Age | Commit message (Collapse) | Author |
|
There is apparently one site that violates the rule that only current
and ttwu() will modify task->state, namely ptrace_{,un}freeze_traced()
will change task->state for a remote task.
Oleg explains:
"TASK_TRACED/TASK_STOPPED was always protected by siglock. In
particular, ttwu(__TASK_TRACED) must be always called with siglock
held. That is why ptrace_freeze_traced() assumes it can safely do
s/TASK_TRACED/__TASK_TRACED/ under spin_lock(siglock)."
This breaks the ordering scheme introduced by commit:
dbfb089d360b ("sched: Fix loadavg accounting race")
Specifically, the reload not matching no longer implies we don't have
to block.
Simply things by noting that what we need is a LOAD->STORE ordering
and this can be provided by a control dependency.
So replace:
prev_state = prev->state;
raw_spin_lock(&rq->lock);
smp_mb__after_spinlock(); /* SMP-MB */
if (... && prev_state && prev_state == prev->state)
deactivate_task();
with:
prev_state = prev->state;
if (... && prev_state) /* CTRL-DEP */
deactivate_task();
Since that already implies the 'prev->state' load must be complete
before allowing the 'prev->on_rq = 0' store to become visible.
Fixes: dbfb089d360b ("sched: Fix loadavg accounting race")
Reported-by: Jiri Slaby <jirislaby@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Tested-by: Christian Brauner <christian.brauner@ubuntu.com>
|
|
task_h_load() can return 0 in some situations like running stress-ng
mmapfork, which forks thousands of threads, in a sched group on a 224 cores
system. The load balance doesn't handle this correctly because
env->imbalance never decreases and it will stop pulling tasks only after
reaching loop_max, which can be equal to the number of running tasks of
the cfs. Make sure that imbalance will be decreased by at least 1.
misfit task is the other feature that doesn't handle correctly such
situation although it's probably more difficult to face the problem
because of the smaller number of CPUs and running tasks on heterogenous
system.
We can't simply ensure that task_h_load() returns at least one because it
would imply to handle underflow in other places.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: <stable@vger.kernel.org> # v4.4+
Link: https://lkml.kernel.org/r/20200710152426.16981-1-vincent.guittot@linaro.org
|
|
Add a bare tracepoint trace_sched_update_nr_running_tp which tracks
->nr_running CPU's rq. This is used to accurately trace this data and
provide a visualization of scheduler imbalances in, for example, the
form of a heat map. The tracepoint is accessed by loading an external
kernel module. An example module (forked from Qais' module and including
the pelt related tracepoints) can be found at:
https://github.com/auldp/tracepoints-helpers.git
A script to turn the trace-cmd report output into a heatmap plot can be
found at:
https://github.com/jirvoz/plot-nr-running
The tracepoints are added to add_nr_running() and sub_nr_running() which
are in kernel/sched/sched.h. In order to avoid CREATE_TRACE_POINTS in
the header a wrapper call is used and the trace/events/sched.h include
is moved before sched.h in kernel/sched/core.
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200629192303.GC120228@lorien.usersys.redhat.com
|
|
There is a report that when uclamp is enabled, a netperf UDP test
regresses compared to a kernel compiled without uclamp.
https://lore.kernel.org/lkml/20200529100806.GA3070@suse.de/
While investigating the root cause, there were no sign that the uclamp
code is doing anything particularly expensive but could suffer from bad
cache behavior under certain circumstances that are yet to be
understood.
https://lore.kernel.org/lkml/20200616110824.dgkkbyapn3io6wik@e107158-lin/
To reduce the pressure on the fast path anyway, add a static key that is
by default will skip executing uclamp logic in the
enqueue/dequeue_task() fast path until it's needed.
As soon as the user start using util clamp by:
1. Changing uclamp value of a task with sched_setattr()
2. Modifying the default sysctl_sched_util_clamp_{min, max}
3. Modifying the default cpu.uclamp.{min, max} value in cgroup
We flip the static key now that the user has opted to use util clamp.
Effectively re-introducing uclamp logic in the enqueue/dequeue_task()
fast path. It stays on from that point forward until the next reboot.
This should help minimize the effect of util clamp on workloads that
don't need it but still allow distros to ship their kernels with uclamp
compiled in by default.
SCHED_WARN_ON() in uclamp_rq_dec_id() was removed since now we can end
up with unbalanced call to uclamp_rq_dec_id() if we flip the key while
a task is running in the rq. Since we know it is harmless we just
quietly return if we attempt a uclamp_rq_dec_id() when
rq->uclamp[].bucket[].tasks is 0.
In schedutil, we introduce a new uclamp_is_enabled() helper which takes
the static key into account to ensure RT boosting behavior is retained.
