summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2023-07-27bpf: Support new signed div/mod instructions.Yonghong Song
Add interpreter/jit support for new signed div/mod insns. The new signed div/mod instructions are encoded with unsigned div/mod instructions plus insn->off == 1. Also add basic verifier support to ensure new insns get accepted. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20230728011219.3714605-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-27bpf: Support new unconditional bswap instructionYonghong Song
The existing 'be' and 'le' insns will do conditional bswap depends on host endianness. This patch implements unconditional bswap insns. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20230728011213.3712808-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-27bpf: Handle sign-extenstin ctx member accessesYonghong Song
Currently, if user accesses a ctx member with signed types, the compiler will generate an unsigned load followed by necessary left and right shifts. With the introduction of sign-extension load, compiler may just emit a ldsx insn instead. Let us do a final movsx sign extension to the final unsigned ctx load result to satisfy original sign extension requirement. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20230728011207.3712528-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-27bpf: Support new sign-extension mov insnsYonghong Song
Add interpreter/jit support for new sign-extension mov insns. The original 'MOV' insn is extended to support reg-to-reg signed version for both ALU and ALU64 operations. For ALU mode, the insn->off value of 8 or 16 indicates sign-extension from 8- or 16-bit value to 32-bit value. For ALU64 mode, the insn->off value of 8/16/32 indicates sign-extension from 8-, 16- or 32-bit value to 64-bit value. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20230728011202.3712300-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-27bpf: Support new sign-extension load insnsYonghong Song
Add interpreter/jit support for new sign-extension load insns which adds a new mode (BPF_MEMSX). Also add verifier support to recognize these insns and to do proper verification with new insns. In verifier, besides to deduce proper bounds for the dst_reg, probed memory access is also properly handled. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20230728011156.3711870-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-27Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
Cross-merge networking fixes after downstream PR. No conflicts or adjacent changes. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-07-27perf: Replace strlcpy with strscpyAzeem Shaikh
strlcpy() reads the entire source buffer first. This read may exceed the destination size limit. This is both inefficient and can lead to linear read overflows if a source string is not NUL-terminated [1]. In an effort to remove strlcpy() completely [2], replace strlcpy() here with strscpy(). No return values were used, so direct replacement is safe. [1] https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy [2] https://github.com/KSPP/linux/issues/89 Signed-off-by: Azeem Shaikh <azeemshaikh38@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20230703165817.2840457-1-azeemshaikh38@gmail.com Signed-off-by: Kees Cook <keescook@chromium.org>
2023-07-26kunit: time: Mark test as slow using test attributesRae Moar
Mark the time KUnit test, time64_to_tm_test_date_range, as slow using test attributes. This test ran relatively much slower than most other KUnit tests. By marking this test as slow, the test can now be filtered using the KUnit test attribute filtering feature. Example: --filter "speed>slow". This will run only the tests that have speeds faster than slow. The slow attribute will also be outputted in KTAP. Reviewed-by: David Gow <davidgow@google.com> Signed-off-by: Rae Moar <rmoar@google.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2023-07-26mm: suppress mm fault logging if fatal signal already pendingLinus Torvalds
Commit eda0047296a1 ("mm: make the page fault mmap locking killable") intentionally made it much easier to trigger the "page fault fails because a fatal signal is pending" situation, by having the mmap locking fail early in that case. We have long aborted page faults in other fatal cases when the actual IO for a page is interrupted by SIGKILL - which is particularly useful for the traditional case of NFS hanging due to network issues, but local filesystems could cause it too if you happened to get the SIGKILL while waiting for a page to be faulted in (eg lock_folio_maybe_drop_mmap()). So aborting the page fault wasn't a new condition - but it now triggers earlier, before we even get to 'handle_mm_fault()'. And as a result the error doesn't go through our 'fault_signal_pending()' logic, and doesn't get filtered away there. Normally you'd never even notice, because if a fatal signal is pending, the new SIGSEGV we send ends up being ignored anyway. But it turns out that there is one very noticeable exception: if you enable 'show_unhandled_signals', the aborted page fault will be logged in the kernel messages, and you'll get a scary line looking something like this in your logs: pverados[2183248]: segfault at 55e5a00f9ae0 ip 000055e5a00f9ae0 sp 00007ffc0720bea8 error 14 in perl[55e5a00d4000+195000] likely on CPU 10 (core 4, socket 0) which is rather misleading. It's not really a segfault at all, it's just "the thread was killed before the page fault completed, so we aborted the page fault". Fix this by just making it clear that a pending fatal signal means that any new signal coming in after that is implicitly handled. This will avoid the misleading logging, since now the signal isn't 'unhandled' any more. Reported-and-tested-by: Fiona Ebner <f.ebner@proxmox.com> Tested-by: Thomas Lamprecht <t.lamprecht@proxmox.com> Link: https://lore.kernel.org/lkml/8d063a26-43f5-0bb7-3203-c6a04dc159f8@proxmox.com/ Acked-by: Oleg Nesterov <oleg@redhat.com> Fixes: eda0047296a1 ("mm: make the page fault mmap locking killable") Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-07-26sched/topology: Align group flags when removing degenerate domainChen Yu
The flags of the child of a given scheduling domain are used to initialize the flags of its scheduling groups. When the child of a scheduling domain is degenerated, the flags of its local scheduling group need to be updated to align with the flags of its new child domain. The flag SD_SHARE_CPUCAPACITY was aligned in Commit bf2dc42d6beb ("sched/topology: Propagate SMT flags when removing degenerate domain"). Further generalize this alignment so other flags can be used later, such as in cluster-based task wakeup. [1] Reported-by: Yicong Yang <yangyicong@huawei.com> Suggested-by: Ricardo Neri <ricardo.neri@intel.com> Signed-off-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com> Reviewed-by: Yicong Yang <yangyicong@hisilicon.com> Link: https://lore.kernel.org/r/20230713013133.2314153-1-yu.c.chen@intel.com
