Age | Commit message (Collapse) | Author |
|
Before current_user_event_group(), it has allocated memory and save it
in @name, this should freed before return error.
Link: https://lkml.kernel.org/r/20221115014445.158419-1-xiujianfeng@huawei.com
Fixes: e5d271812e7a ("tracing/user_events: Move pages/locks into groups to prepare for namespaces")
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
struct cgroup * objects have a variably sized struct cgroup *ancestors[]
field which stores pointers to their ancestor cgroups. If using a cgroup
as a kptr, it can be useful to access these ancestors, but doing so
requires variable offset accesses for PTR_TO_BTF_ID, which is currently
unsupported.
This is a very useful field to access for cgroup kptrs, as programs may
wish to walk their ancestor cgroups when determining e.g. their
proportional cpu.weight. So as to enable this functionality with cgroup
kptrs before var_off is supported for PTR_TO_BTF_ID, this patch adds a
bpf_cgroup_ancestor() kfunc which accesses the cgroup node on behalf of
the caller, and acquires a reference on it. Once var_off is supported
for PTR_TO_BTF_ID, and fields inside a struct can be marked as trusted
so they retain the PTR_TRUSTED modifier when walked, this can be
removed.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221122055458.173143-4-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Now that tasks can be used as kfuncs, and the PTR_TRUSTED flag is
available for us to easily add basic acquire / get / release kfuncs, we
can do the same for cgroups. This patch set adds the following kfuncs
which enable using cgroups as kptrs:
struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp);
struct cgroup *bpf_cgroup_kptr_get(struct cgroup **cgrpp);
void bpf_cgroup_release(struct cgroup *cgrp);
A follow-on patch will add a selftest suite which validates these
kfuncs.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221122055458.173143-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
There are a couple of missing * in comment blocks. Fix these.
Cleans up two clang warnings:
kernel/trace/trace_events_hist.c:986: warning: bad line:
kernel/trace/trace_events_hist.c:3229: warning: bad line:
Link: https://lkml.kernel.org/r/20221020133019.1547587-1-colin.i.king@gmail.com
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Change the function argument in the description of cpuset_css_alloc()
from 'struct cgroup' -> 'struct cgroup_subsys_state'. The change to the
argument type was introduced by commit eb95419b023a ("cgroup: pass
around cgroup_subsys_state instead of cgroup in subsystem methods").
Also, add more information to its description.
Signed-off-by: Kamalesh Babulal <kamalesh.babulal@oracle.com>
Acked-by: Waiman Long <longman@redhat.com>
Acked-by: Joel Savitz <jsavitz@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
This reverts commit 6d5afdc97ea71958287364a1f1d07e59ef151b11.
On a Pixel 6 device, it is observed that this commit increases
latency by approximately 50ms, or 20%, in migrating a task
that requires full CPU utilization from a LITTLE CPU to Fmax
on a big CPU. Reverting this change restores the latency back
to its original baseline value.
Fixes: 6d5afdc97ea7 ("cpufreq: schedutil: Move max CPU capacity to sugov_policy")
Signed-off-by: Sam Wu <wusamuel@google.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The filter() callback in struct kset_uevent_ops does not modify the
kobject passed into it, so make the pointer const to enforce this
restriction. When doing so, fix up all existing filter() callbacks to
have the correct signature to preserve the build.
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: linux-media@vger.kernel.org
Cc: dri-devel@lists.freedesktop.org
Cc: linaro-mm-sig@lists.linaro.org
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Acked-by: Christian König <christian.koenig@amd.com> for the changes to
Link: https://lore.kernel.org/r/20221121094649.1556002-3-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Fix a typo of comment
Signed-off-by: Wang Honghui <honghui.wang@ucas.com.cn>
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/77522C532189E547+Y3yG91g6XALbtdJr@TP-P15V.lan
Link: https://lore.kernel.org/r/0C7C980DB815FAE1+Y3yNXJCqZ3Nzxa5V@TP-P15V.lan
|
|
Resolve conflicts between these commits in arch/x86/kernel/asm-offsets.c:
# upstream:
debc5a1ec0d1 ("KVM: x86: use a separate asm-offsets.c file")
# retbleed work in x86/core:
5d8213864ade ("x86/retbleed: Add SKL return thunk")
... and these commits in include/linux/bpf.h:
# upstram:
18acb7fac22f ("bpf: Revert ("Fix dispatcher patchable function entry to 5 bytes nop")")
# x86/core commits:
931ab63664f0 ("x86/ibt: Implement FineIBT")
bea75b33895f ("x86/Kconfig: Introduce function padding")
The latter two modify BPF_DISPATCHER_ATTRIBUTES(), which was removed upstream.