The following results demonstrates how this helps on 2 Sockets Xeon E5
2x10-Cores system.
nouclamp uclamp uclamp-static-key
Hmean send-64 162.43 ( 0.00%) 157.84 * -2.82%* 163.39 * 0.59%*
Hmean send-128 324.71 ( 0.00%) 314.78 * -3.06%* 326.18 * 0.45%*
Hmean send-256 641.55 ( 0.00%) 628.67 * -2.01%* 648.12 * 1.02%*
Hmean send-1024 2525.28 ( 0.00%) 2448.26 * -3.05%* 2543.73 * 0.73%*
Hmean send-2048 4836.14 ( 0.00%) 4712.08 * -2.57%* 4867.69 * 0.65%*
Hmean send-3312 7540.83 ( 0.00%) 7425.45 * -1.53%* 7621.06 * 1.06%*
Hmean send-4096 9124.53 ( 0.00%) 8948.82 * -1.93%* 9276.25 * 1.66%*
Hmean send-8192 15589.67 ( 0.00%) 15486.35 * -0.66%* 15819.98 * 1.48%*
Hmean send-16384 26386.47 ( 0.00%) 25752.25 * -2.40%* 26773.74 * 1.47%*
The perf diff between nouclamp and uclamp-static-key when uclamp is
disabled in the fast path:
8.73% -1.55% [kernel.kallsyms] [k] try_to_wake_up
0.07% +0.04% [kernel.kallsyms] [k] deactivate_task
0.13% -0.02% [kernel.kallsyms] [k] activate_task
The diff between nouclamp and uclamp-static-key when uclamp is enabled
in the fast path:
8.73% -0.72% [kernel.kallsyms] [k] try_to_wake_up
0.13% +0.39% [kernel.kallsyms] [k] activate_task
0.07% +0.38% [kernel.kallsyms] [k] deactivate_task
Fixes: 69842cba9ace ("sched/uclamp: Add CPU's clamp buckets refcounting")
Reported-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lkml.kernel.org/r/20200630112123.12076-3-qais.yousef@arm.com
|
|
struct uclamp_rq was zeroed out entirely in assumption that in the first
call to uclamp_rq_inc() they'd be initialized correctly in accordance to
default settings.
But when next patch introduces a static key to skip
uclamp_rq_{inc,dec}() until userspace opts in to use uclamp, schedutil
will fail to perform any frequency changes because the
rq->uclamp[UCLAMP_MAX].value is zeroed at init and stays as such. Which
means all rqs are capped to 0 by default.
Fix it by making sure we do proper initialization at init without
relying on uclamp_rq_inc() doing it later.
Fixes: 69842cba9ace ("sched/uclamp: Add CPU's clamp buckets refcounting")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lkml.kernel.org/r/20200630112123.12076-2-qais.yousef@arm.com
|
|
For some mysterious reason GCC-4.9 has a 64 byte section alignment for
structures, all other GCC versions (and Clang) tested (including 4.8
and 5.0) are fine with the 32 bytes alignment.
Getting this right is important for the new SCHED_DATA macro that
creates an explicitly ordered array of 'struct sched_class' in the
linker script and expect pointer arithmetic to work.
Fixes: c3a340f7e7ea ("sched: Have sched_class_highest define by vmlinux.lds.h")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200630144905.GX4817@hirez.programming.kicks-ass.net
|
|
|
|
While integrating rseq into glibc and replacing glibc's sched_getcpu
implementation with rseq, glibc's tests discovered an issue with
incorrect __rseq_abi.cpu_id field value right after the first time
a newly created process issues sched_setaffinity.
For the records, it triggers after building glibc and running tests, and
then issuing:
for x in {1..2000} ; do posix/tst-affinity-static & done
and shows up as:
error: Unexpected CPU 2, expected 0
error: Unexpected CPU 2, expected 0
error: Unexpected CPU 2, expected 0
error: Unexpected CPU 2, expected 0
error: Unexpected CPU 138, expected 0
error: Unexpected CPU 138, expected 0
error: Unexpected CPU 138, expected 0
error: Unexpected CPU 138, expected 0
This is caused by the scheduler invoking __set_task_cpu() directly from
sched_fork() and wake_up_new_task(), thus bypassing rseq_migrate() which
is done by set_task_cpu().
Add the missing rseq_migrate() to both functions. The only other direct
use of __set_task_cpu() is done by init_idle(), which does not involve a
user-space task.
Based on my testing with the glibc test-case, just adding rseq_migrate()
to wake_up_new_task() is sufficient to fix the observed issue. Also add
it to sched_fork() to keep things consistent.