2023-07-26sched/fair: remove util_est boostingVincent Guittot
There is no need to use runnable_avg when estimating util_est and that even generates wrong behavior because one includes blocked tasks whereas the other one doesn't. This can lead to accounting twice the waking task p, once with the blocked runnable_avg and another one when adding its util_est. cpu's runnable_avg is already used when computing util_avg which is then compared with util_est. In some situation, feec will not select prev_cpu but another one on the same performance domain because of higher max_util Fixes: 7d0583cf9ec7 ("sched/fair, cpufreq: Introduce 'runnable boosting'") Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20230706135144.324311-1-vincent.guittot@linaro.org
2023-07-26tracing/probes: Fix to add NULL check for BTF APIsMasami Hiramatsu (Google)
Since find_btf_func_param() abd btf_type_by_id() can return NULL, the caller must check the return value correctly. Link: https://lore.kernel.org/all/169024903951.395371.11361556840733470934.stgit@devnote2/ Fixes: b576e09701c7 ("tracing/probes: Support function parameters if BTF is available") Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-07-25bpf: work around -Wuninitialized warningArnd Bergmann
Splitting these out into separate helper functions means that we actually pass an uninitialized variable into another function call if dec_active() happens to not be inlined, and CONFIG_PREEMPT_RT is disabled: kernel/bpf/memalloc.c: In function 'add_obj_to_free_list': kernel/bpf/memalloc.c:200:9: error: 'flags' is used uninitialized [-Werror=uninitialized] 200 | dec_active(c, flags); Avoid this by passing the flags by reference, so they either get initialized and dereferenced through a pointer, or the pointer never gets accessed at all. Fixes: 18e027b1c7c6d ("bpf: Factor out inc/dec of active flag into helpers.") Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Link: https://lore.kernel.org/r/20230725202653.2905259-1-arnd@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-25bpf: Disable preemption in bpf_event_outputJiri Olsa
We received report [1] of kernel crash, which is caused by using nesting protection without disabled preemption. The bpf_event_output can be called by programs executed by bpf_prog_run_array_cg function that disabled migration but keeps preemption enabled. This can cause task to be preempted by another one inside the nesting protection and lead eventually to two tasks using same perf_sample_data buffer and cause crashes like: BUG: kernel NULL pointer dereference, address: 0000000000000001 #PF: supervisor instruction fetch in kernel mode #PF: error_code(0x0010) - not-present page ... ? perf_output_sample+0x12a/0x9a0 ? finish_task_switch.isra.0+0x81/0x280 ? perf_event_output+0x66/0xa0 ? bpf_event_output+0x13a/0x190 ? bpf_event_output_data+0x22/0x40 ? bpf_prog_dfc84bbde731b257_cil_sock4_connect+0x40a/0xacb ? xa_load+0x87/0xe0 ? __cgroup_bpf_run_filter_sock_addr+0xc1/0x1a0 ? release_sock+0x3e/0x90 ? sk_setsockopt+0x1a1/0x12f0 ? udp_pre_connect+0x36/0x50 ? inet_dgram_connect+0x93/0xa0 ? __sys_connect+0xb4/0xe0 ? udp_setsockopt+0x27/0x40 ? __pfx_udp_push_pending_frames+0x10/0x10 ? __sys_setsockopt+0xdf/0x1a0 ? __x64_sys_connect+0xf/0x20 ? do_syscall_64+0x3a/0x90 ? entry_SYSCALL_64_after_hwframe+0x72/0xdc Fixing this by disabling preemption in bpf_event_output. [1] https://github.com/cilium/cilium/issues/26756 Cc: stable@vger.kernel.org Reported-by: Oleg "livelace" Popov <o.popov@livelace.ru> Closes: https://github.com/cilium/cilium/issues/26756 Fixes: 2a916f2f546c ("bpf: Use migrate_disable/enable in array macros and cgroup/lirc code.") Acked-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20230725084206.580930-3-jolsa@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-25bpf: Disable preemption in bpf_perf_event_outputJiri Olsa
The nesting protection in bpf_perf_event_output relies on disabled preemption, which is guaranteed for kprobes and tracepoints. However bpf_perf_event_output can be also called from uprobes context through bpf_prog_run_array_sleepable function which disables migration, but keeps preemption enabled. This can cause task to be preempted by another one inside the nesting protection and lead eventually to two tasks using same perf_sample_data buffer and cause crashes like: kernel tried to execute NX-protected page - exploit attempt? (uid: 0) BUG: unable to handle page fault for address: ffffffff82be3eea ... Call Trace: ? __die+0x1f/0x70 ? page_fault_oops+0x176/0x4d0 ? exc_page_fault+0x132/0x230 ? asm_exc_page_fault+0x22/0x30 ? perf_output_sample+0x12b/0x910 ? perf_event_output+0xd0/0x1d0 ? bpf_perf_event_output+0x162/0x1d0 ? bpf_prog_c6271286d9a4c938_krava1+0x76/0x87 ? __uprobe_perf_func+0x12b/0x540 ? uprobe_dispatcher+0x2c4/0x430 ? uprobe_notify_resume+0x2da/0xce0 ? atomic_notifier_call_chain+0x7b/0x110 ? exit_to_user_mode_prepare+0x13e/0x290 ? irqentry_exit_to_user_mode+0x5/0x30 ? asm_exc_int3+0x35/0x40 Fixing this by disabling preemption in bpf_perf_event_output. Cc: stable@vger.kernel.org Fixes: 8c7dcb84e3b7 ("bpf: implement sleepable uprobes by chaining gps") Acked-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20230725084206.580930-2-jolsa@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-25workqueue: Scale up wq_cpu_intensive_thresh_us if BogoMIPS is below 4000Tejun Heo
wq_cpu_intensive_thresh_us is used to detect CPU-hogging per-cpu work items. Once detected, they're excluded from concurrency management to prevent them from blocking other per-cpu work items. If CONFIG_WQ_CPU_INTENSIVE_REPORT is enabled, repeat offenders are also reported so that the code can be updated. The default threshold is 10ms which is long enough to do fair bit of work on modern CPUs while short enough to be usually not noticeable. This unfortunately leads to a lot of, arguable spurious, detections on very slow CPUs. Using the same threshold across CPUs whose performance levels may be apart by multiple levels of magnitude doesn't make whole lot of sense. This patch scales up wq_cpu_intensive_thresh_us upto 1 second when BogoMIPS is below 4000. This is obviously very inaccurate but it doesn't have to be accurate to be useful. The mechanism is still useful when the threshold is fully scaled up and the benefits of reports are usually shared with everyone regardless of who's reporting, so as long as there are sufficient number of fast machines reporting, we don't lose much. Some (or is it all?) ARM CPUs systemtically report significantly lower BogoMIPS. While this doesn't break anything, given how widespread ARM CPUs are, it's at least a missed opportunity and it probably would be a good idea to teach workqueue about it. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-and-Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
