summaryrefslogtreecommitdiff
path: root/kernel/bpf
AgeCommit message (Collapse)Author
2024-01-24bpf,lsm: Refactor bpf_map_alloc/bpf_map_free LSM hooksAndrii Nakryiko
Similarly to bpf_prog_alloc LSM hook, rename and extend bpf_map_alloc hook into bpf_map_create, taking not just struct bpf_map, but also bpf_attr and bpf_token, to give a fuller context to LSMs. Unlike bpf_prog_alloc, there is no need to move the hook around, as it currently is firing right before allocating BPF map ID and FD, which seems to be a sweet spot. But like bpf_prog_alloc/bpf_prog_free combo, make sure that bpf_map_free LSM hook is called even if bpf_map_create hook returned error, as if few LSMs are combined together it could be that one LSM successfully allocated security blob for its needs, while subsequent LSM rejected BPF map creation. The former LSM would still need to free up LSM blob, so we need to ensure security_bpf_map_free() is called regardless of the outcome. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Paul Moore <paul@paul-moore.com> Link: https://lore.kernel.org/bpf/20240124022127.2379740-11-andrii@kernel.org
2024-01-24bpf,lsm: Refactor bpf_prog_alloc/bpf_prog_free LSM hooksAndrii Nakryiko
Based on upstream discussion ([0]), rework existing bpf_prog_alloc_security LSM hook. Rename it to bpf_prog_load and instead of passing bpf_prog_aux, pass proper bpf_prog pointer for a full BPF program struct. Also, we pass bpf_attr union with all the user-provided arguments for BPF_PROG_LOAD command. This will give LSMs as much information as we can basically provide. The hook is also BPF token-aware now, and optional bpf_token struct is passed as a third argument. bpf_prog_load LSM hook is called after a bunch of sanity checks were performed, bpf_prog and bpf_prog_aux were allocated and filled out, but right before performing full-fledged BPF verification step. bpf_prog_free LSM hook is now accepting struct bpf_prog argument, for consistency. SELinux code is adjusted to all new names, types, and signatures. Note, given that bpf_prog_load (previously bpf_prog_alloc) hook can be used by some LSMs to allocate extra security blob, but also by other LSMs to reject BPF program loading, we need to make sure that bpf_prog_free LSM hook is called after bpf_prog_load/bpf_prog_alloc one *even* if the hook itself returned error. If we don't do that, we run the risk of leaking memory. This seems to be possible today when combining SELinux and BPF LSM, as one example, depending on their relative ordering. Also, for BPF LSM setup, add bpf_prog_load and bpf_prog_free to sleepable LSM hooks list, as they are both executed in sleepable context. Also drop bpf_prog_load hook from untrusted, as there is no issue with refcount or anything else anymore, that originally forced us to add it to untrusted list in c0c852dd1876 ("bpf: Do not mark certain LSM hook arguments as trusted"). We now trigger this hook much later and it should not be an issue anymore. [0] https://lore.kernel.org/bpf/9fe88aef7deabbe87d3fc38c4aea3c69.paul@paul-moore.com/ Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Paul Moore <paul@paul-moore.com> Link: https://lore.kernel.org/bpf/20240124022127.2379740-10-andrii@kernel.org
2024-01-24bpf: Consistently use BPF token throughout BPF verifier logicAndrii Nakryiko
Remove remaining direct queries to perfmon_capable() and bpf_capable() in BPF verifier logic and instead use BPF token (if available) to make decisions about privileges. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20240124022127.2379740-9-andrii@kernel.org
2024-01-24bpf: Take into account BPF token when fetching helper protosAndrii Nakryiko
Instead of performing unconditional system-wide bpf_capable() and perfmon_capable() calls inside bpf_base_func_proto() function (and other similar ones) to determine eligibility of a given BPF helper for a given program, use previously recorded BPF token during BPF_PROG_LOAD command handling to inform the decision. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20240124022127.2379740-8-andrii@kernel.org
2024-01-24bpf: Add BPF token support to BPF_PROG_LOAD commandAndrii Nakryiko
Add basic support of BPF token to BPF_PROG_LOAD. BPF_F_TOKEN_FD flag should be set in prog_flags field when providing prog_token_fd. Wire through a set of allowed BPF program types and attach types, derived from BPF FS at BPF token creation time. Then make sure we perform bpf_token_capable() checks everywhere where it's relevant. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20240124022127.2379740-7-andrii@kernel.org
2024-01-24bpf: Add BPF token support to BPF_BTF_LOAD commandAndrii Nakryiko
Accept BPF token FD in BPF_BTF_LOAD command to allow BTF data loading through delegated BPF token. BPF_F_TOKEN_FD flag has to be specified when passing BPF token FD. Given BPF_BTF_LOAD command didn't have flags field before, we also add btf_flags field. BTF loading is a pretty straightforward operation, so as long as BPF token is created with allow_cmds granting BPF_BTF_LOAD command, kernel proceeds to parsing BTF data and creating BTF object. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20240124022127.2379740-6-andrii@kernel.org
2024-01-24bpf: Add BPF token support to BPF_MAP_CREATE commandAndrii Nakryiko
Allow providing token_fd for BPF_MAP_CREATE command to allow controlled BPF map creation from unprivileged process through delegated BPF token. New BPF_F_TOKEN_FD flag is added to specify together with BPF token FD for BPF_MAP_CREATE command. Wire through a set of allowed BPF map types to BPF token, derived from BPF FS at BPF token creation time. This, in combination with allowed_cmds allows to create a narrowly-focused BPF token (controlled by privileged agent) with a restrictive set of BPF maps that application can attempt to create. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20240124022127.2379740-5-andrii@kernel.org
2024-01-24bpf: Introduce BPF token objectAndrii Nakryiko
Add new kind of BPF kernel object, BPF token. BPF token is meant to allow delegating privileged BPF functionality, like loading a BPF program or creating a BPF map, from privileged process to a *trusted* unprivileged process, all while having a good amount of control over which privileged operations could be performed using provided BPF token. This is achieved through mounting BPF FS instance with extra delegation mount options, which determine what operations are delegatable, and also constraining it to the owning user namespace (as mentioned in the previous patch). BPF token itself is just a derivative from BPF FS and can be created through a new bpf() syscall command, BPF_TOKEN_CREATE, which accepts BPF FS FD, which can be attained through open() API by opening BPF FS mount point. Currently, BPF token "inherits" delegated command, map types, prog type, and attach type bit sets from BPF FS as is. In the future, having an BPF token as a separate object with its own FD, we can allow to further restrict BPF token's allowable set of things either at the creation time or after the fact, allowing the process to guard itself further from unintentionally trying to load undesired kind of BPF programs. But for now we keep things simple and just copy bit sets as is. When BPF token is created from BPF FS mount, we take reference to the BPF super block's owning user namespace, and then use that namespace for checking all the {CAP_BPF, CAP_PERFMON, CAP_NET_ADMIN, CAP_SYS_ADMIN} capabilities that are normally only checked against init userns (using capable()), but now we check them using ns_capable() instead (if BPF token is provided). See bpf_token_capable() for details. Such setup means that BPF token in itself is not sufficient to grant BPF functionality. User namespaced process has to *also* have necessary combination of capabilities inside that user namespace. So while previously CAP_BPF was useless when granted within user namespace, now it gains a meaning and allows container managers and sys admins to have a flexible control over which processes can and need to use BPF functionality within the user namespace (i.e., container in practice). And BPF FS delegation mount options and derived BPF tokens serve as a per-container "flag" to grant overall ability to use bpf() (plus further restrict on which parts of bpf() syscalls are treated as namespaced). Note also, BPF_TOKEN_CREATE command itself requires ns_capable(CAP_BPF) within the BPF FS owning user namespace, rounding up the ns_capable() story of BPF token. Also creating BPF token in init user namespace is currently not supported, given BPF token doesn't have any effect in init user namespace anyways. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Christian Brauner <brauner@kernel.org> Link: https://lore.kernel.org/bpf/20240124022127.2379740-4-andrii@kernel.org