The reason why this never triggered so far with the rseq/basic_test
selftest is unclear.
The current use of sched_getcpu(3) does not typically require it to be
always accurate. However, use of the __rseq_abi.cpu_id field within rseq
critical sections requires it to be accurate. If it is not accurate, it
can cause corruption in the per-cpu data targeted by rseq critical
sections in user-space.
Reported-By: Florian Weimer <fweimer@redhat.com>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-By: Florian Weimer <fweimer@redhat.com>
Cc: stable@vger.kernel.org # v4.18+
Link: https://lkml.kernel.org/r/20200707201505.2632-1-mathieu.desnoyers@efficios.com
|
|
The recent commit:
c6e7bd7afaeb ("sched/core: Optimize ttwu() spinning on p->on_cpu")
moved these lines in ttwu():
p->sched_contributes_to_load = !!task_contributes_to_load(p);
p->state = TASK_WAKING;
up before:
smp_cond_load_acquire(&p->on_cpu, !VAL);
into the 'p->on_rq == 0' block, with the thinking that once we hit
schedule() the current task cannot change it's ->state anymore. And
while this is true, it is both incorrect and flawed.
It is incorrect in that we need at least an ACQUIRE on 'p->on_rq == 0'
to avoid weak hardware from re-ordering things for us. This can fairly
easily be achieved by relying on the control-dependency already in
place.
The second problem, which makes the flaw in the original argument, is
that while schedule() will not change prev->state, it will read it a
number of times (arguably too many times since it's marked volatile).
The previous condition 'p->on_cpu == 0' was sufficient because that
indicates schedule() has completed, and will no longer read
prev->state. So now the trick is to make this same true for the (much)
earlier 'prev->on_rq == 0' case.
Furthermore, in order to make the ordering stick, the 'prev->on_rq = 0'
assignment needs to he a RELEASE, but adding additional ordering to
schedule() is an unwelcome proposition at the best of times, doubly so
for mere accounting.
Luckily we can push the prev->state load up before rq->lock, with the
only caveat that we then have to re-read the state after. However, we
know that if it changed, we no longer have to worry about the blocking
path. This gives us the required ordering, if we block, we did the
prev->state load before an (effective) smp_mb() and the p->on_rq store
needs not change.
With this we end up with the effective ordering:
LOAD p->state LOAD-ACQUIRE p->on_rq == 0
MB
STORE p->on_rq, 0 STORE p->state, TASK_WAKING
which ensures the TASK_WAKING store happens after the prev->state
load, and all is well again.
Fixes: c6e7bd7afaeb ("sched/core: Optimize ttwu() spinning on p->on_cpu")
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Reported-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Dave Jones <davej@codemonkey.org.uk>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Link: https://lkml.kernel.org/r/20200707102957.GN117543@hirez.programming.kicks-ass.net
|
|
Currently, most CPUFreq governors are registered at the core_initcall
time when the given governor is the default one, and the module_init
time otherwise.
In preparation for letting users specify the default governor on the
kernel command line, change all of them to be registered at the
core_initcall unconditionally, as it is already the case for the
schedutil and performance governors. This will allow us to assume
that builtin governors have been registered before the built-in
CPUFreq drivers probe.
And since all governors have similar init/exit patterns now, introduce
two new macros, cpufreq_governor_{init,exit}(), to factorize the code.
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Borislav Petkov:
"The most anticipated fix in this pull request is probably the horrible
build fix for the RANDSTRUCT fail that didn't make -rc2. Also included
is the cleanup that removes those BUILD_BUG_ON()s and replaces it with
ugly unions.
Also included is the try_to_wake_up() race fix that was first
triggered by Paul's RCU-torture runs, but was independently hit by
Dave Chinner's fstest runs as well"
* tag 'sched_urgent_for_5.8_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/cfs: change initial value of runnable_avg
smp, irq_work: Continue smp_call_function*() and irq_work*() integration
sched/core: s/WF_ON_RQ/WQ_ON_CPU/
sched/core: Fix ttwu() race
sched/core: Fix PI boosting between RT and DEADLINE tasks
sched/deadline: Initialize ->dl_boosted
sched/core: Check cpus_mask, not cpus_ptr in __set_cpus_allowed_ptr(), to fix mask corruption
sched/core: Fix CONFIG_GCC_PLUGIN_RANDSTRUCT build fail
|
|
Some performance regression on reaim benchmark have been raised with
commit 070f5e860ee2 ("sched/fair: Take into account runnable_avg to classify group")
The problem comes from the init value of runnable_avg which is initialized
with max value. This can be a problem if the newly forked task is finally
a short task because the group of CPUs is wrongly set to overloaded and
tasks are pulled less agressively.