2023-07-25tty: sysrq: switch sysrq handlers from int to u8Jiri Slaby
The passed parameter to sysrq handlers is a key (a character). So change the type from 'int' to 'u8'. Let it specifically be 'u8' for two reasons: * unsigned: unsigned values come from the upper layers (devices) and the tty layer assumes unsigned on most places, and * 8-bit: as that what's supposed to be one day in all the layers built on the top of tty. (Currently, we use mostly 'unsigned char' and somewhere still only 'char'. (But that also translates to the former thanks to -funsigned-char.)) Signed-off-by: Jiri Slaby (SUSE) <jirislaby@kernel.org> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: "David S. Miller" <davem@davemloft.net> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Maxime Ripard <mripard@kernel.org> Cc: Thomas Zimmermann <tzimmermann@suse.de> Cc: David Airlie <airlied@gmail.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Jason Wessel <jason.wessel@windriver.com> Cc: Daniel Thompson <daniel.thompson@linaro.org> Cc: Douglas Anderson <dianders@chromium.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Zqiang <qiang.zhang1211@gmail.com> Acked-by: Thomas Zimmermann <tzimmermann@suse.de> # DRM Acked-by: WANG Xuerui <git@xen0n.name> # loongarch Acked-by: Paul E. McKenney <paulmck@kernel.org> Acked-by: Daniel Thompson <daniel.thompson@linaro.org> Link: https://lore.kernel.org/r/20230712081811.29004-3-jirislaby@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-24modpost, kallsyms: Treat add '$'-prefixed symbols as mapping symbolsPalmer Dabbelt
Trying to restrict the '$'-prefix change to RISC-V caused some fallout, so let's just treat all those symbols as special. Fixes: c05780ef3c190 ("module: Ignore RISC-V mapping symbols too") Link: https://lore.kernel.org/all/20230712015747.77263-1-wangkefeng.wang@huawei.com/ Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> Reviewed-by: Masahiro Yamada <masahiroy@kernel.org> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-07-24bpf: convert to ctime accessor functionsJeff Layton
In later patches, we're going to change how the inode's ctime field is used. Switch to using accessor functions instead of raw accesses of inode->i_ctime. Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Message-Id: <20230705190309.579783-84-jlayton@kernel.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-07-24PM: hibernate: don't store zero pages in the image fileBrian Geffon
On ChromeOS we've observed a considerable number of in-use pages filled with zeros. Today with hibernate it's entirely possible that saveable pages are just zero filled. Since we're already copying pages word-by-word in do_copy_page it becomes almost free to determine if a page was completely filled with zeros. This change introduces a new bitmap which will track these zero pages. If a page is zero it will not be included in the saved image, instead to track these zero pages in the image file we will introduce a new flag which we will set on the packed PFN list. When reading back in the image file we will detect these zero page PFNs and rebuild the zero page bitmap. When the image is being loaded through calls to write_next_page if we encounter a zero page we will silently memset it to 0 and then continue on to the next page. Given the implementation in snapshot_read_next/snapshot_write_next this change will be transparent to non-compressed/compressed and swsusp modes of operation. To provide some concrete numbers from simple ad-hoc testing, on a device which was lightly in use we saw that: PM: hibernation: Image created (964408 pages copied, 548304 zero pages) Of the approximately 6.2GB of saveable pages 2.2GB (36%) were just zero filled and could be tracked entirely within the packed PFN list. The savings would obviously be much lower for lzo compressed images, but even in the case of compression not copying pages across to the compression threads will still speed things up. It's also possible that we would see better overall compression ratios as larger regions of "real data" would improve the compressibility. Finally, such an approach could dramatically improve swsusp performance as each one of those zero pages requires a write syscall to reload, by handling it as part of the packed PFN list we're able to fully avoid that. Signed-off-by: Brian Geffon <bgeffon@google.com> [ rjw: Whitespace adjustments, removal of redundant parentheses ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2023-07-23Merge tag 'trace-v6.5-rc2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing fixes from Steven Rostedt: - Swapping the ring buffer for snapshotting (for things like irqsoff) can crash if the ring buffer is being resized. Disable swapping when this happens. The missed swap will be reported to the tracer - Report error if the histogram fails to be created due to an error in adding a histogram variable, in event_hist_trigger_parse() - Remove unused declaration of tracing_map_set_field_descr() * tag 'trace-v6.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: tracing/histograms: Return an error if we fail to add histogram to hist_vars list ring-buffer: Do not swap cpu_buffer during resize process tracing: Remove unused extern declaration tracing_map_set_field_descr()
2023-07-23tracing/histograms: Return an error if we fail to add histogram to hist_vars ↵Mohamed Khalfella
list Commit 6018b585e8c6 ("tracing/histograms: Add histograms to hist_vars if they have referenced variables") added a check to fail histogram creation if save_hist_vars() failed to add histogram to hist_vars list. But the commit failed to set ret to failed return code before jumping to unregister histogram, fix it. Link: https://lore.kernel.org/linux-trace-kernel/20230714203341.51396-1-mkhalfella@purestorage.com Cc: stable@vger.kernel.org Fixes: 6018b585e8c6 ("tracing/histograms: Add histograms to hist_vars if they have referenced variables") Signed-off-by: Mohamed Khalfella <mkhalfella@purestorage.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-07-23ring-buffer: Do not swap cpu_buffer during resize processChen Lin