Conflicts:
arch/x86/kernel/asm-offsets.c
include/linux/bpf.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
bpf_selem_alloc function is used by inode_storage, sk_storage and
task_storage maps to set map value, for these map types, there may
be a spin lock in the map value, so if we use memcpy to copy the whole
map value from user, the spin lock field may be initialized incorrectly.
Since the spin lock field is zeroed by kzalloc, call copy_map_value
instead of memcpy to skip copying the spin lock field to fix it.
Fixes: 6ac99e8f23d4 ("bpf: Introduce bpf sk local storage")
Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Link: https://lore.kernel.org/r/20221114134720.1057939-2-xukuohai@huawei.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
bpf_iter_attach_cgroup() has already acquired an extra reference for the
start cgroup, but the reference may be released if the iterator link fd
is closed after the creation of iterator fd, and it may lead to
user-after-free problem when reading the iterator fd.
An alternative fix is pinning iterator link when opening iterator,
but it will make iterator link being still visible after the close of
iterator link fd and the behavior is different with other link types, so
just fixing it by acquiring another reference for the start cgroup.
Fixes: d4ccaf58a847 ("bpf: Introduce cgroup iter")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221121073440.1828292-2-houtao@huaweicloud.com
|
|
Most allocation sites in the kernel want an explicitly sized allocation
(and not "more"), and that dynamic runtime analysis tools (e.g. KASAN,
UBSAN_BOUNDS, FORTIFY_SOURCE, etc) are looking for precise bounds checking
(i.e. not something that is rounded up). A tiny handful of allocations
were doing an implicit alloc/realloc loop that actually depended on
ksize(), and didn't actually always call realloc. This has created a
long series of bugs and problems over many years related to the runtime
bounds checking, so these callers are finally being adjusted to _not_
depend on the ksize() side-effect, by doing one of several things:
- tracking the allocation size precisely and just never calling ksize()
at all [1].
- always calling realloc and not using ksize() at all. (This solution
ends up actually be a subset of the next solution.)
- using kmalloc_size_roundup() to explicitly round up the desired
allocation size immediately [2].
The bpf/verifier case is this another of this latter case, and is the
last outstanding case to be fixed in the kernel.
Because some of the dynamic bounds checking depends on the size being an
_argument_ to an allocator function (i.e. see the __alloc_size attribute),
the ksize() users are rare, and it could waste local variables, it
was been deemed better to explicitly separate the rounding up from the
allocation itself [3].
Round up allocations with kmalloc_size_roundup() so that the verifier's
use of ksize() is always accurate.
[1] e.g.:
https://git.kernel.org/linus/712f210a457d
https://git.kernel.org/linus/72c08d9f4c72
[2] e.g.:
https://git.kernel.org/netdev/net-next/c/12d6c1d3a2ad
https://git.kernel.org/netdev/net-next/c/ab3f7828c979
https://git.kernel.org/netdev/net-next/c/d6dd508080a3
[3] https://lore.kernel.org/lkml/0ea1fc165a6c6117f982f4f135093e69cb884930.camel@redhat.com/
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20221118183409.give.387-kees@kernel.org
|
|
We need the kernfs changes in here as well.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
DMA allocations can never be turned back into a page pointer, so
requesting compound pages doesn't make sense and it can't even be
supported at all by various backends.
Reject __GFP_COMP with a warning in dma_alloc_attrs, and stop clearing
the flag in the arm dma ops and dma-iommu.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Marek Szyprowski <m.szyprowski@samsung.com>
|
|
The sysctl_numa_balancing_promote_rate_limit and sysctl_numa_balancing
are part of sched, move them to its own file.
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
Implement bpf_rdonly_cast() which tries to cast the object
to a specified type. This tries to support use case like below:
#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
where skb_end_pointer(SKB) is a 'unsigned char *' and needs to
be casted to 'struct skb_shared_info *'.
The signature of bpf_rdonly_cast() looks like
void *bpf_rdonly_cast(void *obj, __u32 btf_id)
The function returns the same 'obj' but with PTR_TO_BTF_ID with
btf_id. The verifier will ensure btf_id being a struct type.
Since the supported type cast may not reflect what the 'obj'
represents, the returned btf_id is marked as PTR_UNTRUSTED, so
the return value and subsequent pointer chasing cannot be
used as helper/kfunc arguments.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195437.3114585-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Implement bpf_cast_to_kern_ctx() kfunc which does a type cast
of a uapi ctx object to the corresponding kernel ctx. Previously
if users want to access some data available in kctx but not
in uapi ctx, bpf_probe_read_kernel() helper is needed.