Set initial value of runnable_avg equals to util_avg to reflect that there
is no waiting time so far.
Fixes: 070f5e860ee2 ("sched/fair: Take into account runnable_avg to classify group")
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200624154422.29166-1-vincent.guittot@linaro.org
|
|
Instead of relying on BUG_ON() to ensure the various data structures
line up, use a bunch of horrible unions to make it all automatic.
Much of the union magic is to ensure irq_work and smp_call_function do
not (yet) see the members of their respective data structures change
name.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20200622100825.844455025@infradead.org
|
|
Use a better name for this poorly named flag, to avoid confusion...
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20200622100825.785115830@infradead.org
|
|
Paul reported rcutorture occasionally hitting a NULL deref:
sched_ttwu_pending()
ttwu_do_wakeup()
check_preempt_curr() := check_preempt_wakeup()
find_matching_se()
is_same_group()
if (se->cfs_rq == pse->cfs_rq) <-- *BOOM*
Debugging showed that this only appears to happen when we take the new
code-path from commit:
2ebb17717550 ("sched/core: Offload wakee task activation if it the wakee is descheduling")
and only when @cpu == smp_processor_id(). Something which should not
be possible, because p->on_cpu can only be true for remote tasks.
Similarly, without the new code-path from commit:
c6e7bd7afaeb ("sched/core: Optimize ttwu() spinning on p->on_cpu")
this would've unconditionally hit:
smp_cond_load_acquire(&p->on_cpu, !VAL);
and if: 'cpu == smp_processor_id() && p->on_cpu' is possible, this
would result in an instant live-lock (with IRQs disabled), something
that hasn't been reported.
The NULL deref can be explained however if the task_cpu(p) load at the
beginning of try_to_wake_up() returns an old value, and this old value
happens to be smp_processor_id(). Further assume that the p->on_cpu
load accurately returns 1, it really is still running, just not here.
Then, when we enqueue the task locally, we can crash in exactly the
observed manner because p->se.cfs_rq != rq->cfs_rq, because p's cfs_rq
is from the wrong CPU, therefore we'll iterate into the non-existant
parents and NULL deref.
The closest semi-plausible scenario I've managed to contrive is
somewhat elaborate (then again, actual reproduction takes many CPU
hours of rcutorture, so it can't be anything obvious):
X->cpu = 1
rq(1)->curr = X
CPU0 CPU1 CPU2
// switch away from X
LOCK rq(1)->lock
smp_mb__after_spinlock
dequeue_task(X)
X->on_rq = 9
switch_to(Z)
X->on_cpu = 0
UNLOCK rq(1)->lock
// migrate X to cpu 0
LOCK rq(1)->lock
dequeue_task(X)
set_task_cpu(X, 0)
X->cpu = 0
UNLOCK rq(1)->lock
LOCK rq(0)->lock
enqueue_task(X)
X->on_rq = 1
UNLOCK rq(0)->lock
// switch to X
LOCK rq(0)->lock
smp_mb__after_spinlock
switch_to(X)
X->on_cpu = 1
UNLOCK rq(0)->lock
// X goes sleep
X->state = TASK_UNINTERRUPTIBLE
smp_mb(); // wake X
ttwu()
LOCK X->pi_lock
smp_mb__after_spinlock
if (p->state)
cpu = X->cpu; // =? 1
smp_rmb()
// X calls schedule()
LOCK rq(0)->lock
smp_mb__after_spinlock
dequeue_task(X)
X->on_rq = 0
if (p->on_rq)
smp_rmb();
if (p->on_cpu && ttwu_queue_wakelist(..)) [*]
smp_cond_load_acquire(&p->on_cpu, !VAL)
cpu = select_task_rq(X, X->wake_cpu, ...)
if (X->cpu != cpu)
switch_to(Y)
X->on_cpu = 0
UNLOCK rq(0)->lock
However I'm having trouble convincing myself that's actually possible
on x86_64 -- after all, every LOCK implies an smp_mb() there, so if ttwu
observes ->state != RUNNING, it must also observe ->cpu != 1.
(Most of the previous ttwu() races were found on very large PowerPC)
Nevertheless, this fully explains the observed failure case.
Fix it by ordering the task_cpu(p) load after the p->on_cpu load,
which is easy since nothing actually uses @cpu before this.
Fixes: c6e7bd7afaeb ("sched/core: Optimize ttwu() spinning on p->on_cpu")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200622125649.GC576871@hirez.programming.kicks-ass.net
|
|
syzbot reported the following warning:
WARNING: CPU: 1 PID: 6351 at kernel/sched/deadline.c:628
enqueue_task_dl+0x22da/0x38a0 kernel/sched/deadline.c:1504
At deadline.c:628 we have:
623 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
624 {
625 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
626 struct rq *rq = rq_of_dl_rq(dl_rq);
627
628 WARN_ON(dl_se->dl_boosted);
629 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
[...]