2024-01-24bpf: Add BPF token delegation mount options to BPF FSAndrii Nakryiko
Add few new mount options to BPF FS that allow to specify that a given BPF FS instance allows creation of BPF token (added in the next patch), and what sort of operations are allowed under BPF token. As such, we get 4 new mount options, each is a bit mask - `delegate_cmds` allow to specify which bpf() syscall commands are allowed with BPF token derived from this BPF FS instance; - if BPF_MAP_CREATE command is allowed, `delegate_maps` specifies a set of allowable BPF map types that could be created with BPF token; - if BPF_PROG_LOAD command is allowed, `delegate_progs` specifies a set of allowable BPF program types that could be loaded with BPF token; - if BPF_PROG_LOAD command is allowed, `delegate_attachs` specifies a set of allowable BPF program attach types that could be loaded with BPF token; delegate_progs and delegate_attachs are meant to be used together, as full BPF program type is, in general, determined through both program type and program attach type. Currently, these mount options accept the following forms of values: - a special value "any", that enables all possible values of a given bit set; - numeric value (decimal or hexadecimal, determined by kernel automatically) that specifies a bit mask value directly; - all the values for a given mount option are combined, if specified multiple times. E.g., `mount -t bpf nodev /path/to/mount -o delegate_maps=0x1 -o delegate_maps=0x2` will result in a combined 0x3 mask. Ideally, more convenient (for humans) symbolic form derived from corresponding UAPI enums would be accepted (e.g., `-o delegate_progs=kprobe|tracepoint`) and I intend to implement this, but it requires a bunch of UAPI header churn, so I postponed it until this feature lands upstream or at least there is a definite consensus that this feature is acceptable and is going to make it, just to minimize amount of wasted effort and not increase amount of non-essential code to be reviewed. Attentive reader will notice that BPF FS is now marked as FS_USERNS_MOUNT, which theoretically makes it mountable inside non-init user namespace as long as the process has sufficient *namespaced* capabilities within that user namespace. But in reality we still restrict BPF FS to be mountable only by processes with CAP_SYS_ADMIN *in init userns* (extra check in bpf_fill_super()). FS_USERNS_MOUNT is added to allow creating BPF FS context object (i.e., fsopen("bpf")) from inside unprivileged process inside non-init userns, to capture that userns as the owning userns. It will still be required to pass this context object back to privileged process to instantiate and mount it. This manipulation is important, because capturing non-init userns as the owning userns of BPF FS instance (super block) allows to use that userns to constraint BPF token to that userns later on (see next patch). So creating BPF FS with delegation inside unprivileged userns will restrict derived BPF token objects to only "work" inside that intended userns, making it scoped to a intended "container". Also, setting these delegation options requires capable(CAP_SYS_ADMIN), so unprivileged process cannot set this up without involvement of a privileged process. There is a set of selftests at the end of the patch set that simulates this sequence of steps and validates that everything works as intended. But careful review is requested to make sure there are no missed gaps in the implementation and testing. This somewhat subtle set of aspects is the result of previous discussions ([0]) about various user namespace implications and interactions with BPF token functionality and is necessary to contain BPF token inside intended user namespace. [0] https://lore.kernel.org/bpf/20230704-hochverdient-lehne-eeb9eeef785e@brauner/ Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Christian Brauner <brauner@kernel.org> Link: https://lore.kernel.org/bpf/20240124022127.2379740-3-andrii@kernel.org
2024-01-24bpf: Align CAP_NET_ADMIN checks with bpf_capable() approachAndrii Nakryiko
Within BPF syscall handling code CAP_NET_ADMIN checks stand out a bit compared to CAP_BPF and CAP_PERFMON checks. For the latter, CAP_BPF or CAP_PERFMON are checked first, but if they are not set, CAP_SYS_ADMIN takes over and grants whatever part of BPF syscall is required. Similar kind of checks that involve CAP_NET_ADMIN are not so consistent. One out of four uses does follow CAP_BPF/CAP_PERFMON model: during BPF_PROG_LOAD, if the type of BPF program is "network-related" either CAP_NET_ADMIN or CAP_SYS_ADMIN is required to proceed. But in three other cases CAP_NET_ADMIN is required even if CAP_SYS_ADMIN is set: - when creating DEVMAP/XDKMAP/CPU_MAP maps; - when attaching CGROUP_SKB programs; - when handling BPF_PROG_QUERY command. This patch is changing the latter three cases to follow BPF_PROG_LOAD model, that is allowing to proceed under either CAP_NET_ADMIN or CAP_SYS_ADMIN. This also makes it cleaner in subsequent BPF token patches to switch wholesomely to a generic bpf_token_capable(int cap) check, that always falls back to CAP_SYS_ADMIN if requested capability is missing. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lore.kernel.org/bpf/20240124022127.2379740-2-andrii@kernel.org
2024-01-23bpf: export btf_ctx_access to modules.Kui-Feng Lee
The module requires the use of btf_ctx_access() to invoke bpf_tracing_btf_ctx_access() from a module. This function is valuable for implementing validation functions that ensure proper access to ctx. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240119225005.668602-14-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-23bpf, net: switch to dynamic registrationKui-Feng Lee
Replace the static list of struct_ops types with per-btf struct_ops_tab to enable dynamic registration. Both bpf_dummy_ops and bpf_tcp_ca now utilize the registration function instead of being listed in bpf_struct_ops_types.h. Cc: netdev@vger.kernel.org Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240119225005.668602-12-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-23bpf: validate value_typeKui-Feng Lee
A value_type should consist of three components: refcnt, state, and data. refcnt and state has been move to struct bpf_struct_ops_common_value to make it easier to check the value type. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240119225005.668602-11-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-23bpf: hold module refcnt in bpf_struct_ops map creation and prog verification.Kui-Feng Lee