When ring_buffer_swap_cpu was called during resize process, the cpu buffer was swapped in the middle, resulting in incorrect state. Continuing to run in the wrong state will result in oops. This issue can be easily reproduced using the following two scripts: /tmp # cat test1.sh //#! /bin/sh for i in `seq 0 100000` do echo 2000 > /sys/kernel/debug/tracing/buffer_size_kb sleep 0.5 echo 5000 > /sys/kernel/debug/tracing/buffer_size_kb sleep 0.5 done /tmp # cat test2.sh //#! /bin/sh for i in `seq 0 100000` do echo irqsoff > /sys/kernel/debug/tracing/current_tracer sleep 1 echo nop > /sys/kernel/debug/tracing/current_tracer sleep 1 done /tmp # ./test1.sh & /tmp # ./test2.sh & A typical oops log is as follows, sometimes with other different oops logs. [ 231.711293] WARNING: CPU: 0 PID: 9 at kernel/trace/ring_buffer.c:2026 rb_update_pages+0x378/0x3f8 [ 231.713375] Modules linked in: [ 231.714735] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15 [ 231.716750] Hardware name: linux,dummy-virt (DT) [ 231.718152] Workqueue: events update_pages_handler [ 231.719714] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 231.721171] pc : rb_update_pages+0x378/0x3f8 [ 231.722212] lr : rb_update_pages+0x25c/0x3f8 [ 231.723248] sp : ffff800082b9bd50 [ 231.724169] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000 [ 231.726102] x26: 0000000000000001 x25: fffffffffffff010 x24: 0000000000000ff0 [ 231.728122] x23: ffff0000c3a0b600 x22: ffff0000c3a0b5c0 x21: fffffffffffffe0a [ 231.730203] x20: ffff0000c3a0b600 x19: ffff0000c0102400 x18: 0000000000000000 [ 231.732329] x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffe7aa8510 [ 231.734212] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000002 [ 231.736291] x11: ffff8000826998a8 x10: ffff800082b9baf0 x9 : ffff800081137558 [ 231.738195] x8 : fffffc00030e82c8 x7 : 0000000000000000 x6 : 0000000000000001 [ 231.740192] x5 : ffff0000ffbafe00 x4 : 0000000000000000 x3 : 0000000000000000 [ 231.742118] x2 : 00000000000006aa x1 : 0000000000000001 x0 : ffff0000c0007208 [ 231.744196] Call trace: [ 231.744892] rb_update_pages+0x378/0x3f8 [ 231.745893] update_pages_handler+0x1c/0x38 [ 231.746893] process_one_work+0x1f0/0x468 [ 231.747852] worker_thread+0x54/0x410 [ 231.748737] kthread+0x124/0x138 [ 231.749549] ret_from_fork+0x10/0x20 [ 231.750434] ---[ end trace 0000000000000000 ]--- [ 233.720486] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 233.721696] Mem abort info: [ 233.721935] ESR = 0x0000000096000004 [ 233.722283] EC = 0x25: DABT (current EL), IL = 32 bits [ 233.722596] SET = 0, FnV = 0 [ 233.722805] EA = 0, S1PTW = 0 [ 233.723026] FSC = 0x04: level 0 translation fault [ 233.723458] Data abort info: [ 233.723734] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 233.724176] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 233.724589] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 233.725075] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000104943000 [ 233.725592] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 [ 233.726231] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 233.726720] Modules linked in: [ 233.727007] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15 [ 233.727777] Hardware name: linux,dummy-virt (DT) [ 233.728225] Workqueue: events update_pages_handler [ 233.728655] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 233.729054] pc : rb_update_pages+0x1a8/0x3f8 [ 233.729334] lr : rb_update_pages+0x154/0x3f8 [ 233.729592] sp : ffff800082b9bd50 [ 233.729792] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000 [ 233.730220] x26: 0000000000000000 x25: ffff800082a8b840 x24: ffff0000c0102418 [ 233.730653] x23: 0000000000000000 x22: fffffc000304c880 x21: 0000000000000003 [ 233.731105] x20: 00000000000001f4 x19: ffff0000c0102400 x18: ffff800082fcbc58 [ 233.731727] x17: 0000000000000000 x16: 0000000000000001 x15: 0000000000000001 [ 233.732282] x14: ffff8000825fe0c8 x13: 0000000000000001 x12: 0000000000000000 [ 233.732709] x11: ffff8000826998a8 x10: 0000000000000ae0 x9 : ffff8000801b760c [ 233.733148] x8 : fefefefefefefeff x7 : 0000000000000018 x6 : ffff0000c03298c0 [ 233.733553] x5 : 0000000000000002 x4 : 0000000000000000 x3 : 0000000000000000 [ 233.733972] x2 : ffff0000c3a0b600 x1 : 0000000000000000 x0 : 0000000000000000 [ 233.734418] Call trace: [ 233.734593] rb_update_pages+0x1a8/0x3f8 [ 233.734853] update_pages_handler+0x1c/0x38 [ 233.735148] process_one_work+0x1f0/0x468 [ 233.735525] worker_thread+0x54/0x410 [ 233.735852] kthread+0x124/0x138 [ 233.736064] ret_from_fork+0x10/0x20 [ 233.736387] Code: 92400000 910006b5 aa000021 aa0303f7 (f9400060) [ 233.736959] ---[ end trace 0000000000000000 ]--- After analysis, the seq of the error is as follows [1-5]: int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, int cpu_id) { for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; //1. get cpu_buffer, aka cpu_buffer(A) ... ... schedule_work_on(cpu, &cpu_buffer->update_pages_work); //2. 'update_pages_work' is queue on 'cpu', cpu_buffer(A) is passed to // update_pages_handler, do the update process, set 'update_done' in // complete(&cpu_buffer->update_done) and to wakeup resize process. //----> //3. Just at this moment, ring_buffer_swap_cpu is triggered, //cpu_buffer(A) be swaped to cpu_buffer(B), the max_buffer. //ring_buffer_swap_cpu is called as the 'Call trace' below. Call trace: dump_backtrace+0x0/0x2f8 show_stack+0x18/0x28 dump_stack+0x12c/0x188 ring_buffer_swap_cpu+0x2f8/0x328 update_max_tr_single+0x180/0x210 check_critical_timing+0x2b4/0x2c8 tracer_hardirqs_on+0x1c0/0x200 trace_hardirqs_on+0xec/0x378 el0_svc_common+0x64/0x260 do_el0_svc+0x90/0xf8 el0_svc+0x20/0x30 el0_sync_handler+0xb0/0xb8 el0_sync+0x180/0x1c0 //<---- /* wait for all the updates to complete */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; //4. get cpu_buffer, cpu_buffer(B) is used in the following process, //the state of cpu_buffer(A) and cpu_buffer(B) is totally wrong. //for example, cpu_buffer(A)->update_done will leave be set 1, and will //not 'wait_for_completion' at the next resize round. if (!cpu_buffer->nr_pages_to_update) continue; if (cpu_online(cpu)) wait_for_completion(&cpu_buffer->update_done); cpu_buffer->nr_pages_to_update = 0; } ... } //5. the state of cpu_buffer(A) and cpu_buffer(B) is totally wrong, //Continuing to run in the wrong state, then oops occurs. Link: https://lore.kernel.org/linux-trace-kernel/202307191558478409990@zte.com.cn Signed-off-by: Chen Lin <chen.lin5@zte.com.cn> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-07-23tracing: Remove unused extern declaration tracing_map_set_field_descr()YueHaibing
Since commit 08d43a5fa063 ("tracing: Add lock-free tracing_map"), this is never used, so can be removed. Link: https://lore.kernel.org/linux-trace-kernel/20230722032123.24664-1-yuehaibing@huawei.com Cc: <mhiramat@kernel.org> Signed-off-by: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-07-21cgroup: fix obsolete comment above cgroup_create()Miaohe Lin
Since commit 743210386c03 ("cgroup: use cgrp->kn->id as the cgroup ID"), cgrp is associated with its kernfs_node. Update corresponding comment. Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2023-07-21cgroup/misc: Store atomic64_t reads to u64Haitao Huang