}
Which means that setup_new_dl_entity() has been called on a task
currently boosted. This shouldn't happen though, as setup_new_dl_entity()
is only called when the 'dynamic' deadline of the new entity
is in the past w.r.t. rq_clock and boosted tasks shouldn't verify this
condition.
Digging through the PI code I noticed that what above might in fact happen
if an RT tasks blocks on an rt_mutex hold by a DEADLINE task. In the
first branch of boosting conditions we check only if a pi_task 'dynamic'
deadline is earlier than mutex holder's and in this case we set mutex
holder to be dl_boosted. However, since RT 'dynamic' deadlines are only
initialized if such tasks get boosted at some point (or if they become
DEADLINE of course), in general RT 'dynamic' deadlines are usually equal
to 0 and this verifies the aforementioned condition.
Fix it by checking that the potential donor task is actually (even if
temporary because in turn boosted) running at DEADLINE priority before
using its 'dynamic' deadline value.
Fixes: 2d3d891d3344 ("sched/deadline: Add SCHED_DEADLINE inheritance logic")
Reported-by: syzbot+119ba87189432ead09b4@syzkaller.appspotmail.com
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Tested-by: Daniel Wagner <dwagner@suse.de>
Link: https://lkml.kernel.org/r/20181119153201.GB2119@localhost.localdomain
|
|
syzbot reported the following warning triggered via SYSC_sched_setattr():
WARNING: CPU: 0 PID: 6973 at kernel/sched/deadline.c:593 setup_new_dl_entity /kernel/sched/deadline.c:594 [inline]
WARNING: CPU: 0 PID: 6973 at kernel/sched/deadline.c:593 enqueue_dl_entity /kernel/sched/deadline.c:1370 [inline]
WARNING: CPU: 0 PID: 6973 at kernel/sched/deadline.c:593 enqueue_task_dl+0x1c17/0x2ba0 /kernel/sched/deadline.c:1441
This happens because the ->dl_boosted flag is currently not initialized by
__dl_clear_params() (unlike the other flags) and setup_new_dl_entity()
rightfully complains about it.
Initialize dl_boosted to 0.
Fixes: 2d3d891d3344 ("sched/deadline: Add SCHED_DEADLINE inheritance logic")
Reported-by: syzbot+5ac8bac25f95e8b221e7@syzkaller.appspotmail.com
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Daniel Wagner <dwagner@suse.de>
Link: https://lkml.kernel.org/r/20200617072919.818409-1-juri.lelli@redhat.com
|
|
fix mask corruption
This function is concerned with the long-term CPU mask, not the
transitory mask the task might have while migrate disabled. Before
this patch, if a task was migrate-disabled at the time
__set_cpus_allowed_ptr() was called, and the new mask happened to be
equal to the CPU that the task was running on, then the mask update
would be lost.
Signed-off-by: Scott Wood <swood@redhat.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200617121742.cpxppyi7twxmpin7@linutronix.de
|
|
Implement call_cpuidle_s2idle() in analogy with call_cpuidle()
for the s2idle-specific idle state entry and invoke it from
cpuidle_idle_call() to make the s2idle-specific idle entry code
path look more similar to the "regular" idle entry one.
No intentional functional impact.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Chen Yu <yu.c.chen@intel.com>
|
|
While looking at enqueue_task_fair and dequeue_task_fair, it occurred
to me that dequeue_task_fair can also be optimized as Vincent described
in commit 7d148be69e3a ("sched/fair: Optimize enqueue_task_fair()").
When encountering throttled cfs_rq, dequeue_throttle label can ensure
se not to be NULL, and rq->nr_running remains unchanged, so we can also
skip the early balance check.
Signed-off-by: Peng Wang <rocking@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/701eef9a40de93dcf5fe7063fd607bca5db38e05.1592287263.git.rocking@linux.alibaba.com
|
|
This introduces an optimization based on xxx_sched_class addresses
in two hot scheduler functions: pick_next_task() and check_preempt_curr().
It is possible to compare pointers to sched classes to check, which
of them has a higher priority, instead of current iterations using
for_each_class().