To ensure that a module remains accessible whenever a struct_ops object of a struct_ops type provided by the module is still in use. struct bpf_struct_ops_map doesn't hold a refcnt to btf anymore since a module will hold a refcnt to it's btf already. But, struct_ops programs are different. They hold their associated btf, not the module since they need only btf to assure their types (signatures). However, verifier holds the refcnt of the associated module of a struct_ops type temporarily when verify a struct_ops prog. Verifier needs the help from the verifier operators (struct bpf_verifier_ops) provided by the owner module to verify data access of a prog, provide information, and generate code. This patch also add a count of links (links_cnt) to bpf_struct_ops_map. It avoids bpf_struct_ops_map_put_progs() from accessing btf after calling module_put() in bpf_struct_ops_map_free(). Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240119225005.668602-10-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-23bpf: pass attached BTF to the bpf_struct_ops subsystemKui-Feng Lee
Pass the fd of a btf from the userspace to the bpf() syscall, and then convert the fd into a btf. The btf is generated from the module that defines the target BPF struct_ops type. In order to inform the kernel about the module that defines the target struct_ops type, the userspace program needs to provide a btf fd for the respective module's btf. This btf contains essential information on the types defined within the module, including the target struct_ops type. A btf fd must be provided to the kernel for struct_ops maps and for the bpf programs attached to those maps. In the case of the bpf programs, the attach_btf_obj_fd parameter is passed as part of the bpf_attr and is converted into a btf. This btf is then stored in the prog->aux->attach_btf field. Here, it just let the verifier access attach_btf directly. In the case of struct_ops maps, a btf fd is passed as value_type_btf_obj_fd of bpf_attr. The bpf_struct_ops_map_alloc() function converts the fd to a btf and stores it as st_map->btf. A flag BPF_F_VTYPE_BTF_OBJ_FD is added for map_flags to indicate that the value of value_type_btf_obj_fd is set. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240119225005.668602-9-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-23bpf: lookup struct_ops types from a given module BTF.Kui-Feng Lee
This is a preparation for searching for struct_ops types from a specified module. BTF is always btf_vmlinux now. This patch passes a pointer of BTF to bpf_struct_ops_find_value() and bpf_struct_ops_find(). Once the new registration API of struct_ops types is used, other BTFs besides btf_vmlinux can also be passed to them. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240119225005.668602-8-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-23bpf: pass btf object id in bpf_map_info.Kui-Feng Lee
Include btf object id (btf_obj_id) in bpf_map_info so that tools (ex: bpftools struct_ops dump) know the correct btf from the kernel to look up type information of struct_ops types. Since struct_ops types can be defined and registered in a module. The type information of a struct_ops type are defined in the btf of the module defining it. The userspace tools need to know which btf is for the module defining a struct_ops type. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240119225005.668602-7-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-23bpf: make struct_ops_map support btfs other than btf_vmlinux.Kui-Feng Lee
Once new struct_ops can be registered from modules, btf_vmlinux is no longer the only btf that struct_ops_map would face. st_map should remember what btf it should use to get type information. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240119225005.668602-6-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-23bpf: add struct_ops_tab to btf.Kui-Feng Lee
Maintain a registry of registered struct_ops types in the per-btf (module) struct_ops_tab. This registry allows for easy lookup of struct_ops types that are registered by a specific module. It is a preparation work for supporting kernel module struct_ops in a latter patch. Each struct_ops will be registered under its own kernel module btf and will be stored in the newly added btf->struct_ops_tab. The bpf verifier and bpf syscall (e.g. prog and map cmd) can find the struct_ops and its btf type/size/id... information from btf->struct_ops_tab. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240119225005.668602-5-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-23bpf, net: introduce bpf_struct_ops_desc.Kui-Feng Lee
Move some of members of bpf_struct_ops to bpf_struct_ops_desc. type_id is unavailabe in bpf_struct_ops anymore. Modules should get it from the btf received by kmod's init function. Cc: netdev@vger.kernel.org Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240119225005.668602-4-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-23bpf: get type information with BTF_ID_LISTKui-Feng Lee
Get ready to remove bpf_struct_ops_init() in the future. By using BTF_ID_LIST, it is possible to gather type information while building instead of runtime. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240119225005.668602-3-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-23bpf: refactory struct_ops type initialization to a function.Kui-Feng Lee
Move the majority of the code to bpf_struct_ops_init_one(), which can then be utilized for the initialization of newly registered dynamically allocated struct_ops types in the following patches. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240119225005.668602-2-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-23bpf: Add cookie to perf_event bpf_link_info recordsJiri Olsa
At the moment we don't store cookie for perf_event probes, while we do that for the rest of the probes. Adding cookie fields to struct bpf_link_info perf event probe records: perf_event.uprobe perf_event.kprobe perf_event.tracepoint perf_event.perf_event And the code to store that in bpf_link_info struct. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Song Liu <song@kernel.org> Acked-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lore.kernel.org/r/20240119110505.400573-2-jolsa@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-23bpf: Refactor ptr alu checking rules to allow alu explicitlyHao Sun
Current checking rules are structured to disallow alu on particular ptr types explicitly, so default cases are allowed implicitly. This may lead to newly added ptr types being allowed unexpectedly. So restruture it to allow alu explicitly. The tradeoff is mainly a bit more cases added in the switch. The following table from Eduard summarizes the rules: | Pointer type | Arithmetics allowed | |---------------------+---------------------| | PTR_TO_CTX | yes | | CONST_PTR_TO_MAP | conditionally | | PTR_TO_MAP_VALUE | yes | | PTR_TO_MAP_KEY | yes | | PTR_TO_STACK | yes | | PTR_TO_PACKET_META | yes | | PTR_TO_PACKET | yes | | PTR_TO_PACKET_END | no | | PTR_TO_FLOW_KEYS | conditionally | | PTR_TO_SOCKET | no | | PTR_TO_SOCK_COMMON | no | | PTR_TO_TCP_SOCK | no | | PTR_TO_TP_BUFFER | yes | | PTR_TO_XDP_SOCK | no | | PTR_TO_BTF_ID | yes | | PTR_TO_MEM | yes | | PTR_TO_BUF | yes | | PTR_TO_FUNC | yes | | CONST_PTR_TO_DYNPTR | yes | The refactored rules are equivalent to the original one. Note that PTR_TO_FUNC and CONST_PTR_TO_DYNPTR are not reject here because: (1) check_mem_access() rejects load/store on those ptrs, and those ptrs with offset passing to calls are rejected check_func_arg_reg_off(); (2) someone may rely on the verifier not rejecting programs earily. Signed-off-by: Hao Sun <sunhao.th@gmail.com> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20240117094012.36798-1-sunhao.th@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-23bpf: Track aligned st store as imprecise spilled registersYonghong Song