Change 'new_usage' type to u64 so it can be compared with unsigned 'max' and 'capacity' properly even if the value crosses the signed boundary. Signed-off-by: Haitao Huang <haitao.huang@linux.intel.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2023-07-21audit: correct audit_filter_inodes() definitionXiu Jianfeng
After changes in commit 0590b9335a1c ("fixing audit rule ordering mess, part 1"), audit_filter_inodes() returns void, so if CONFIG_AUDITSYSCALL not defined, it should be do {} while(0). Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2023-07-20Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
Cross-merge networking fixes after downstream PR. No conflicts or adjacent changes. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-07-20Merge tag 'net-6.5-rc3' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net Pull networking fixes from Jakub Kicinski: "Including fixes from BPF, netfilter, bluetooth and CAN. Current release - regressions: - eth: r8169: multiple fixes for PCIe ASPM-related problems - vrf: fix RCU lockdep splat in output path Previous releases - regressions: - gso: fall back to SW segmenting with GSO_UDP_L4 dodgy bit set - dsa: mv88e6xxx: do a final check before timing out when polling - nf_tables: fix sleep in atomic in nft_chain_validate Previous releases - always broken: - sched: fix undoing tcf_bind_filter() in multiple classifiers - bpf, arm64: fix BTI type used for freplace attached functions - can: gs_usb: fix time stamp counter initialization - nft_set_pipapo: fix improper element removal (leading to UAF) Misc: - net: support STP on bridge in non-root netns, STP prevents packet loops so not supporting it results in freezing systems of unsuspecting users, and in turn very upset noises being made - fix kdoc warnings - annotate various bits of TCP state to prevent data races" * tag 'net-6.5-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (95 commits) net: phy: prevent stale pointer dereference in phy_init() tcp: annotate data-races around fastopenq.max_qlen tcp: annotate data-races around icsk->icsk_user_timeout tcp: annotate data-races around tp->notsent_lowat tcp: annotate data-races around rskq_defer_accept tcp: annotate data-races around tp->linger2 tcp: annotate data-races around icsk->icsk_syn_retries tcp: annotate data-races around tp->keepalive_probes tcp: annotate data-races around tp->keepalive_intvl tcp: annotate data-races around tp->keepalive_time tcp: annotate data-races around tp->tsoffset tcp: annotate data-races around tp->tcp_tx_delay Bluetooth: MGMT: Use correct address for memcpy() Bluetooth: btusb: Fix bluetooth on Intel Macbook 2014 Bluetooth: SCO: fix sco_conn related locking and validity issues Bluetooth: hci_conn: return ERR_PTR instead of NULL when there is no link Bluetooth: hci_sync: Avoid use-after-free in dbg for hci_remove_adv_monitor() Bluetooth: coredump: fix building with coredump disabled Bluetooth: ISO: fix iso_conn related locking and validity issues Bluetooth: hci_event: call disconnect callback before deleting conn ...
2023-07-20audit: include security.h unconditionallyXiu Jianfeng
The ifdef-else logic is already in the header file, so include it unconditionally, no functional changes here. Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com> [PM: fixed misspelling in the subject] Signed-off-by: Paul Moore <paul@paul-moore.com>
2023-07-20printk: Rename abandon_console_lock_in_panic() to other_cpu_in_panic()John Ogness
Currently abandon_console_lock_in_panic() is only used to determine if the current CPU should immediately release the console lock because another CPU is in panic. However, later this function will be used by the CPU to immediately release other resources in this situation. Rename the function to other_cpu_in_panic(), which is a better description and does not assume it is related to the console lock. Signed-off-by: John Ogness <john.ogness@linutronix.de> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Reviewed-by: Petr Mladek <pmladek@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/20230717194607.145135-8-john.ogness@linutronix.de
2023-07-20printk: Add per-console suspended stateJohn Ogness
Currently the global @console_suspended is used to determine if consoles are in a suspended state. Its primary purpose is to allow usage of the console_lock when suspended without causing console printing. It is synchronized by the console_lock. Rather than relying on the console_lock to determine suspended state, make it an official per-console state that is set within console->flags. This allows the state to be queried via SRCU. Remove @console_suspended. Console printing will still be avoided when suspended because console_is_usable() returns false when the new suspended flag is set for that console. Signed-off-by: John Ogness <john.ogness@linutronix.de> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Reviewed-by: Petr Mladek <pmladek@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/20230717194607.145135-7-john.ogness@linutronix.de
2023-07-20printk: Consolidate console deferred printingJohn Ogness
Printing to consoles can be deferred for several reasons: - explicitly with printk_deferred() - printk() in NMI context - recursive printk() calls The current implementation is not consistent. For printk_deferred(), irq work is scheduled twice. For NMI und recursive, panic CPU suppression and caller delays are not properly enforced. Correct these inconsistencies by consolidating the deferred printing code so that vprintk_deferred() is the top-level function for deferred printing and vprintk_emit() will perform whichever irq_work queueing is appropriate. Also add kerneldoc for wake_up_klogd() and defer_console_output() to clarify their differences and appropriate usage. Signed-off-by: John Ogness <john.ogness@linutronix.de> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Reviewed-by: Petr Mladek <pmladek@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/20230717194607.145135-6-john.ogness@linutronix.de
2023-07-20printk: Do not take console lock for console_flush_on_panic()John Ogness
Currently console_flush_on_panic() will attempt to acquire the console lock when flushing the buffer on panic. If it fails to acquire the lock, it continues anyway because this is the last chance to get any pending records printed. The reason why the console lock was attempted at all was to prevent any other CPUs from acquiring the console lock for printing while the panic CPU was printing. But as of the previous commit, non-panic CPUs will no longer attempt to acquire the console lock in a panic situation. Therefore it is no longer strictly necessary for a panic CPU to acquire the console lock. Avoiding taking the console lock when flushing in panic has the additional benefit of avoiding possible deadlocks due to semaphore usage in NMI context (semaphores are not NMI-safe) and avoiding possible deadlocks if another CPU accesses the semaphore and is stopped while holding one of the semaphore's internal spinlocks. Signed-off-by: John Ogness <john.ogness@linutronix.de> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Reviewed-by: Petr Mladek <pmladek@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/20230717194607.145135-5-john.ogness@linutronix.de