One more result of the patch is that size of object file becomes a little
less (excluding added BUG_ON(), which goes in __init section):
$size kernel/sched/core.o
text data bss dec hex filename
before: 66446 18957 676 86079 1503f kernel/sched/core.o
after: 66398 18957 676 86031 1500f kernel/sched/core.o
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/711a9c4b-ff32-1136-b848-17c622d548f3@yandex.ru
|
|
Now that the sched_class descriptors are defined in order via the linker
script vmlinux.lds.h, there's no reason to have a "next" pointer to the
previous priroity structure. The order of the sturctures can be aligned as
an array, and used to index and find the next sched_class descriptor.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20191219214558.845353593@goodmis.org
|
|
Now that the sched_class descriptors are defined by the linker script, and
this needs to be aware of the existance of stop_sched_class when SMP is
enabled or not, as it is used as the "highest" priority when defined. Move
the declaration of sched_class_highest to the same location in the linker
script that inserts stop_sched_class, and this will also make it easier to
see what should be defined as the highest class, as this linker script
location defines the priorities as well.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20191219214558.682913590@goodmis.org
|
|
In order to make a micro optimization in pick_next_task(), the order of the
sched class descriptor address must be in the same order as their priority
to each other. That is:
&idle_sched_class < &fair_sched_class < &rt_sched_class <
&dl_sched_class < &stop_sched_class
In order to guarantee this order of the sched class descriptors, add each
one into their own data section and force the order in the linker script.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/157675913272.349305.8936736338884044103.stgit@localhost.localdomain
|
|
Energy Model framework now supports other devices than CPUs. Refactor some
of the functions in order to prevent wrong usage. The old function
em_pd_energy has to generic name. It must not be used without proper
cpumask pointer, which is possible only for CPU devices. Thus, rename it
and add proper description to warn of potential wrong usage for other
devices.
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Quentin Perret <qperret@google.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The Energy Model uses concept of performance domain and capacity states in
order to calculate power used by CPUs. Change naming convention from
capacity to performance state would enable wider usage in future, e.g.
upcoming support for other devices other than CPUs.
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Quentin Perret <qperret@google.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Ingo suggested that since the new sched_set_*() functions are
implemented using the 'nocheck' variants, they really shouldn't ever
fail, so remove the return value.
Cc: axboe@kernel.dk
Cc: daniel.lezcano@linaro.org
Cc: sudeep.holla@arm.com
Cc: airlied@redhat.com
Cc: broonie@kernel.org
Cc: paulmck@kernel.org
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
|
|
Now that nothing (modular) still uses sched_setscheduler(), remove the
exports.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
|
|
Because SCHED_FIFO is a broken scheduler model (see previous patches)
take away the priority field, the kernel can't possibly make an
informed decision.
Effectively no change.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
|
|
SCHED_FIFO (or any static priority scheduler) is a broken scheduler
model; it is fundamentally incapable of resource management, the one
thing an OS is actually supposed to do.
It is impossible to compose static priority workloads. One cannot take
two well designed and functional static priority workloads and mash
them together and still expect them to work.
Therefore it doesn't make sense to expose the priority field; the
kernel is fundamentally incapable of setting a sensible value, it
needs systems knowledge that it doesn't have.
Take away sched_setschedule() / sched_setattr() from modules and
replace them with:
- sched_set_fifo(p); create a FIFO task (at prio 50)
- sched_set_fifo_low(p); create a task higher than NORMAL,
which ends up being a FIFO task at prio 1.
- sched_set_normal(p, nice); (re)set the task to normal
This stops the proliferation of randomly chosen, and irrelevant, FIFO
priorities that dont't really mean anything anyway.
The system administrator/integrator, whoever has insight into the
actual system design and requirements (userspace) can set-up
appropriate priorities if and when needed.
Cc: airlied@redhat.com
Cc: alexander.deucher@amd.com
Cc: awalls@md.metrocast.net
Cc: axboe@kernel.dk
Cc: broonie@kernel.org
Cc: daniel.lezcano@linaro.org
Cc: gregkh@linuxfoundation.org
Cc: hannes@cmpxchg.org
Cc: herbert@gondor.apana.org.au
Cc: hverkuil@xs4all.nl
Cc: john.stultz@linaro.org
Cc: nico@fluxnic.net
Cc: paulmck@kernel.org
Cc: rafael.j.wysocki@intel.com
Cc: rmk+kernel@arm.linux.org.uk
Cc: sudeep.holla@arm.com
Cc: tglx@linutronix.de
Cc: ulf.hansson@linaro.org
Cc: wim@linux-watchdog.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Factorize in a single place the calculation of the divider to be used to
to compute *_avg from *_sum value
Suggested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200612154703.23555-1-vincent.guittot@linaro.org
|
|
s/deadine/deadline/
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200602195002.677448-1-christophe.jaillet@wanadoo.fr
|
|
When a task has a runtime that cannot be served within the scheduling
deadline by any of the idle CPU (later_mask) the task is doomed to miss
its deadline.