With patch set [1], precision backtracing supports register spill/fill to/from the stack. The patch [2] allows initial imprecise register spill with content 0. This is a common case for cpuv3 and lower for initializing the stack variables with pattern r1 = 0 *(u64 *)(r10 - 8) = r1 and the [2] has demonstrated good verification improvement. For cpuv4, the initialization could be *(u64 *)(r10 - 8) = 0 The current verifier marks the r10-8 contents with STACK_ZERO. Similar to [2], let us permit the above insn to behave like imprecise register spill which can reduce number of verified states. The change is in function check_stack_write_fixed_off(). Before this patch, spilled zero will be marked as STACK_ZERO which can provide precise values. In check_stack_write_var_off(), STACK_ZERO will be maintained if writing a const zero so later it can provide precise values if needed. The above handling of '*(u64 *)(r10 - 8) = 0' as a spill will have issues in check_stack_write_var_off() as the spill will be converted to STACK_MISC and the precise value 0 is lost. To fix this issue, if the spill slots with const zero and the BPF_ST write also with const zero, the spill slots are preserved, which can later provide precise values if needed. Without the change in check_stack_write_var_off(), the test_verifier subtest 'BPF_ST_MEM stack imm zero, variable offset' will fail. I checked cpuv3 and cpuv4 with and without this patch with veristat. There is no state change for cpuv3 since '*(u64 *)(r10 - 8) = 0' is only generated with cpuv4. For cpuv4: $ ../veristat -C old.cpuv4.csv new.cpuv4.csv -e file,prog,insns,states -f 'insns_diff!=0' File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF) ------------------------------------------ ------------------- --------- --------- --------------- ---------- ---------- ------------- local_storage_bench.bpf.linked3.o get_local 228 168 -60 (-26.32%) 17 14 -3 (-17.65%) pyperf600_bpf_loop.bpf.linked3.o on_event 6066 4889 -1177 (-19.40%) 403 321 -82 (-20.35%) test_cls_redirect.bpf.linked3.o cls_redirect 35483 35387 -96 (-0.27%) 2179 2177 -2 (-0.09%) test_l4lb_noinline.bpf.linked3.o balancer_ingress 4494 4522 +28 (+0.62%) 217 219 +2 (+0.92%) test_l4lb_noinline_dynptr.bpf.linked3.o balancer_ingress 1432 1455 +23 (+1.61%) 92 94 +2 (+2.17%) test_xdp_noinline.bpf.linked3.o balancer_ingress_v6 3462 3458 -4 (-0.12%) 216 216 +0 (+0.00%) verifier_iterating_callbacks.bpf.linked3.o widening 52 41 -11 (-21.15%) 4 3 -1 (-25.00%) xdp_synproxy_kern.bpf.linked3.o syncookie_tc 12412 11719 -693 (-5.58%) 345 330 -15 (-4.35%) xdp_synproxy_kern.bpf.linked3.o syncookie_xdp 12478 11794 -684 (-5.48%) 346 331 -15 (-4.34%) test_l4lb_noinline and test_l4lb_noinline_dynptr has minor regression, but pyperf600_bpf_loop and local_storage_bench gets pretty good improvement. [1] https://lore.kernel.org/all/20231205184248.1502704-1-andrii@kernel.org/ [2] https://lore.kernel.org/all/20231205184248.1502704-9-andrii@kernel.org/ Cc: Kuniyuki Iwashima <kuniyu@amazon.com> Cc: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Tested-by: Kuniyuki Iwashima <kuniyu@amazon.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240110051348.2737007-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-23bpf: Assign ID to scalars on spillMaxim Mikityanskiy
Currently, when a scalar bounded register is spilled to the stack, its ID is preserved, but only if was already assigned, i.e. if this register was MOVed before. Assign an ID on spill if none is set, so that equal scalars could be tracked if a register is spilled to the stack and filled into another register. One test is adjusted to reflect the change in register IDs. Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20240108205209.838365-9-maxtram95@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-23bpf: Add the get_reg_width functionMaxim Mikityanskiy
Put calculation of the register value width into a dedicated function. This function will also be used in a following commit. Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com> Link: https://lore.kernel.org/r/20240108205209.838365-8-maxtram95@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-23bpf: Add the assign_scalar_id_before_mov functionMaxim Mikityanskiy
Extract the common code that generates a register ID for src_reg before MOV if needed into a new function. This function will also be used in a following commit. Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20240108205209.838365-7-maxtram95@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-23bpf: make infinite loop detection in is_state_visited() exactEduard Zingerman
Current infinite loops detection mechanism is speculative: - first, states_maybe_looping() check is done which simply does memcmp for R1-R10 in current frame; - second, states_equal(..., exact=false) is called. With exact=false states_equal() would compare scalars for equality only if in old state scalar has precision mark. Such logic might be problematic if compiler makes some unlucky stack spill/fill decisions. An artificial example of a false positive looks as follows: r0 = ... unknown scalar ... r0 &= 0xff; *(u64 *)(r10 - 8) = r0; r0 = 0; loop: r0 = *(u64 *)(r10 - 8); if r0 > 10 goto exit_; r0 += 1; *(u64 *)(r10 - 8) = r0; r0 = 0; goto loop; This commit updates call to states_equal to use exact=true, forcing all scalar comparisons to be exact. Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20240108205209.838365-3-maxtram95@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-23bpf: support multiple tags per argumentAndrii Nakryiko
Add ability to iterate multiple decl_tag types pointed to the same function argument. Use this to support multiple __arg_xxx tags per global subprog argument. We leave btf_find_decl_tag_value() intact, but change its implementation to use a new btf_find_next_decl_tag() which can be straightforwardly used to find next BTF type ID of a matching btf_decl_tag type. btf_prepare_func_args() is switched from btf_find_decl_tag_value() to btf_find_next_decl_tag() to gain multiple tags per argument support. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20240105000909.2818934-5-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-23bpf: prepare btf_prepare_func_args() for multiple tags per argumentAndrii Nakryiko
Add btf_arg_tag flags enum to be able to record multiple tags per argument. Also streamline pointer argument processing some more. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20240105000909.2818934-4-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-23bpf: make sure scalar args don't accept __arg_nonnull tagAndrii Nakryiko
Move scalar arg processing in btf_prepare_func_args() after all pointer arg processing is done. This makes it easier to do validation. One example of unintended behavior right now is ability to specify __arg_nonnull for integer/enum arguments. This patch fixes this. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20240105000909.2818934-3-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-23bpf: Support inlining bpf_kptr_xchg() helperHou Tao
The motivation of inlining bpf_kptr_xchg() comes from the performance profiling of bpf memory allocator benchmark. The benchmark uses bpf_kptr_xchg() to stash the allocated objects and to pop the stashed objects for free. After inling bpf_kptr_xchg(), the performance for object free on 8-CPUs VM increases about 2%~10%. The inline also has downside: both the kasan and kcsan checks on the pointer will be unavailable. bpf_kptr_xchg() can be inlined by converting the calling of bpf_kptr_xchg() into an atomic_xchg() instruction. But the conversion depends on two conditions: 1) JIT backend supports atomic_xchg() on pointer-sized word 2) For the specific arch, the implementation of xchg is the same as atomic_xchg() on pointer-sized words. It seems most 64-bit JIT backends satisfies these two conditions. But as a precaution, defining a weak function bpf_jit_supports_ptr_xchg() to state whether such conversion is safe and only supporting inline for 64-bit host. For x86-64, it supports BPF_XCHG atomic operation and both xchg() and atomic_xchg() use arch_xchg() to implement the exchange, so enabling the inline of bpf_kptr_xchg() on x86-64 first. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20240105104819.3916743-2-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-17bpf: enforce types for __arg_ctx-tagged arguments in global subprogsAndrii Nakryiko