The introduction of bpf_cast_to_kern_ctx() allows direct
memory access which makes code simpler and easier to understand.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195432.3113982-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Later on, we will introduce kfuncs bpf_cast_to_kern_ctx() and
bpf_rdonly_cast() which apply to all program types. Currently kfunc set
only supports individual prog types. This patch added support for kfunc
applying to all program types.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195426.3113828-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
In the unlikely event that bpf_global_ma is not correctly initialized,
instead of checking the boolean everytime bpf_obj_new_impl is called,
simply check it while loading the program and return an error if
bpf_global_ma_set is false.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221120212610.2361700-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing/probes fixes from Steven Rostedt:
- Fix possible NULL pointer dereference on trace_event_file in
kprobe_event_gen_test_exit()
- Fix NULL pointer dereference for trace_array in
kprobe_event_gen_test_exit()
- Fix memory leak of filter string for eprobes
- Fix a possible memory leak in rethook_alloc()
- Skip clearing aggrprobe's post_handler in kprobe-on-ftrace case which
can cause a possible use-after-free
- Fix warning in eprobe filter creation
- Fix eprobe filter creation as it picked the wrong event for the
fields
* tag 'trace-probes-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing/eprobe: Fix eprobe filter to make a filter correctly
tracing/eprobe: Fix warning in filter creation
kprobes: Skip clearing aggrprobe's post_handler in kprobe-on-ftrace case
rethook: fix a potential memleak in rethook_alloc()
tracing/eprobe: Fix memory leak of filter string
tracing: kprobe: Fix potential null-ptr-deref on trace_array in kprobe_event_gen_test_exit()
tracing: kprobe: Fix potential null-ptr-deref on trace_event_file in kprobe_event_gen_test_exit()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
- Fix polling to block on watermark like the reads do, as user space
applications get confused when the select says read is available, and
then the read blocks
- Fix accounting of ring buffer dropped pages as it is what is used to
determine if the buffer is empty or not
- Fix memory leak in tracing_read_pipe()
- Fix struct trace_array warning about being declared in parameters
- Fix accounting of ftrace pages used in output at start up.
- Fix allocation of dyn_ftrace pages by subtracting one from order
instead of diving it by 2
- Static analyzer found a case were a pointer being used outside of a
NULL check (rb_head_page_deactivate())
- Fix possible NULL pointer dereference if kstrdup() fails in
ftrace_add_mod()
- Fix memory leak in test_gen_synth_cmd() and test_empty_synth_event()
- Fix bad pointer dereference in register_synth_event() on error path
- Remove unused __bad_type_size() method
- Fix possible NULL pointer dereference of entry in list 'tr->err_log'
- Fix NULL pointer deference race if eprobe is called before the event
setup
* tag 'trace-v6.1-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: Fix race where eprobes can be called before the event
tracing: Fix potential null-pointer-access of entry in list 'tr->err_log'
tracing: Remove unused __bad_type_size() method
tracing: Fix wild-memory-access in register_synth_event()
tracing: Fix memory leak in test_gen_synth_cmd() and test_empty_synth_event()
ftrace: Fix null pointer dereference in ftrace_add_mod()
ring_buffer: Do not deactivate non-existant pages
ftrace: Optimize the allocation for mcount entries
ftrace: Fix the possible incorrect kernel message
tracing: Fix warning on variable 'struct trace_array'
tracing: Fix memory leak in tracing_read_pipe()
ring-buffer: Include dropped pages in counting dirty patches
tracing/ring-buffer: Have polling block on watermark
|
|
The flag that tells the event to call its triggers after reading the event
is set for eprobes after the eprobe is enabled. This leads to a race where
the eprobe may be triggered at the beginning of the event where the record
information is NULL. The eprobe then dereferences the NULL record causing
a NULL kernel pointer bug.
Test for a NULL record to keep this from happening.
Link: https://lore.kernel.org/linux-trace-kernel/20221116192552.1066630-1-rafaelmendsr@gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20221117214249.2addbe10@gandalf.local.home
Cc: Linux Trace Kernel <linux-trace-kernel@vger.kernel.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Cc: stable@vger.kernel.org
Fixes: 7491e2c442781 ("tracing: Add a probe that attaches to trace events")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reported-by: Rafael Mendonca <rafaelmendsr@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Borislav Petkov:
- Fix a small race on the task's exit path where there's a
misunderstanding whether the task holds rq->lock or not
- Prevent processes from getting killed when using deprecated or
unknown rseq ABI flags in order to be able to fuzz the rseq() syscall
with syzkaller
* tag 'sched_urgent_for_v6.1_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Fix race in task_call_func()
rseq: Use pr_warn_once() when deprecated/unknown ABI flags are encountered
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Borislav Petkov:
- Fix an intel PT erratum where CPUs do not support single range output
for more than 4K
- Fix a NULL ptr dereference which can happen after an NMI interferes
with the event enabling dance in amd_pmu_enable_all()
- Free the events array too when freeing uncore contexts on CPU online,
thereby fixing a memory leak
- Improve the pending SIGTRAP check
* tag 'perf_urgent_for_v6.1_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/pt: Fix sampling using single range output
perf/x86/amd: Fix crash due to race between amd_pmu_enable_all, perf NMI and throttling
perf/x86/amd/uncore: Fix memory leak for events array
perf: Improve missing SIGTRAP checking
|
|
Now that BPF supports adding new kernel functions with kfuncs, and
storing kernel objects in maps with kptrs, we can add a set of kfuncs
which allow struct task_struct objects to be stored in maps as
referenced kptrs. The possible use cases for doing this are plentiful.