2023-07-20printk: Keep non-panic-CPUs out of console lockJohn Ogness
When in a panic situation, non-panic CPUs should avoid holding the console lock so as not to contend with the panic CPU. This is already implemented with abandon_console_lock_in_panic(), which is checked after each printed line. However, non-panic CPUs should also avoid trying to acquire the console lock during a panic. Modify console_trylock() to fail and console_lock() to block() when called from a non-panic CPU during a panic. Signed-off-by: John Ogness <john.ogness@linutronix.de> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Reviewed-by: Petr Mladek <pmladek@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/20230717194607.145135-4-john.ogness@linutronix.de
2023-07-20printk: Reduce console_unblank() usage in unsafe scenariosJohn Ogness
A semaphore is not NMI-safe, even when using down_trylock(). Both down_trylock() and up() are using internal spinlocks and up() might even call wake_up_process(). In the panic() code path it gets even worse because the internal spinlocks of the semaphore may have been taken by a CPU that has been stopped. To reduce the risk of deadlocks caused by the console semaphore in the panic path, make the following changes: - First check if any consoles have implemented the unblank() callback. If not, then there is no reason to take the console semaphore anyway. (This check is also useful for the non-panic path since the locking/unlocking of the console lock can be quite expensive due to console printing.) - If the panic path is in NMI context, bail out without attempting to take the console semaphore or calling any unblank() callbacks. Bailing out is acceptable because console_unblank() would already bail out if the console semaphore is contended. The alternative of ignoring the console semaphore and calling the unblank() callbacks anyway is a bad idea because these callbacks are also not NMI-safe. If consoles with unblank() callbacks exist and console_unblank() is called from a non-NMI panic context, it will still attempt a down_trylock(). This could still result in a deadlock if one of the stopped CPUs is holding the semaphore internal spinlock. But this is a risk that the kernel has been (and continues to be) willing to take. Signed-off-by: John Ogness <john.ogness@linutronix.de> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Reviewed-by: Petr Mladek <pmladek@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/20230717194607.145135-3-john.ogness@linutronix.de
2023-07-20kdb: Do not assume write() callback availableJohn Ogness
It is allowed for consoles to not provide a write() callback. For example ttynull does this. Check if a write() callback is available before using it. Signed-off-by: John Ogness <john.ogness@linutronix.de> Reviewed-by: Petr Mladek <pmladek@suse.com> Reviewed-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Daniel Thompson <daniel.thompson@linaro.org> Acked-by: Daniel Thompson <daniel.thompson@linaro.org> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/20230717194607.145135-2-john.ogness@linutronix.de
2023-07-19rcu: Clarify rcu_is_watching() kernel-doc commentPaul E. McKenney
Make it clear that this function always returns either true or false without other planned failure modes. Reported-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2023-07-19bpf, net: Introduce skb_pointer_if_linear().Alexei Starovoitov
Network drivers always call skb_header_pointer() with non-null buffer. Remove !buffer check to prevent accidental misuse of skb_header_pointer(). Introduce skb_pointer_if_linear() instead. Reported-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20230718234021.43640-1-alexei.starovoitov@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19bpf: Add fd-based tcx multi-prog infra with link supportDaniel Borkmann
This work refactors and adds a lightweight extension ("tcx") to the tc BPF ingress and egress data path side for allowing BPF program management based on fds via bpf() syscall through the newly added generic multi-prog API. The main goal behind this work which we also presented at LPC [0] last year and a recent update at LSF/MM/BPF this year [3] is to support long-awaited BPF link functionality for tc BPF programs, which allows for a model of safe ownership and program detachment. Given the rise in tc BPF users in cloud native environments, this becomes necessary to avoid hard to debug incidents either through stale leftover programs or 3rd party applications accidentally stepping on each others toes. As a recap, a BPF link represents the attachment of a BPF program to a BPF hook point. The BPF link holds a single reference to keep BPF program alive. Moreover, hook points do not reference a BPF link, only the application's fd or pinning does. A BPF link holds meta-data specific to attachment and implements operations for link creation, (atomic) BPF program update, detachment and introspection. The motivation for BPF links for tc BPF programs is multi-fold, for example: - From Meta: "It's especially important for applications that are deployed fleet-wide and that don't "control" hosts they are deployed to. If such application crashes and no one notices and does anything about that, BPF program will keep running draining resources or even just, say, dropping packets. We at FB had outages due to such permanent BPF attachment semantics. With fd-based BPF link we are getting a framework, which allows safe, auto-detachable behavior by default, unless application explicitly opts in by pinning the BPF link." [1] - From Cilium-side the tc BPF programs we attach to host-facing veth devices and phys devices build the core datapath for Kubernetes Pods, and they implement forwarding, load-balancing, policy, EDT-management, etc, within BPF. Currently there is no concept of 'safe' ownership, e.g. we've recently experienced hard-to-debug issues in a user's staging environment where another Kubernetes application using tc BPF attached to the same prio/handle of cls_bpf, accidentally wiping all Cilium-based BPF programs from underneath it. The goal is to establish a clear/safe ownership model via links which cannot accidentally be overridden. [0,2] BPF links for tc can co-exist with non-link attachments, and