Add enforcement of expected types for context arguments tagged with arg:ctx (__arg_ctx) tag. First, any program type will accept generic `void *` context type when combined with __arg_ctx tag. Besides accepting "canonical" struct names and `void *`, for a bunch of program types for which program context is actually a named struct, we allows a bunch of pragmatic exceptions to match real-world and expected usage: - for both kprobes and perf_event we allow `bpf_user_pt_regs_t *` as canonical context argument type, where `bpf_user_pt_regs_t` is a *typedef*, not a struct; - for kprobes, we also always accept `struct pt_regs *`, as that's what actually is passed as a context to any kprobe program; - for perf_event, we resolve typedefs (unless it's `bpf_user_pt_regs_t`) down to actual struct type and accept `struct pt_regs *`, or `struct user_pt_regs *`, or `struct user_regs_struct *`, depending on the actual struct type kernel architecture points `bpf_user_pt_regs_t` typedef to; otherwise, canonical `struct bpf_perf_event_data *` is expected; - for raw_tp/raw_tp.w programs, `u64/long *` are accepted, as that's what's expected with BPF_PROG() usage; otherwise, canonical `struct bpf_raw_tracepoint_args *` is expected; - tp_btf supports both `struct bpf_raw_tracepoint_args *` and `u64 *` formats, both are coded as expections as tp_btf is actually a TRACING program type, which has no canonical context type; - iterator programs accept `struct bpf_iter__xxx *` structs, currently with no further iterator-type specific enforcement; - fentry/fexit/fmod_ret/lsm/struct_ops all accept `u64 *`; - classic tracepoint programs, as well as syscall and freplace programs allow any user-provided type. In all other cases kernel will enforce exact match of struct name to expected canonical type. And if user-provided type doesn't match that expectation, verifier will emit helpful message with expected type name. Note a bit unnatural way the check is done after processing all the arguments. This is done to avoid conflict between bpf and bpf-next trees. Once trees converge, a small follow up patch will place a simple btf_validate_prog_ctx_type() check into a proper ARG_PTR_TO_CTX branch (which bpf-next tree patch refactored already), removing duplicated arg:ctx detection logic. Suggested-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240118033143.3384355-4-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-17bpf: extract bpf_ctx_convert_map logic and make it more reusableAndrii Nakryiko
Refactor btf_get_prog_ctx_type() a bit to allow reuse of bpf_ctx_convert_map logic in more than one places. Simplify interface by returning btf_type instead of btf_member (field reference in BTF). To do the above we need to touch and start untangling btf_translate_to_vmlinux() implementation. We do the bare minimum to not regress anything for btf_translate_to_vmlinux(), but its implementation is very questionable for what it claims to be doing. Mapping kfunc argument types to kernel corresponding types conceptually is quite different from recognizing program context types. Fixing this is out of scope for this change though. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240118033143.3384355-3-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-16bpf: Reject variable offset alu on PTR_TO_FLOW_KEYSHao Sun
For PTR_TO_FLOW_KEYS, check_flow_keys_access() only uses fixed off for validation. However, variable offset ptr alu is not prohibited for this ptr kind. So the variable offset is not checked. The following prog is accepted: func#0 @0 0: R1=ctx() R10=fp0 0: (bf) r6 = r1 ; R1=ctx() R6_w=ctx() 1: (79) r7 = *(u64 *)(r6 +144) ; R6_w=ctx() R7_w=flow_keys() 2: (b7) r8 = 1024 ; R8_w=1024 3: (37) r8 /= 1 ; R8_w=scalar() 4: (57) r8 &= 1024 ; R8_w=scalar(smin=smin32=0, smax=umax=smax32=umax32=1024,var_off=(0x0; 0x400)) 5: (0f) r7 += r8 mark_precise: frame0: last_idx 5 first_idx 0 subseq_idx -1 mark_precise: frame0: regs=r8 stack= before 4: (57) r8 &= 1024 mark_precise: frame0: regs=r8 stack= before 3: (37) r8 /= 1 mark_precise: frame0: regs=r8 stack= before 2: (b7) r8 = 1024 6: R7_w=flow_keys(smin=smin32=0,smax=umax=smax32=umax32=1024,var_off =(0x0; 0x400)) R8_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=1024, var_off=(0x0; 0x400)) 6: (79) r0 = *(u64 *)(r7 +0) ; R0_w=scalar() 7: (95) exit This prog loads flow_keys to r7, and adds the variable offset r8 to r7, and finally causes out-of-bounds access: BUG: unable to handle page fault for address: ffffc90014c80038 [...] Call Trace: <TASK> bpf_dispatcher_nop_func include/linux/bpf.h:1231 [inline] __bpf_prog_run include/linux/filter.h:651 [inline] bpf_prog_run include/linux/filter.h:658 [inline] bpf_prog_run_pin_on_cpu include/linux/filter.h:675 [inline] bpf_flow_dissect+0x15f/0x350 net/core/flow_dissector.c:991 bpf_prog_test_run_flow_dissector+0x39d/0x620 net/bpf/test_run.c:1359 bpf_prog_test_run kernel/bpf/syscall.c:4107 [inline] __sys_bpf+0xf8f/0x4560 kernel/bpf/syscall.c:5475 __do_sys_bpf kernel/bpf/syscall.c:5561 [inline] __se_sys_bpf kernel/bpf/syscall.c:5559 [inline] __x64_sys_bpf+0x73/0xb0 kernel/bpf/syscall.c:5559 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x3f/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Fix this by rejecting ptr alu with variable offset on flow_keys. Applying the patch rejects the program with "R7 pointer arithmetic on flow_keys prohibited". Fixes: d58e468b1112 ("flow_dissector: implements flow dissector BPF hook") Signed-off-by: Hao Sun <sunhao.th@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/bpf/20240115082028.9992-1-sunhao.th@gmail.com
2024-01-11Merge tag 'net-next-6.8' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Paolo Abeni: "The most interesting thing is probably the networking structs reorganization and a significant amount of changes is around self-tests. Core & protocols: - Analyze and reorganize core networking structs (socks, netdev, netns, mibs) to optimize cacheline consumption and set up build time warnings to safeguard against future header changes This improves TCP performances with many concurrent connections up to 40% - Add page-pool netlink-based introspection, exposing the memory usage and recycling stats. This helps indentify bad PP users and possible leaks - Refine TCP/DCCP source port selection to no longer favor even source port at connect() time when IP_LOCAL_PORT_RANGE is set. This lowers the time taken by connect() for hosts having many active connections to the same destination - Refactor the TCP bind conflict code, shrinking related socket structs - Refactor TCP SYN-Cookie handling, as a preparation step to allow arbitrary SYN-Cookie processing via eBPF - Tune optmem_max for 0-copy usage, increasing the default value to 128KB and namespecifying it - Allow coalescing for cloned skbs coming from page pools, improving RX performances with some common configurations - Reduce extension header parsing overhead at GRO time - Add bridge MDB bulk deletion support, allowing user-space to request the deletion of matching entries - Reorder nftables struct members, to keep data accessed by the datapath first - Introduce TC block ports tracking and use. This allows supporting multicast-like behavior at the TC layer - Remove UAPI support for retired TC qdiscs (dsmark, CBQ and ATM) and classifiers (RSVP and tcindex) - More data-race annotations - Extend the