adjust all instances to use CONFIG_MEMORY_HOTPLUG and remove CONFIG_MEMORY_HOTPLUG_SPARSE. Link: https://lkml.kernel.org/r/20210929143600.49379-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Shuah Khan <skhan@linuxfoundation.org> [kselftest] Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Oscar Salvador <osalvador@suse.de> Cc: Alex Shi <alexs@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: migrate: make demotion knob depend on migrationYang Shi
The memory demotion needs to call migrate_pages() to do the jobs. And it is controlled by a knob, however, the knob doesn't depend on CONFIG_MIGRATION. The knob could be truned on even though MIGRATION is disabled, this will not cause any crash since migrate_pages() would just return -ENOSYS. But it is definitely not optimal to go through demotion path then retry regular swap every time. And it doesn't make too much sense to have the knob visible to the users when !MIGRATION. Move the related code from mempolicy.[h|c] to migrate.[h|c]. Link: https://lkml.kernel.org/r/20211015005559.246709-1-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Acked-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/migrate: de-duplicate migrate_reason stringsJohn Hubbard
In order to remove the need to manually keep three different files in synch, provide a common definition of the mapping between enum migrate_reason, and the associated strings for each enum item. 1. Use the tracing system's mapping of enums to strings, by redefining and reusing the MIGRATE_REASON and supporting macros, and using that to populate the string array in mm/debug.c. 2. Move enum migrate_reason to migrate_mode.h. This is not strictly necessary for this patch, but migrate mode and migrate reason go together, so this will slightly clarify things. Link: https://lkml.kernel.org/r/20210922041755.141817-2-jhubbard@nvidia.com Signed-off-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Weizhao Ouyang <o451686892@gmail.com> Cc: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06hugetlbfs: extend the definition of hugepages parameter to support node ↵Zhenguo Yao
allocation We can specify the number of hugepages to allocate at boot. But the hugepages is balanced in all nodes at present. In some scenarios, we only need hugepages in one node. For example: DPDK needs hugepages which are in the same node as NIC. If DPDK needs four hugepages of 1G size in node1 and system has 16 numa nodes we must reserve 64 hugepages on the kernel cmdline. But only four hugepages are used. The others should be free after boot. If the system memory is low(for example: 64G), it will be an impossible task. So extend the hugepages parameter to support specifying hugepages on a specific node. For example add following parameter: hugepagesz=1G hugepages=0:1,1:3 It will allocate 1 hugepage in node0 and 3 hugepages in node1. Link: https://lkml.kernel.org/r/20211005054729.86457-1-yaozhenguo1@gmail.com Signed-off-by: Zhenguo Yao <yaozhenguo1@gmail.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Zhenguo Yao <yaozhenguo1@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Nathan Chancellor <nathan@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Mike Rapoport <rppt@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06memblock: use memblock_free for freeing virtual pointersMike Rapoport
Rename memblock_free_ptr() to memblock_free() and use memblock_free() when freeing a virtual pointer so that memblock_free() will be a counterpart of memblock_alloc() The callers are updated with the below semantic patch and manual addition of (void *) casting to pointers that are represented by unsigned long variables. @@ identifier vaddr; expression size; @@ ( - memblock_phys_free(__pa(vaddr), size); + memblock_free(vaddr, size); | - memblock_free_ptr(vaddr, size); + memblock_free(vaddr, size); ) [sfr@canb.auug.org.au: fixup] Link: https://lkml.kernel.org/r/20211018192940.3d1d532f@canb.auug.org.au Link: https://lkml.kernel.org/r/20210930185031.18648-7-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Juergen Gross <jgross@suse.com> Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06memblock: rename memblock_free to memblock_phys_freeMike Rapoport
Since memblock_free() operates on a physical range, make its name reflect it and rename it to memblock_phys_free(), so it will be a logical counterpart to memblock_phys_alloc(). The callers are updated with the below semantic patch: @@ expression addr; expression size; @@ - memblock_free(addr, size); + memblock_phys_free(addr, size); Link: https://lkml.kernel.org/r/20210930185031.18648-6-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Juergen Gross <jgross@suse.com> Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06memblock: stop aliasing __memblock_free_late with memblock_free_lateMike Rapoport