During tracing, for example, it would be useful to be able to collect
some tasks that performed a certain operation, and then periodically
summarize who they are, which cgroup they're in, how much CPU time
they've utilized, etc.
In order to enable this, this patch adds three new kfuncs:
struct task_struct *bpf_task_acquire(struct task_struct *p);
struct task_struct *bpf_task_kptr_get(struct task_struct **pp);
void bpf_task_release(struct task_struct *p);
A follow-on patch will add selftests validating these kfuncs.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-4-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Kfuncs currently support specifying the KF_TRUSTED_ARGS flag to signal
to the verifier that it should enforce that a BPF program passes it a
"safe", trusted pointer. Currently, "safe" means that the pointer is
either PTR_TO_CTX, or is refcounted. There may be cases, however, where
the kernel passes a BPF program a safe / trusted pointer to an object
that the BPF program wishes to use as a kptr, but because the object
does not yet have a ref_obj_id from the perspective of the verifier, the
program would be unable to pass it to a KF_ACQUIRE | KF_TRUSTED_ARGS
kfunc.
The solution is to expand the set of pointers that are considered
trusted according to KF_TRUSTED_ARGS, so that programs can invoke kfuncs
with these pointers without getting rejected by the verifier.
There is already a PTR_UNTRUSTED flag that is set in some scenarios,
such as when a BPF program reads a kptr directly from a map
without performing a bpf_kptr_xchg() call. These pointers of course can
and should be rejected by the verifier. Unfortunately, however,
PTR_UNTRUSTED does not cover all the cases for safety that need to
be addressed to adequately protect kfuncs. Specifically, pointers
obtained by a BPF program "walking" a struct are _not_ considered
PTR_UNTRUSTED according to BPF. For example, say that we were to add a
kfunc called bpf_task_acquire(), with KF_ACQUIRE | KF_TRUSTED_ARGS, to
acquire a struct task_struct *. If we only used PTR_UNTRUSTED to signal
that a task was unsafe to pass to a kfunc, the verifier would mistakenly
allow the following unsafe BPF program to be loaded:
SEC("tp_btf/task_newtask")
int BPF_PROG(unsafe_acquire_task,
struct task_struct *task,
u64 clone_flags)
{
struct task_struct *acquired, *nested;
nested = task->last_wakee;
/* Would not be rejected by the verifier. */
acquired = bpf_task_acquire(nested);
if (!acquired)
return 0;
bpf_task_release(acquired);
return 0;
}
To address this, this patch defines a new type flag called PTR_TRUSTED
which tracks whether a PTR_TO_BTF_ID pointer is safe to pass to a
KF_TRUSTED_ARGS kfunc or a BPF helper function. PTR_TRUSTED pointers are
passed directly from the kernel as a tracepoint or struct_ops callback
argument. Any nested pointer that is obtained from walking a PTR_TRUSTED
pointer is no longer PTR_TRUSTED. From the example above, the struct
task_struct *task argument is PTR_TRUSTED, but the 'nested' pointer
obtained from 'task->last_wakee' is not PTR_TRUSTED.
A subsequent patch will add kfuncs for storing a task kfunc as a kptr,
and then another patch will add selftests to validate.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
reg_type_str() in the verifier currently only allows a single register
type modifier to be present in the 'prefix' string which is eventually
stored in the env type_str_buf. This currently works fine because there
are no overlapping type modifiers, but once PTR_TRUSTED is added, that
will no longer be the case. This patch updates reg_type_str() to support
having multiple modifiers in the prefix string, and updates the size of
type_str_buf to be 128 bytes.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Use try_cmpxchg instead of cmpxchg (*ptr, old, new) == old in
task_numa_work. x86 CMPXCHG instruction returns success in ZF flag, so
this change saves a compare after cmpxchg (and related move instruction in
front of cmpxchg).