diag interface to dump TCP bound-only sockets - Conditional notification of events for TC qdisc class and actions - Support for WPAN dynamic associations with nearby devices, to form a sub-network using a specific PAN ID - Implement SMCv2.1 virtual ISM device support - Add support for Batman-avd mulicast packet type BPF: - Tons of verifier improvements: - BPF register bounds logic and range support along with a large test suite - log improvements - complete precision tracking support for register spills - track aligned STACK_ZERO cases as imprecise spilled registers. This improves the verifier "instructions processed" metric from single digit to 50-60% for some programs - support for user's global BPF subprogram arguments with few commonly requested annotations for a better developer experience - support tracking of BPF_JNE which helps cases when the compiler transforms (unsigned) "a > 0" into "if a == 0 goto xxx" and the like - several fixes - Add initial TX metadata implementation for AF_XDP with support in mlx5 and stmmac drivers. Two types of offloads are supported right now, that is, TX timestamp and TX checksum offload - Fix kCFI bugs in BPF all forms of indirect calls from BPF into kernel and from kernel into BPF work with CFI enabled. This allows BPF to work with CONFIG_FINEIBT=y - Change BPF verifier logic to validate global subprograms lazily instead of unconditionally before the main program, so they can be guarded using BPF CO-RE techniques - Support uid/gid options when mounting bpffs - Add a new kfunc which acquires the associated cgroup of a task within a specific cgroup v1 hierarchy where the latter is identified by its id - Extend verifier to allow bpf_refcount_acquire() of a map value field obtained via direct load which is a use-case needed in sched_ext - Add BPF link_info support for uprobe multi link along with bpftool integration for the latter - Support for VLAN tag in XDP hints - Remove deprecated bpfilter kernel leftovers given the project is developed in user-space (https://github.com/facebook/bpfilter) Misc: - Support for parellel TC self-tests execution - Increase MPTCP self-tests coverage - Updated the bridge documentation, including several so-far undocumented features - Convert all the net self-tests to run in unique netns, to avoid random failures due to conflict and allow concurrent runs - Add TCP-AO self-tests - Add kunit tests for both cfg80211 and mac80211 - Autogenerate Netlink families documentation from YAML spec - Add yml-gen support for fixed headers and recursive nests, the tool can now generate user-space code for all genetlink families for which we have specs - A bunch of additional module descriptions fixes - Catch incorrect freeing of pages belonging to a page pool Driver API: - Rust abstractions for network PHY drivers; do not cover yet the full C API, but already allow implementing functional PHY drivers in rust - Introduce queue and NAPI support in the netdev Netlink interface, allowing complete access to the device <> NAPIs <> queues relationship - Introduce notifications filtering for devlink to allow control application scale to thousands of instances - Improve PHY validation, requesting rate matching information for each ethtool link mode supported by both the PHY and host - Add support for ethtool symmetric-xor RSS hash - ACPI based Wifi band RFI (WBRF) mitigation feature for the AMD platform - Expose pin fractional frequency offset value over new DPLL generic netlink attribute - Convert older drivers to platform remove callback returning void - Add support for PHY package MMD read/write New hardware / drivers: - Ethernet: - Octeon CN10K devices - Broadcom 5760X P7 - Qualcomm SM8550 SoC - Texas Instrument DP83TG720S PHY - Bluetooth: - IMC Networks Bluetooth radio Removed: - WiFi: - libertas 16-bit PCMCIA support - Atmel at76c50x drivers - HostAP ISA/PCMCIA style 802.11b driver - zd1201 802.11b USB dongles - Orinoco ISA/PCMCIA 802.11b driver - Aviator/Raytheon driver - Planet WL3501 driver - RNDIS USB 802.11b driver Driver updates: - Ethernet high-speed NICs: - Intel (100G, ice, idpf): - allow one by one port representors creation and removal - add temperature and clock information reporting - add get/set for ethtool's header split ringparam - add again FW logging - adds support switchdev hardware packet mirroring - iavf: implement symmetric-xor RSS hash - igc: add support for concurrent physical and free-running timers - i40e: increase the allowable descriptors - nVidia/Mellanox: - Preparation for Socket-Direct multi-dev netdev. That will allow in future releases combining multiple PFs devices attached to different NUMA nodes under the same netdev - Broadcom (bnxt): - TX completion handling improvements - add basic ntuple filter support - reduce MSIX vectors usage for MQPRIO offload - add VXLAN support, USO offload and TX coalesce completion for P7 - Marvell Octeon EP: - xmit-more support - add PF-VF mailbox support and use it for FW notifications for VFs - Wangxun (ngbe/txgbe): - implement ethtool functions to operate pause param, ring param, coalesce channel number and msglevel - Netronome/Corigine (nfp): - add flow-steering support - support UDP segmentation offload - Ethernet NICs embedded, slower, virtual: - Xilinx AXI: remove duplicate DMA code adopting the dma engine driver - stmmac: add support for HW-accelerated VLAN stripping - TI AM654x sw: add mqprio, frame preemption & coalescing - gve: add support for non-4k page sizes. - virtio-net: support dynamic coalescing moderation - nVidia/Mellanox Ethernet datacenter switches: - allow firmware upgrade without a reboot - more flexible support for bridge flooding via the compressed FID flooding mode - Ethernet embedded switches: - Microchip: - fine-tune flow control and speed configurations in KSZ8xxx - KSZ88X3: enable setting rmii reference - Renesas: - add jumbo frames support - Marvell: - 88E6xxx: add "eth-mac" and "rmon" stats support - Ethernet PHYs: - aquantia: add firmware load support - at803x: refactor the driver to simplify adding support for more chip variants - NXP C45 TJA11xx: Add MACsec offload support - Wifi: - MediaTek (mt76): - NVMEM EEPROM improvements - mt7996 Extremely High Throughput (EHT) improvements - mt7996 Wireless Ethernet Dispatcher (WED) support - mt7996 36-bit DMA support - Qualcomm (ath12k): - support for a single MSI vector - WCN7850: support AP mode - Intel (iwlwifi): - new debugfs file fw_dbg_clear - allow concurrent P2P operation on DFS channels - Bluetooth: - QCA2066: support HFP offload - ISO: more broadcast-related improvements - NXP: better recovery in case receiver/transmitter get out of sync" * tag 'net-next-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1714 commits) lan78xx: remove redundant statement in lan78xx_get_eee lan743x: remove redundant statement in lan743x_ethtool_get_eee bnxt_en: Fix RCU locking for ntuple filters in bnxt_rx_flow_steer() bnxt_en: Fix RCU locking for ntuple filters in bnxt_srxclsrldel() bnxt_en: Remove unneeded variable in bnxt_hwrm_clear_vnic_filter() tcp: Revert no longer abort SYN_SENT when receiving some ICMP Revert "mlx5 updates 2023-12-20" Revert "net: stmmac: Enable Per DMA Channel interrupt" ipvlan: Remove usage of the deprecated ida_simple_xx() API ipvlan: Fix a typo in a comment net/sched: Remove ipt action tests net: stmmac: Use interrupt mode INTM=1 for per channel irq net: stmmac: Add support for TX/RX channel interrupt net: stmmac: Make MSI interrupt routine generic dt-bindings: net: snps,dwmac: per channel irq net: phy: at803x: make read_status more generic net: phy: at803x: add support for cdt cross short test for qca808x net: phy: at803x: refactor qca808x cable test get status function net: phy: at803x: generalize cdt fault length function net: ethernet: cortina: Drop TSO support ...