memblock_free_late() is a NOP wrapper for __memblock_free_late(), there is no point to keep this indirection. Drop the wrapper and rename __memblock_free_late() to memblock_free_late(). Link: https://lkml.kernel.org/r/20210930185031.18648-5-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Juergen Gross <jgross@suse.com> Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06memblock: drop memblock_free_early_nid() and memblock_free_early()Mike Rapoport
memblock_free_early_nid() is unused and memblock_free_early() is an alias for memblock_free(). Replace calls to memblock_free_early() with calls to memblock_free() and remove memblock_free_early() and memblock_free_early_nid(). Link: https://lkml.kernel.org/r/20210930185031.18648-4-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Juergen Gross <jgross@suse.com> Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/vmpressure: fix data-race with memcg->socket_pressureYuanzheng Song
When reading memcg->socket_pressure in mem_cgroup_under_socket_pressure() and writing memcg->socket_pressure in vmpressure() at the same time, the following data-race occurs: BUG: KCSAN: data-race in __sk_mem_reduce_allocated / vmpressure write to 0xffff8881286f4938 of 8 bytes by task 24550 on cpu 3: vmpressure+0x218/0x230 mm/vmpressure.c:307 shrink_node_memcgs+0x2b9/0x410 mm/vmscan.c:2658 shrink_node+0x9d2/0x11d0 mm/vmscan.c:2769 shrink_zones+0x29f/0x470 mm/vmscan.c:2972 do_try_to_free_pages+0x193/0x6e0 mm/vmscan.c:3027 try_to_free_mem_cgroup_pages+0x1c0/0x3f0 mm/vmscan.c:3345 reclaim_high mm/memcontrol.c:2440 [inline] mem_cgroup_handle_over_high+0x18b/0x4d0 mm/memcontrol.c:2624 tracehook_notify_resume include/linux/tracehook.h:197 [inline] exit_to_user_mode_loop kernel/entry/common.c:164 [inline] exit_to_user_mode_prepare+0x110/0x170 kernel/entry/common.c:191 syscall_exit_to_user_mode+0x16/0x30 kernel/entry/common.c:266 ret_from_fork+0x15/0x30 arch/x86/entry/entry_64.S:289 read to 0xffff8881286f4938 of 8 bytes by interrupt on cpu 1: mem_cgroup_under_socket_pressure include/linux/memcontrol.h:1483 [inline] sk_under_memory_pressure include/net/sock.h:1314 [inline] __sk_mem_reduce_allocated+0x1d2/0x270 net/core/sock.c:2696 __sk_mem_reclaim+0x44/0x50 net/core/sock.c:2711 sk_mem_reclaim include/net/sock.h:1490 [inline] ...... net_rx_action+0x17a/0x480 net/core/dev.c:6864 __do_softirq+0x12c/0x2af kernel/softirq.c:298 run_ksoftirqd+0x13/0x20 kernel/softirq.c:653 smpboot_thread_fn+0x33f/0x510 kernel/smpboot.c:165 kthread+0x1fc/0x220 kernel/kthread.c:292 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:296 Fix it by using READ_ONCE() and WRITE_ONCE() to read and write memcg->socket_pressure. Link: https://lkml.kernel.org/r/20211025082843.671690-1-songyuanzheng@huawei.com Signed-off-by: Yuanzheng Song <songyuanzheng@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Alex Shi <alexs@kernel.org> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/vmscan: throttle reclaim when no progress is being madeMel Gorman
Memcg reclaim throttles on congestion if no reclaim progress is made. This makes little sense, it might be due to writeback or a host of other factors. For !memcg reclaim, it's messy. Direct reclaim primarily is throttled in the page allocator if it is failing to make progress. Kswapd throttles if too many pages are under writeback and marked for immediate reclaim. This patch explicitly throttles if reclaim is failing to make progress. [vbabka@suse.cz: Remove redundant code] Link: https://lkml.kernel.org/r/20211022144651.19914-4-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/vmscan: throttle reclaim and compaction when too may pages are isolatedMel Gorman
Page reclaim throttles on congestion if too many parallel reclaim instances have isolated too many pages. This makes no sense, excessive parallelisation has nothing to do with writeback or congestion. This patch creates an additional workqueue to sleep on when too many pages are isolated. The throttled tasks are woken when the number of isolated pages is reduced or a timeout occurs. There may be some false positive wakeups for GFP_NOIO/GFP_NOFS callers but the tasks will throttle again if necessary. [shy828301@gmail.com: Wake up from compaction context] [vbabka@suse.cz: Account number of throttled tasks only for writeback] Link: https://lkml.kernel.org/r/20211022144651.19914-3-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>