No functional change intended.
Link: https://lkml.kernel.org/r/20220822173956.82525-1-ubizjak@gmail.com
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We already have struct range, so just use it.
Link: https://lkml.kernel.org/r/20220929042936.22012-4-bhe@redhat.com
Signed-off-by: Li Chen <lchen@ambarella.com>
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Chen Lifu <chenlifu@huawei.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: Jianglei Nie <niejianglei2021@163.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: ye xingchen <ye.xingchen@zte.com.cn>
Cc: Zeal Robot <zealci@zte.com.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Return the value kimage_add_entry() directly instead of storing it in
another redundant variable.
Link: https://lkml.kernel.org/r/20220929042936.22012-3-bhe@redhat.com
Signed-off-by: ye xingchen <ye.xingchen@zte.com.cn>
Signed-off-by: Baoquan He <bhe@redhat.com>
Reported-by: Zeal Robot <zealci@zte.com.cn>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chen Lifu <chenlifu@huawei.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: Jianglei Nie <niejianglei2021@163.com>
Cc: Li Chen <lchen@ambarella.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Use str_enabled_disabled() helper instead of open coding the same.
Link: https://lkml.kernel.org/r/20221008195914.54199-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
./kernel/kallsyms_selftest.c:136:2-3: Unneeded semicolon
Link: https://bugzilla.openanolis.cn/show_bug.cgi?id=3208
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
In subsequent patches we'll arrange for architectures to have an
ftrace_regs which is entirely distinct from pt_regs. In preparation for
this, we need to minimize the use of pt_regs to where strictly necessary
in the core ftrace code.
This patch adds new ftrace_regs_{get,set}_*() helpers which can be used
to manipulate ftrace_regs. When CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS=y,
these can always be used on any ftrace_regs, and when
CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS=n these can be used when regs are
available. A new ftrace_regs_has_args(fregs) helper is added which code
can use to check when these are usable.
Co-developed-by: Florent Revest <revest@chromium.org>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20221103170520.931305-4-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
ftrace_regs_set_instruction_pointer()
In subsequent patches we'll add a sew of ftrace_regs_{get,set}_*()
helpers. In preparation, this patch renames
ftrace_instruction_pointer_set() to
ftrace_regs_set_instruction_pointer().
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20221103170520.931305-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
In subsequent patches we'll arrange for architectures to have an
ftrace_regs which is entirely distinct from pt_regs. In preparation for
this, we need to minimize the use of pt_regs to where strictly
necessary in the core ftrace code.
This patch changes the prototype of arch_ftrace_set_direct_caller() to
take ftrace_regs rather than pt_regs, and moves the extraction of the
pt_regs into arch_ftrace_set_direct_caller().
On x86, arch_ftrace_set_direct_caller() can be used even when
CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS=n, and <linux/ftrace.h> defines
struct ftrace_regs. Due to this, it's necessary to define
arch_ftrace_set_direct_caller() as a macro to avoid using an incomplete
type. I've also moved the body of arch_ftrace_set_direct_caller() after
the CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS=y defineidion of struct
ftrace_regs.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20221103170520.931305-2-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Some architectures (powerpc) may not support ftrace locations being nop'ed
out at build time. Introduce CONFIG_HAVE_OBJTOOL_NOP_MCOUNT for objtool, as
a means for architectures to enable nop'ing of ftrace locations. Add --mnop
as an option to objtool --mcount, to indicate support for the same.
Also, make sure that --mnop can be passed as an option to objtool only when
--mcount is passed.
Tested-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Reviewed-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Sathvika Vasireddy <sv@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20221114175754.1131267-12-sv@linux.ibm.com
|
|
The old behavior of bpf_map_meta_equal was that it compared timer_off
to be equal (but not spin_lock_off, because that was not allowed), and
did memcmp of kptr_off_tab.
Now, we memcmp the btf_record of two bpf_map structs, which has all
fields.
We preserve backwards compat as we kzalloc the array, so if only spin
lock and timer exist in map, we only compare offset while the rest of
unused members in the btf_field struct are zeroed out.
In case of kptr, btf and everything else is of vmlinux or module, so as
long type is same it will match, since kernel btf, module, dtor pointer
will be same across maps.
Now with list_head in the mix, things are a bit complicated. We
implicitly add a requirement that both BTFs are same, because struct
btf_field_list_head has btf and value_rec members.
We obviously shouldn't force BTFs to be equal by default, as that breaks
backwards compatibility.
Currently it is only implicitly required due to list_head matching
struct btf and value_rec member. value_rec points back into a btf_record
stashed in the map BTF (btf member of btf_field_list_head). So that
pointer and btf member has to match exactly.