2024-01-04bpf: Fix re-attachment branch in bpf_tracing_prog_attachJiri Olsa
The following case can cause a crash due to missing attach_btf: 1) load rawtp program 2) load fentry program with rawtp as target_fd 3) create tracing link for fentry program with target_fd = 0 4) repeat 3 In the end we have: - prog->aux->dst_trampoline == NULL - tgt_prog == NULL (because we did not provide target_fd to link_create) - prog->aux->attach_btf == NULL (the program was loaded with attach_prog_fd=X) - the program was loaded for tgt_prog but we have no way to find out which one BUG: kernel NULL pointer dereference, address: 0000000000000058 Call Trace: <TASK> ? __die+0x20/0x70 ? page_fault_oops+0x15b/0x430 ? fixup_exception+0x22/0x330 ? exc_page_fault+0x6f/0x170 ? asm_exc_page_fault+0x22/0x30 ? bpf_tracing_prog_attach+0x279/0x560 ? btf_obj_id+0x5/0x10 bpf_tracing_prog_attach+0x439/0x560 __sys_bpf+0x1cf4/0x2de0 __x64_sys_bpf+0x1c/0x30 do_syscall_64+0x41/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 Return -EINVAL in this situation. Fixes: f3a95075549e0 ("bpf: Allow trampoline re-attach for tracing and lsm programs") Cc: stable@vger.kernel.org Signed-off-by: Jiri Olsa <olsajiri@gmail.com> Acked-by: Jiri Olsa <olsajiri@gmail.com> Acked-by: Song Liu <song@kernel.org> Signed-off-by: Dmitrii Dolgov <9erthalion6@gmail.com> Link: https://lore.kernel.org/r/20240103190559.14750-4-9erthalion6@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-04bpf: Relax tracing prog recursive attach rulesDmitrii Dolgov
Currently, it's not allowed to attach an fentry/fexit prog to another one fentry/fexit. At the same time it's not uncommon to see a tracing program with lots of logic in use, and the attachment limitation prevents usage of fentry/fexit for performance analysis (e.g. with "bpftool prog profile" command) in this case. An example could be falcosecurity libs project that uses tp_btf tracing programs. Following the corresponding discussion [1], the reason for that is to avoid tracing progs call cycles without introducing more complex solutions. But currently it seems impossible to load and attach tracing programs in a way that will form such a cycle. The limitation is coming from the fact that attach_prog_fd is specified at the prog load (thus making it impossible to attach to a program loaded after it in this way), as well as tracing progs not implementing link_detach. Replace "no same type" requirement with verification that no more than one level of attachment nesting is allowed. In this way only one fentry/fexit program could be attached to another fentry/fexit to cover profiling use case, and still no cycle could be formed. To implement, add a new field into bpf_prog_aux to track nested attachment for tracing programs. [1]: https://lore.kernel.org/bpf/20191108064039.2041889-16-ast@kernel.org/ Acked-by: Jiri Olsa <olsajiri@gmail.com> Acked-by: Song Liu <song@kernel.org> Signed-off-by: Dmitrii Dolgov <9erthalion6@gmail.com> Link: https://lore.kernel.org/r/20240103190559.14750-2-9erthalion6@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-04bpf: Remove unnecessary cpu == 0 check in memallocYonghong Song
After merging the patch set [1] to reduce memory usage for bpf_global_percpu_ma, Alexei found a redundant check (cpu == 0) in function bpf_mem_alloc_percpu_unit_init() ([2]). Indeed, the check is unnecessary since c->unit_size will be all NULL or all non-NULL for all cpus before for_each_possible_cpu() loop. Removing the check makes code less confusing. [1] https://lore.kernel.org/all/20231222031729.1287957-1-yonghong.song@linux.dev/ [2] https://lore.kernel.org/all/20231222031745.1289082-1-yonghong.song@linux.dev/ Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20240104165744.702239-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03bpf: Limit up to 512 bytes for bpf_global_percpu_ma allocationYonghong Song
For percpu data structure allocation with bpf_global_percpu_ma, the maximum data size is 4K. But for a system with large number of cpus, bigger data size (e.g., 2K, 4K) might consume a lot of memory. For example, the percpu memory consumption with unit size 2K and 1024 cpus will be 2K * 1K * 1k = 2GB memory. We should discourage such usage. Let us limit the maximum data size to be 512 for bpf_global_percpu_ma allocation. Acked-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20231222031801.1290841-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03bpf: Use smaller low/high marks for percpu allocationYonghong Song
Currently, refill low/high marks are set with the assumption of normal non-percpu memory allocation. For example, for an allocation size 256, for non-percpu memory allocation, low mark is 32 and high mark is 96, resulting in the batch allocation of 48 elements and the allocated memory will be 48 * 256 = 12KB for this particular cpu. Assuming an 128-cpu system, the total memory consumption across all cpus will be 12K * 128 = 1.5MB memory. This might be okay for non-percpu allocation, but may not be good for percpu allocation, which will consume 1.5MB * 128 = 192MB memory in the worst case if every cpu has a chance of memory allocation. In practice, percpu allocation is very rare compared to non-percpu allocation. So let us have smaller low/high marks which can avoid unnecessary memory consumption. Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Acked-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20231222031755.1289671-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03bpf: Refill only one percpu element in memallocYonghong Song
Typically for percpu map element or data structure, once allocated, most operations are lookup or in-place update. Deletion are really rare. Currently, for percpu data strcture, 4 elements will be refilled if the size is <= 256. Let us just do with one element for percpu data. For example, for size 256 and 128 cpus, the potential saving will be 3 * 256 * 128 * 128 = 12MB. Acked-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20231222031750.1289290-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03bpf: Allow per unit prefill for non-fix-size percpu memory allocatorYonghong Song