This can happen since the SCHED_DEADLINE admission control guarantees
only bounded tardiness and not the hard respect of all deadlines.
In this case try to select the idle CPU with the largest CPU capacity
to minimize tardiness.
Favor task_cpu(p) if it has max capacity of !fitting CPUs so that
find_later_rq() can potentially still return it (most likely cache-hot)
early.
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200520134243.19352-6-dietmar.eggemann@arm.com
|
|
The current SCHED_DEADLINE (DL) scheduler uses a global EDF scheduling
algorithm w/o considering CPU capacity or task utilization.
This works well on homogeneous systems where DL tasks are guaranteed
to have a bounded tardiness but presents issues on heterogeneous
systems.
A DL task can migrate to a CPU which does not have enough CPU capacity
to correctly serve the task (e.g. a task w/ 70ms runtime and 100ms
period on a CPU w/ 512 capacity).
Add the DL fitness function dl_task_fits_capacity() for DL admission
control on heterogeneous systems. A task fits onto a CPU if:
CPU original capacity / 1024 >= task runtime / task deadline
Use this function on heterogeneous systems to try to find a CPU which
meets this criterion during task wakeup, push and offline migration.
On homogeneous systems the original behavior of the DL admission
control should be retained.
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200520134243.19352-5-dietmar.eggemann@arm.com
|
|
The current SCHED_DEADLINE (DL) admission control ensures that
sum of reserved CPU bandwidth < x * M
where
x = /proc/sys/kernel/sched_rt_{runtime,period}_us
M = # CPUs in root domain.
DL admission control works well for homogeneous systems where the
capacity of all CPUs are equal (1024). I.e. bounded tardiness for DL
and non-starvation of non-DL tasks is guaranteed.
But on heterogeneous systems where capacity of CPUs are different it
could fail by over-allocating CPU time on smaller capacity CPUs.
On an Arm big.LITTLE/DynamIQ system DL tasks can easily starve other
tasks making it unusable.
Fix this by explicitly considering the CPU capacity in the DL admission
test by replacing M with the root domain CPU capacity sum.
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200520134243.19352-4-dietmar.eggemann@arm.com
|
|
Capacity-aware SCHED_DEADLINE Admission Control (AC) needs root domain
(rd) CPU capacity sum.
Introduce dl_bw_capacity() which for a symmetric rd w/ a CPU capacity
of SCHED_CAPACITY_SCALE simply relies on dl_bw_cpus() to return #CPUs
multiplied by SCHED_CAPACITY_SCALE.
For an asymmetric rd or a CPU capacity < SCHED_CAPACITY_SCALE it
computes the CPU capacity sum over rd span and cpu_active_mask.
A 'XXX Fix:' comment was added to highlight that if 'rq->rd ==
def_root_domain' AC should be performed against the capacity of the
CPU the task is running on rather the rd CPU capacity sum. This
issue already exists w/o capacity awareness.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200520134243.19352-3-dietmar.eggemann@arm.com
|
|
Return the weight of the root domain (rd) span in case it is a subset
of the cpu_active_mask.
Continue to compute the number of CPUs over rd span and cpu_active_mask
when in hotplug.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200520134243.19352-2-dietmar.eggemann@arm.com
|
|
During sched domain init, we check whether non-topological SD_flags are
returned by tl->sd_flags(), if found, fire a waning and correct the
violation, but the code failed to correct the violation. Correct this.
Fixes: 143e1e28cb40 ("sched: Rework sched_domain topology definition")
Signed-off-by: Peng Liu <iwtbavbm@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20200609150936.GA13060@iZj6chx1xj0e0buvshuecpZ
|
|
With commit:
'b7031a02ec75 ("sched/fair: Add NOHZ_STATS_KICK")'
rebalance_domains of the local cfs_rq happens before others idle cpus have
updated nohz.next_balance and its value is overwritten.
Move the update of nohz.next_balance for other idles cpus before balancing
and updating the next_balance of local cfs_rq.
Also, the nohz.next_balance is now updated only if all idle cpus got a
chance to rebalance their domains and the idle balance has not been aborted
because of new activities on the CPU. In case of need_resched, the idle
load balance will be kick the next jiffie in order to address remaining
ilb.
Fixes: b7031a02ec75 ("sched/fair: Add NOHZ_STATS_KICK")
Reported-by: Peng Liu <iwtbavbm@gmail.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20200609123748.18636-1-vincent.guittot@linaro.org
|
|
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190726161357.397880775@infradead.org
|
|
This is a kernel enhancement that configures the cpu affinity of kernel
threads via kernel boot option nohz_full=.
When this option is specified, the cpumask is immediately applied upon
kthread launch. This does not affect kernel threads that specify cpu
and node.