Document all these subtle details so that things don't break in the
future when touching this code.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-19-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This commit implements the delayed release logic for bpf_list_push_front
and bpf_list_push_back.
Once a node has been added to the list, it's pointer changes to
PTR_UNTRUSTED. However, it is only released once the lock protecting the
list is unlocked. For such PTR_TO_BTF_ID | MEM_ALLOC with PTR_UNTRUSTED
set but an active ref_obj_id, it is still permitted to read them as long
as the lock is held. Writing to them is not allowed.
This allows having read access to push items we no longer own until we
release the lock guarding the list, allowing a little more flexibility
when working with these APIs.
Note that enabling write support has fairly tricky interactions with
what happens inside the critical section. Just as an example, currently,
bpf_obj_drop is not permitted, but if it were, being able to write to
the PTR_UNTRUSTED pointer while the object gets released back to the
memory allocator would violate safety properties we wish to guarantee
(i.e. not crashing the kernel). The memory could be reused for a
different type in the BPF program or even in the kernel as it gets
eventually kfree'd.
Not enabling bpf_obj_drop inside the critical section would appear to
prevent all of the above, but that is more of an artifical limitation
right now. Since the write support is tangled with how we handle
potential aliasing of nodes inside the critical section that may or may
not be part of the list anymore, it has been deferred to a future patch.
Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-18-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add a linked list API for use in BPF programs, where it expects
protection from the bpf_spin_lock in the same allocation as the
bpf_list_head. For now, only one bpf_spin_lock can be present hence that
is assumed to be the one protecting the bpf_list_head.
The following functions are added to kick things off:
// Add node to beginning of list
void bpf_list_push_front(struct bpf_list_head *head, struct bpf_list_node *node);
// Add node to end of list
void bpf_list_push_back(struct bpf_list_head *head, struct bpf_list_node *node);
// Remove node at beginning of list and return it
struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head);
// Remove node at end of list and return it
struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head);
The lock protecting the bpf_list_head needs to be taken for all
operations. The verifier ensures that the lock that needs to be taken is
always held, and only the correct lock is taken for these operations.
These checks are made statically by relying on the reg->id preserved for
registers pointing into regions having both bpf_spin_lock and the
objects protected by it. The comment over check_reg_allocation_locked in
this change describes the logic in detail.
Note that bpf_list_push_front and bpf_list_push_back are meant to
consume the object containing the node in the 1st argument, however that
specific mechanism is intended to not release the ref_obj_id directly
until the bpf_spin_unlock is called. In this commit, nothing is done,
but the next commit will be introducing logic to handle this case, so it
has been left as is for now.
bpf_list_pop_front and bpf_list_pop_back delete the first or last item
of the list respectively, and return pointer to the element at the
list_node offset. The user can then use container_of style macro to get
the actual entry type. The verifier however statically knows the actual
type, so the safety properties are still preserved.
With these additions, programs can now manage their own linked lists and
store their objects in them.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-17-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Pointer increment on seeing PTR_MAYBE_NULL is already protected against,
hence make an exception for PTR_TO_BTF_ID | MEM_ALLOC while still
keeping the warning for other unintended cases that might creep in.
bpf_list_pop_{front,_back} helpers planned to be introduced in next
commit will return a MEM_ALLOC register with incremented offset pointing
to bpf_list_node field. The user is supposed to then obtain the pointer
to the entry using container_of after NULL checking it. The current
restrictions trigger a warning when doing the NULL checking. Revisiting
the reason, it is meant as an assertion which seems to actually work and
catch the bad case.
Hence, under no other circumstances can reg->off be non-zero for a
register that has the PTR_MAYBE_NULL type flag set.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-16-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Introduce bpf_obj_drop, which is the kfunc used to free allocated
objects (allocated using bpf_obj_new). Pairing with bpf_obj_new, it
implicitly destructs the fields part of object automatically without
user intervention.
Just like the previous patch, btf_struct_meta that is needed to free up
the special fields is passed as a hidden argument to the kfunc.
For the user, a convenience macro hides over the kernel side kfunc which
is named bpf_obj_drop_impl.
Continuing the previous example:
void prog(void) {
struct foo *f;
f = bpf_obj_new(typeof(*f));
if (!f)
return;
bpf_obj_drop(f);
}
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-15-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Introduce type safe memory allocator bpf_obj_new for BPF programs. The
kernel side kfunc is named bpf_obj_new_impl, as passing hidden arguments
to kfuncs still requires having them in prototype, unlike BPF helpers
which always take 5 arguments and have them checked using bpf_func_proto
in verifier, ignoring unset argument types.