Commit 41a5db8d8161 ("Add support for non-fix-size percpu mem allocation") added support for non-fix-size percpu memory allocation. Such allocation will allocate percpu memory for all buckets on all cpus and the memory consumption is in the order to quadratic. For example, let us say, 4 cpus, unit size 16 bytes, so each cpu has 16 * 4 = 64 bytes, with 4 cpus, total will be 64 * 4 = 256 bytes. Then let us say, 8 cpus with the same unit size, each cpu has 16 * 8 = 128 bytes, with 8 cpus, total will be 128 * 8 = 1024 bytes. So if the number of cpus doubles, the number of memory consumption will be 4 times. So for a system with large number of cpus, the memory consumption goes up quickly with quadratic order. For example, for 4KB percpu allocation, 128 cpus. The total memory consumption will 4KB * 128 * 128 = 64MB. Things will become worse if the number of cpus is bigger (e.g., 512, 1024, etc.) In Commit 41a5db8d8161, the non-fix-size percpu memory allocation is done in boot time, so for system with large number of cpus, the initial percpu memory consumption is very visible. For example, for 128 cpu system, the total percpu memory allocation will be at least (16 + 32 + 64 + 96 + 128 + 196 + 256 + 512 + 1024 + 2048 + 4096) * 128 * 128 = ~138MB. which is pretty big. It will be even bigger for larger number of cpus. Note that the current prefill also allocates 4 entries if the unit size is less than 256. So on top of 138MB memory consumption, this will add more consumption with 3 * (16 + 32 + 64 + 96 + 128 + 196 + 256) * 128 * 128 = ~38MB. Next patch will try to reduce this memory consumption. Later on, Commit 1fda5bb66ad8 ("bpf: Do not allocate percpu memory at init stage") moved the non-fix-size percpu memory allocation to bpf verificaiton stage. Once a particular bpf_percpu_obj_new() is called by bpf program, the memory allocator will try to fill in the cache with all sizes, causing the same amount of percpu memory consumption as in the boot stage. To reduce the initial percpu memory consumption for non-fix-size percpu memory allocation, instead of filling the cache with all supported allocation sizes, this patch intends to fill the cache only for the requested size. As typically users will not use large percpu data structure, this can save memory significantly. For example, the allocation size is 64 bytes with 128 cpus. Then total percpu memory amount will be 64 * 128 * 128 = 1MB, much less than previous 138MB. Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Acked-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20231222031745.1289082-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03bpf: Add objcg to bpf_mem_allocYonghong Song
The objcg is a bpf_mem_alloc level property since all bpf_mem_cache's are with the same objcg. This patch made such a property explicit. The next patch will use this property to save and restore objcg for percpu unit allocator. Acked-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20231222031739.1288590-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03bpf: Avoid unnecessary extra percpu memory allocationYonghong Song
Currently, for percpu memory allocation, say if the user requests allocation size to be 32 bytes, the actually calculated size will be 40 bytes and it further rounds to 64 bytes, and eventually 64 bytes are allocated, wasting 32-byte memory. Change bpf_mem_alloc() to calculate the cache index based on the user-provided allocation size so unnecessary extra memory can be avoided. Suggested-by: Hou Tao <houtao1@huawei.com> Acked-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20231222031734.1288400-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03bpf: Simplify checking size of helper accessesAndrei Matei
This patch simplifies the verification of size arguments associated to pointer arguments to helpers and kfuncs. Many helpers take a pointer argument followed by the size of the memory access performed to be performed through that pointer. Before this patch, the handling of the size argument in check_mem_size_reg() was confusing and wasteful: if the size register's lower bound was 0, then the verification was done twice: once considering the size of the access to be the lower-bound of the respective argument, and once considering the upper bound (even if the two are the same). The upper bound checking is a super-set of the lower-bound checking(*), except: the only point of the lower-bound check is to handle the case where zero-sized-accesses are explicitly not allowed and the lower-bound is zero. This static condition is now checked explicitly, replacing a much more complex, expensive and confusing verification call to check_helper_mem_access(). Error messages change in this patch. Before, messages about illegal zero-size accesses depended on the type of the pointer and on other conditions, and sometimes the message was plain wrong: in some tests that changed you'll see that the old message was something like "R1 min value is outside of the allowed memory range", where R1 is the pointer register; the error was wrongly claiming that the pointer was bad instead of the size being bad. Other times the information that the size came for a register with a possible range of values was wrong, and the error presented the size as a fixed zero. Now the errors refer to the right register. However, the old error messages did contain useful information about the pointer register which is now lost; recovering this information was deemed not important enough. (*) Besides standing to reason that the checks for a bigger size access are a super-set of the checks for a smaller size access, I have also mechanically verified this by reading the code for all types of pointers. I could convince myself that it's true for all but PTR_TO_BTF_ID (check_ptr_to_btf_access). There, simply looking line-by-line does not immediately prove what we want. If anyone has any qualms, let me know. Signed-off-by: Andrei Matei <andreimatei1@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20231221232225.568730-2-andreimatei1@gmail.com
2023-12-27Kill sched.h dependency on rcupdate.hKent Overstreet
by moving cond_resched_rcu() to rcupdate_wait.h, we can kill another big sched.h dependency. Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-12-21bpf: Avoid unnecessary use of comma operator in verifierSimon Horman
Although it does not seem to have any untoward side-effects, the use of ';' to separate to assignments seems more appropriate than ','. Flagged by clang-17 -Wcomma No functional change intended. Compile tested only. Signed-off-by: Simon Horman <horms@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/bpf/20231221-bpf-verifier-comma-v1-1-cde2530912e9@kernel.org
2023-12-21bpf: Re-support uid and gid when mounting bpffsDaniel Borkmann
For a clean, conflict-free revert of the token-related patches in commit d17aff807f84 ("Revert BPF token-related functionality"), the bpf fs commit 750e785796bb ("bpf: Support uid and gid when mounting bpffs") was undone temporarily as well. This patch manually re-adds the functionality from the original one back in 750e785796bb, no other functional changes intended. Testing: # mount -t bpf -o uid=65534,gid=65534 bpffs ./foo # ls -la . | grep foo drwxrwxrwt 2 nobody nogroup 0 Dec 20 13:16 foo # mount -t bpf bpffs on /root/foo type bpf (rw,relatime,uid=65534,gid=65534) Also, passing invalid arguments for uid/gid are properly rejected as expected. Fixes: d17aff807f84 ("Revert BPF token-related functionality") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Christian Brauner <brauner@kernel.org> Cc: Jie Jiang <jiejiang@chromium.org> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/bpf/20231220133805.20953-1-daniel@iogearbox.net