This allows CPU isolation (that is not allowing certain threads
to execute on certain CPUs) without using the isolcpus=domain parameter,
making it possible to enable load balancing on such CPUs
during runtime (see kernel-parameters.txt).
Note-1: this is based off on Wind River's patch at
https://github.com/starlingx-staging/stx-integ/blob/master/kernel/kernel-std/centos/patches/affine-compute-kernel-threads.patch
Difference being that this patch is limited to modifying kernel thread
cpumask. Behaviour of other threads can be controlled via cgroups or
sched_setaffinity.
Note-2: Wind River's patch was based off Christoph Lameter's patch at
https://lwn.net/Articles/565932/ with the only difference being
the kernel parameter changed from kthread to kthread_cpus.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200527142909.23372-3-frederic@kernel.org
|
|
Each psi group requires a dedicated kthread_delayed_work and
kthread_worker. Since no other work can be performed using psi_group's
kthread_worker, the same result can be obtained using a task_struct and
a timer directly. This makes psi triggering simpler by removing lists
and locks involved with kthread_worker usage and eliminates the need for
poll_scheduled atomic use in the hot path.
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200528195442.190116-1-surenb@google.com
|
|
The util_est signals are key elements for EAS task placement and
frequency selection. Having tracepoints to track these signals enables
load-tracking and schedutil testing and/or debugging by a toolkit.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/1590597554-370150-1-git-send-email-vincent.donnefort@arm.com
|
|
Since commit 8ec59c0f5f49 ("sched/topology: Remove unused 'sd'
parameter from arch_scale_cpu_capacity()") it is no longer needed.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20200603080304.16548-5-dietmar.eggemann@arm.com
|
|
The idle task and stop task sched_classes return 0 in this function.
The single call site in sched_rr_get_interval() calls
p->sched_class->get_rr_interval() only conditional in case it is
defined. Otherwise time_slice=0 will be used.
The deadline sched class does not define it. Commit a57beec5d427
("sched: Make sched_class::get_rr_interval() optional") introduced
the default time-slice=0 for sched classes which do not provide this
function.
So .get_rr_interval for idle and stop sched_class can be removed to
shrink the code a little.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200603080304.16548-4-dietmar.eggemann@arm.com
|
|
Commit 6d1cafd8b56e ("sched: Resched proper CPU on yield_to()") moved
the code to resched the CPU from yield_to_task_fair() to yield_to()
making the preempt parameter in sched_class->yield_to_task()
unnecessary. Remove it. No other sched_class implements yield_to_task().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200603080304.16548-3-dietmar.eggemann@arm.com
|
|
Besides in PELT cap_scale() is used in the Deadline scheduler class for
scale-invariant bandwidth enforcement.
Remove the cap_scale() definition in kernel/sched/pelt.c and keep the
one in kernel/sched/sched.h.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20200603080304.16548-2-dietmar.eggemann@arm.com
|
|
People report that utime and stime from /proc/<pid>/stat become very
wrong when the numbers are big enough, especially if you watch these
counters incrementally.
Specifically, the current implementation of: stime*rtime/total,
results in a saw-tooth function on top of the desired line, where the
teeth grow in size the larger the values become. IOW, it has a
relative error.
The result is that, when watching incrementally as time progresses
(for large values), we'll see periods of pure stime or utime increase,
irrespective of the actual ratio we're striving for.
Replace scale_stime() with a math64.h helper: mul_u64_u64_div_u64()
that is far more accurate. This also allows architectures to override
the implementation -- for instance they can opt for the old algorithm
if this new one turns out to be too expensive for them.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200519172506.GA317395@hirez.programming.kicks-ass.net
|
|
Merge the state of the locking kcsan branch before the read/write_once()
and the atomics modifications got merged.
Squash the fallout of the rebase on top of the read/write once and atomic
fallback work into the merge. The history of the original branch is
preserved in tag locking-kcsan-2020-06-02.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
This change converts the existing mmap_sem rwsem calls to use the new mmap
locking API instead.
The change is generated using coccinelle with the following rule:
// spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir .
@@
expression mm;
@@
(
-init_rwsem
+mmap_init_lock
|
-down_write
+mmap_write_lock
|
-down_write_killable
+mmap_write_lock_killable
|
-down_write_trylock
+mmap_write_trylock
|
-up_write
+mmap_write_unlock
|
-downgrade_write
+mmap_write_downgrade
|
-down_read
+mmap_read_lock
|
-down_read_killable
+mmap_read_lock_killable
|
-down_read_trylock
+mmap_read_trylock
|
-up_read
+mmap_read_unlock
)
-(&mm->mmap_sem)
+(mm)
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|