Introduce __ign suffix to ignore a specific kfunc argument during type
checks, then use this to introduce support for passing type metadata to
the bpf_obj_new_impl kfunc.
The user passes BTF ID of the type it wants to allocates in program BTF,
the verifier then rewrites the first argument as the size of this type,
after performing some sanity checks (to ensure it exists and it is a
struct type).
The second argument is also fixed up and passed by the verifier. This is
the btf_struct_meta for the type being allocated. It would be needed
mostly for the offset array which is required for zero initializing
special fields while leaving the rest of storage in unitialized state.
It would also be needed in the next patch to perform proper destruction
of the object's special fields.
Under the hood, bpf_obj_new will call bpf_mem_alloc and bpf_mem_free,
using the any context BPF memory allocator introduced recently. To this
end, a global instance of the BPF memory allocator is initialized on
boot to be used for this purpose. This 'bpf_global_ma' serves all
allocations for bpf_obj_new. In the future, bpf_obj_new variants will
allow specifying a custom allocator.
Note that now that bpf_obj_new can be used to allocate objects that can
be linked to BPF linked list (when future linked list helpers are
available), we need to also free the elements using bpf_mem_free.
However, since the draining of elements is done outside the
bpf_spin_lock, we need to do migrate_disable around the call since
bpf_list_head_free can be called from map free path where migration is
enabled. Otherwise, when called from BPF programs migration is already
disabled.
A convenience macro is included in the bpf_experimental.h header to hide
over the ugly details of the implementation, leading to user code
looking similar to a language level extension which allocates and
constructs fields of a user type.
struct bar {
struct bpf_list_node node;
};
struct foo {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(bar, node);
};
void prog(void) {
struct foo *f;
f = bpf_obj_new(typeof(*f));
if (!f)
return;
...
}
A key piece of this story is still missing, i.e. the free function,
which will come in the next patch.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-14-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Allow passing known constant scalars as arguments to kfuncs that do not
represent a size parameter. We use mark_chain_precision for the constant
scalar argument to mark it precise. This makes the search pruning
optimization of verifier more conservative for such kfunc calls, and
each non-distinct argument is considered unequivalent.
We will use this support to then expose a bpf_obj_new function where it
takes the local type ID of a type in program BTF, and returns a
PTR_TO_BTF_ID | MEM_ALLOC to the local type, and allows programs to
allocate their own objects.
Each type ID resolves to a distinct type with a possibly distinct size,
hence the type ID constant matters in terms of program safety and its
precision needs to be checked between old and cur states inside regsafe.
The use of mark_chain_precision enables this.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-13-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
As we continue to add more features, argument types, kfunc flags, and
different extensions to kfuncs, the code to verify the correctness of
the kfunc prototype wrt the passed in registers has become ad-hoc and
ugly to read. To make life easier, and make a very clear split between
different stages of argument processing, move all the code into
verifier.c and refactor into easier to read helpers and functions.
This also makes sharing code within the verifier easier with kfunc
argument processing. This will be more and more useful in later patches
as we are now moving to implement very core BPF helpers as kfuncs, to
keep them experimental before baking into UAPI.
Remove all kfunc related bits now from btf_check_func_arg_match, as
users have been converted away to refactored kfunc argument handling.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-12-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
There is no need to restrict users from locking bpf_spin_lock in map
values of inner maps. Each inner map lookup gets a unique reg->id
assigned to the returned PTR_TO_MAP_VALUE which will be preserved after
the NULL check. Distinct lookups into different inner map get unique
IDs, and distinct lookups into same inner map also get unique IDs.
Hence, lift the restriction by removing the check return -ENOTSUPP in
map_in_map.c. Later commits will add comprehensive test cases to ensure
that invalid cases are rejected.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-11-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Global variables reside in maps accessible using direct_value_addr
callbacks, so giving each load instruction's rewrite a unique reg->id
disallows us from holding locks which are global.
The reason for preserving reg->id as a unique value for registers that
may point to spin lock is that two separate lookups are treated as two
separate memory regions, and any possible aliasing is ignored for the
purposes of spin lock correctness.
This is not great especially for the global variable case, which are
served from maps that have max_entries == 1, i.e. they always lead to
map values pointing into the same map value.
So refactor the active_spin_lock into a 'active_lock' structure which
represents the lock identity, and instead of the reg->id, remember two
fields, a pointer and the reg->id. The pointer will store reg->map_ptr
or reg->btf. It's only necessary to distinguish for the id == 0 case of
global variables, but always setting the pointer to a non-NULL value and
using the pointer to check whether the lock is held simplifies code in
the verifier.
This is generic enough to allow it for global variables, map lookups,
and allocated objects at the same time.