the semantics are in line also with XDP links: BPF links cannot replace other BPF links, BPF links cannot replace non-BPF links, non-BPF links cannot replace BPF links and lastly only non-BPF links can replace non-BPF links. In case of Cilium, this would solve mentioned issue of safe ownership model as 3rd party applications would not be able to accidentally wipe Cilium programs, even if they are not BPF link aware. Earlier attempts [4] have tried to integrate BPF links into core tc machinery to solve cls_bpf, which has been intrusive to the generic tc kernel API with extensions only specific to cls_bpf and suboptimal/complex since cls_bpf could be wiped from the qdisc also. Locking a tc BPF program in place this way, is getting into layering hacks given the two object models are vastly different. We instead implemented the tcx (tc 'express') layer which is an fd-based tc BPF attach API, so that the BPF link implementation blends in naturally similar to other link types which are fd-based and without the need for changing core tc internal APIs. BPF programs for tc can then be successively migrated from classic cls_bpf to the new tc BPF link without needing to change the program's source code, just the BPF loader mechanics for attaching is sufficient. For the current tc framework, there is no change in behavior with this change and neither does this change touch on tc core kernel APIs. The gist of this patch is that the ingress and egress hook have a lightweight, qdisc-less extension for BPF to attach its tc BPF programs, in other words, a minimal entry point for tc BPF. The name tcx has been suggested from discussion of earlier revisions of this work as a good fit, and to more easily differ between the classic cls_bpf attachment and the fd-based one. For the ingress and egress tcx points, the device holds a cache-friendly array with program pointers which is separated from control plane (slow-path) data. Earlier versions of this work used priority to determine ordering and expression of dependencies similar as with classic tc, but it was challenged that for something more future-proof a better user experience is required. Hence this resulted in the design and development of the generic attach/detach/query API for multi-progs. See prior patch with its discussion on the API design. tcx is the first user and later we plan to integrate also others, for example, one candidate is multi-prog support for XDP which would benefit and have the same 'look and feel' from API perspective. The goal with tcx is to have maximum compatibility to existing tc BPF programs, so they don't need to be rewritten specifically. Compatibility to call into classic tcf_classify() is also provided in order to allow successive migration or both to cleanly co-exist where needed given its all one logical tc layer and the tcx plus classic tc cls/act build one logical overall processing pipeline. tcx supports the simplified return codes TCX_NEXT which is non-terminating (go to next program) and terminating ones with TCX_PASS, TCX_DROP, TCX_REDIRECT. The fd-based API is behind a static key, so that when unused the code is also not entered. The struct tcx_entry's program array is currently static, but could be made dynamic if necessary at a point in future. The a/b pair swap design has been chosen so that for detachment there are no allocations which otherwise could fail. The work has been tested with tc-testing selftest suite which all passes, as well as the tc BPF tests from the BPF CI, and also with Cilium's L4LB. Thanks also to Nikolay Aleksandrov and Martin Lau for in-depth early reviews of this work. [0] https://lpc.events/event/16/contributions/1353/ [1] https://lore.kernel.org/bpf/CAEf4BzbokCJN33Nw_kg82sO=xppXnKWEncGTWCTB9vGCmLB6pw@mail.gmail.com [2] https://colocatedeventseu2023.sched.com/event/1Jo6O/tales-from-an-ebpf-programs-murder-mystery-hemanth-malla-guillaume-fournier-datadog [3] http://vger.kernel.org/bpfconf2023_material/tcx_meta_netdev_borkmann.pdf [4] https://lore.kernel.org/bpf/20210604063116.234316-1-memxor@gmail.com Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20230719140858.13224-3-daniel@iogearbox.net Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19bpf: Add generic attach/detach/query API for multi-progsDaniel Borkmann
This adds a generic layer called bpf_mprog which can be reused by different attachment layers to enable multi-program attachment and dependency resolution. In-kernel users of the bpf_mprog don't need to care about the dependency resolution internals, they can just consume it with few API calls. The initial idea of having a generic API sparked out of discussion [0] from an earlier revision of this work where tc's priority was reused and exposed via BPF uapi as a way to coordinate dependencies among tc BPF programs, similar as-is for classic tc BPF. The feedback was that priority provides a bad user experience and is hard to use [1], e.g.: I cannot help but feel that priority logic copy-paste from old tc, netfilter and friends is done because "that's how things were done in the past". [...] Priority gets exposed everywhere in uapi all the way to bpftool when it's right there for users to understand. And that's the main problem with it. The user don't want to and don't need to be aware of it, but uapi forces them to pick the priority. [...] Your cover letter [0] example proves that in real life different service pick the same priority. They simply don't know any better. Priority is an unnecessary magic that apps _have_ to pick, so they just copy-paste and everyone ends up using the same. The course of the discussion showed more and more the need for a generic, reusable API where the "same look and feel" can be applied for various other program types beyond just tc BPF, for example XDP today does not have multi- program support in kernel, but also there was interest around this API for improving management of cgroup program types. Such common multi-program management concept is useful for BPF management daemons or user space BPF applications coordinating internally about their attachments. Both from Cilium and Meta side [2], we've collected the following requirements for a generic attach/detach/query API for multi-progs which has been implemented as part of this work: - Support prog-based attach/detach and link API - Dependency directives (can also be combined): - BPF_F_{BEFORE,AFTER} with relative_{fd,id} which can be {prog,link,none} - BPF_F_ID flag as {fd,id} toggle; the rationale for id is so that user space application does not need CAP_SYS_ADMIN to retrieve foreign fds via bpf_*_get_fd_by_id() - BPF_F_LINK flag as {prog,link} toggle - If relative_{fd,id} is none, then BPF_F_BEFORE will just prepend, and BPF_F_AFTER will just append for attaching - Enforced only at attach time - BPF_F_REPLACE with replace_bpf_fd which can be prog, links have their own infra for replacing their internal prog - If no flags are set, then it's default append behavior for attaching - Internal revision counter and optionally being able to pass expected_revision - User space application can query current state with revision, and pass it along for attachment to assert current state before doing updates - Query also gets extension for link_ids array and link_attach_flags: - prog_ids are always filled with program IDs - link_ids are filled with link IDs when link was used, otherwise 0 - {prog,link}_attach_flags for holding {prog,link}-specific flags - Must be easy to integrate/reuse for in-kernel users The uapi-side changes needed for supporting bpf_mprog are rather minimal, consisting of the additions of the attachment flags, revision counter, and expanding existing union with relative_{fd,id} member. The bpf_mprog framework consists of an bpf_mprog_entry object which holds an array of bpf_mprog_fp (fast-path structure). The bpf_mprog_cp (control-path structure) is part of bpf_mprog_bundle. Both have been separated, so that fast-path gets efficient packing of bpf_prog pointers for maximum cache efficiency. Also, array has been chosen instead of linked list or other structures to remove unnecessary indirections for a fast point-to-entry in tc for BPF. The bpf_mprog_entry comes as a pair via bpf_mprog_bundle so that in case of updates the peer bpf_mprog_entry is populated and then just swapped which avoids additional allocations that could otherwise fail, for example, in detach case. bpf_mprog_{fp,cp} arrays are currently static, but they could be converted to dynamic allocation if necessary at a point in future. Locking is deferred to the in-kernel user of bpf_mprog, for example, in case of tcx which uses this API in the next patch, it piggybacks on rtnl. An extensive test suite for checking all aspects of this API for prog-based attach/detach and link API comes as BPF selftests in this series. Thanks also to Andrii Nakryiko for early API discussions wrt Meta's BPF prog management. [0] https://lore.kernel.org/bpf/20221004231143.19190-1-daniel@iogearbox.net [1] https://lore.kernel.org/bpf/CAADnVQ+gEY3FjCR=+DmjDR4gp5bOYZUFJQXj4agKFHT9CQPZBw@mail.gmail.com [2] http://vger.kernel.org/bpfconf2023_material/tcx_meta_netdev_borkmann.pdf Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/r/20230719140858.13224-2-daniel@iogearbox.net Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19bpf: allow any program to use the bpf_map_sum_elem_count kfuncAnton Protopopov
Register the bpf_map_sum_elem_count func for all programs, and update the map_ptr subtest of the test_progs test to test the new functionality. The usage is allowed as long as the pointer to the map is trusted (when using tracing programs) or is a const pointer to map, as in the following example: struct { __uint(type, BPF_MAP_TYPE_HASH); ... } hash SEC(".maps"); ... static inline int some_bpf_prog(void) { struct bpf_map *map = (struct bpf_map *)&hash; __s64 count; count = bpf_map_sum_elem_count(map); ... } Signed-off-by: Anton Protopopov <aspsk@isovalent.com> Link: https://lore.kernel.org/r/20230719092952.41202-5-aspsk@isovalent.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19bpf: make an argument const in the bpf_map_sum_elem_count kfuncAnton Protopopov
We use the map pointer only to read the counter values, no locking involved, so mark the argument as const. Signed-off-by: Anton Protopopov <aspsk@isovalent.com> Link: https://lore.kernel.org/r/20230719092952.41202-4-aspsk@isovalent.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19bpf: consider CONST_PTR_TO_MAP as trusted pointer to struct bpf_mapAnton Protopopov
Add the BTF id of struct bpf_map to the reg2btf_ids array. This makes the values of the CONST_PTR_TO_MAP type to be considered as trusted by kfuncs. This, in turn, allows users to execute trusted kfuncs which accept `struct bpf_map *` arguments from non-tracing programs. While exporting the btf_bpf_map_id variable, save some bytes by defining it as BTF_ID_LIST_GLOBAL_SINGLE (which is u32[1]) and not as BTF_ID_LIST (which is u32[64]). Signed-off-by: Anton Protopopov <aspsk@isovalent.com> Link: https://lore.kernel.org/r/20230719092952.41202-3-aspsk@isovalent.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19bpf: consider types listed in reg2btf_ids as trustedAnton Protopopov
The reg2btf_ids array contains a list of types for which we can (and need) to find a corresponding static BTF id. All the types in the list can be considered as trusted for purposes of kfuncs. Signed-off-by: Anton Protopopov <aspsk@isovalent.com> Link: https://lore.kernel.org/r/20230719092952.41202-2-aspsk@isovalent.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-19sched/fair: Propagate enqueue flags into place_entity()Peter Zijlstra
This allows place_entity() to consider ENQUEUE_WAKEUP and ENQUEUE_MIGRATED. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124604.274010996@infradead.org
2023-07-19sched/debug: Rename sysctl_sched_min_granularity to sysctl_sched_base_slicePeter Zijlstra
EEVDF uses this tunable as the base request/slice -- make sure the name reflects this. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124604.205287511@infradead.org
2023-07-19sched/fair: Commit to EEVDFPeter Zijlstra
EEVDF is a better defined scheduling policy, as a result it has less heuristics/tunables. There is no compelling reason to keep CFS around. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124604.137187212@infradead.org
2023-07-19sched/smp: Use lag to simplify cross-runqueue placementPeter Zijlstra
Using lag is both more correct and simpler when moving between runqueues. Notable, min_vruntime() was invented as a cheap approximation of avg_vruntime() for this very purpose (SMP migration). Since we now have the real thing; use it. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124604.068911180@infradead.org
2023-07-19sched/fair: Commit to lag based placementPeter Zijlstra
Removes the FAIR_SLEEPERS code in favour of the new LAG based placement. Specifically, the whole FAIR_SLEEPER thing was a very crude approximation to make up for the lack of lag based placement, specifically the 'service owed' part. This is important for things like 'starve' and 'hackbench'. One side effect of FAIR_SLEEPER is that it caused 'small' unfairness, specifically, by always ignoring up-to 'thresh' sleeptime it would have a 50%/50% time distribution for a 50% sleeper vs a 100% runner, while strictly speaking this should (of course) result in a 33%/67% split (as CFS will also do if the sleep period exceeds 'thresh'). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124604.000198861@infradead.org