Note that while whether a lock is held can be answered by just comparing
active_lock.ptr to NULL, to determine whether the register is pointing
to the same held lock requires comparing _both_ ptr and id.
Finally, as a result of this refactoring, pseudo load instructions are
not given a unique reg->id, as they are doing lookup for the same map
value (max_entries is never greater than 1).
Essentially, we consider that the tuple of (ptr, id) will always be
unique for any kind of argument to bpf_spin_{lock,unlock}.
Note that this can be extended in the future to also remember offset
used for locking, so that we can introduce multiple bpf_spin_lock fields
in the same allocation.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-10-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Allow locking a bpf_spin_lock in an allocated object, in addition to
already supported map value pointers. The handling is similar to that of
map values, by just preserving the reg->id of PTR_TO_BTF_ID | MEM_ALLOC
as well, and adjusting process_spin_lock to work with them and remember
the id in verifier state.
Refactor the existing process_spin_lock to work with PTR_TO_BTF_ID |
MEM_ALLOC in addition to PTR_TO_MAP_VALUE. We need to update the
reg_may_point_to_spin_lock which is used in mark_ptr_or_null_reg to
preserve reg->id, that will be used in env->cur_state->active_spin_lock
to remember the currently held spin lock.
Also update the comment describing bpf_spin_lock implementation details
to also talk about PTR_TO_BTF_ID | MEM_ALLOC type.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-9-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Ensure that there can be no ownership cycles among different types by
way of having owning objects that can hold some other type as their
element. For instance, a map value can only hold allocated objects, but
these are allowed to have another bpf_list_head. To prevent unbounded
recursion while freeing resources, elements of bpf_list_head in local
kptrs can never have a bpf_list_head which are part of list in a map
value. Later patches will verify this by having dedicated BTF selftests.
Also, to make runtime destruction easier, once btf_struct_metas is fully
populated, we can stash the metadata of the value type directly in the
metadata of the list_head fields, as that allows easier access to the
value type's layout to destruct it at runtime from the btf_field entry
of the list head itself.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Allow specifying bpf_spin_lock, bpf_list_head, bpf_list_node fields in a
allocated object.
Also update btf_struct_access to reject direct access to these special
fields.
A bpf_list_head allows implementing map-in-map style use cases, where an
allocated object with bpf_list_head is linked into a list in a map
value. This would require embedding a bpf_list_node, support for which
is also included. The bpf_spin_lock is used to protect the bpf_list_head
and other data.
While we strictly don't require to hold a bpf_spin_lock while touching
the bpf_list_head in such objects, as when have access to it, we have
complete ownership of the object, the locking constraint is still kept
and may be conditionally lifted in the future.
Note that the specification of such types can be done just like map
values, e.g.:
struct bar {
struct bpf_list_node node;
};
struct foo {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(bar, node);
struct bpf_list_node node;
};
struct map_value {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(foo, node);
};
To recognize such types in user BTF, we build a btf_struct_metas array
of metadata items corresponding to each BTF ID. This is done once during
the btf_parse stage to avoid having to do it each time during the
verification process's requirement to inspect the metadata.
Moreover, the computed metadata needs to be passed to some helpers in
future patches which requires allocating them and storing them in the
BTF that is pinned by the program itself, so that valid access can be
assumed to such data during program runtime.
A key thing to note is that once a btf_struct_meta is available for a
type, both the btf_record and btf_field_offs should be available. It is
critical that btf_field_offs is available in case special fields are
present, as we extensively rely on special fields being zeroed out in
map values and allocated objects in later patches. The code ensures that
by bailing out in case of errors and ensuring both are available
together. If the record is not available, the special fields won't be
recognized, so not having both is also fine (in terms of being a
verification error and not a runtime bug).
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Introduce support for representing pointers to objects allocated by the
BPF program, i.e. PTR_TO_BTF_ID that point to a type in program BTF.
This is indicated by the presence of MEM_ALLOC type flag in reg->type to
avoid having to check btf_is_kernel when trying to match argument types
in helpers.
Whenever walking such types, any pointers being walked will always yield
a SCALAR instead of pointer. In the future we might permit kptr inside
such allocated objects (either kernel or program allocated), and it will
then form a PTR_TO_BTF_ID of the respective type.
For now, such allocated objects will always be referenced in verifier
context, hence ref_obj_id == 0 for them is a bug. It is allowed to write
to such objects, as long fields that are special are not touched
(support for which will be added in subsequent patches). Note that once
such a pointer is marked PTR_UNTRUSTED, it is no longer allowed to write
to it.
No PROBE_MEM handling is therefore done for loads into this type unless
PTR_UNTRUSTED is part of the register type, since they can never be in
an undefined state, and their lifetime will always be valid.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|