Age | Commit message (Collapse) | Author |
|
Include the timekeeping.h header to get the declaration of the
sched_clock_{suspend,resume} functions. Fixes the following sparse
warnings:
kernel/time/sched_clock.c:275:5: warning: symbol 'sched_clock_suspend' was not declared. Should it be static?
kernel/time/sched_clock.c:286:6: warning: symbol 'sched_clock_resume' was not declared. Should it be static?
Signed-off-by: Ben Dooks (Codethink) <ben.dooks@codethink.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191022131226.11465-1-ben.dooks@codethink.co.uk
|
|
There is one more problematic case I noticed while recently fixing BPF kallsyms
handling in cd7455f1013e ("bpf: Fix use after free in subprog's jited symbol
removal") and that is bpf_get_prog_name().
If BTF has been attached to the prog, then we may be able to fetch the function
signature type id in kallsyms through prog->aux->func_info[prog->aux->func_idx].type_id.
However, while the BTF object itself is torn down via RCU callback, the prog's
aux->func_info is immediately freed via kvfree(prog->aux->func_info) once the
prog's refcount either hit zero or when subprograms were already exposed via
kallsyms and we hit the error path added in 5482e9a93c83 ("bpf: Fix memleak in
aux->func_info and aux->btf").
This violates RCU as well since kallsyms could be walked in parallel where we
could access aux->func_info. Hence, defer kvfree() to after RCU grace period.
Looking at ba64e7d85252 ("bpf: btf: support proper non-jit func info") there
is no reason/dependency where we couldn't defer the kvfree(aux->func_info) into
the RCU callback.
Fixes: 5482e9a93c83 ("bpf: Fix memleak in aux->func_info and aux->btf")
Fixes: ba64e7d85252 ("bpf: btf: support proper non-jit func info")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Cc: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/875f2906a7c1a0691f2d567b4d8e4ea2739b1e88.1571779205.git.daniel@iogearbox.net
|
|
syzkaller managed to trigger the following crash:
[...]
BUG: unable to handle page fault for address: ffffc90001923030
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD aa551067 P4D aa551067 PUD aa552067 PMD a572b067 PTE 80000000a1173163
Oops: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 7982 Comm: syz-executor912 Not tainted 5.4.0-rc3+ #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:bpf_jit_binary_hdr include/linux/filter.h:787 [inline]
RIP: 0010:bpf_get_prog_addr_region kernel/bpf/core.c:531 [inline]
RIP: 0010:bpf_tree_comp kernel/bpf/core.c:600 [inline]
RIP: 0010:__lt_find include/linux/rbtree_latch.h:115 [inline]
RIP: 0010:latch_tree_find include/linux/rbtree_latch.h:208 [inline]
RIP: 0010:bpf_prog_kallsyms_find kernel/bpf/core.c:674 [inline]
RIP: 0010:is_bpf_text_address+0x184/0x3b0 kernel/bpf/core.c:709
[...]
Call Trace:
kernel_text_address kernel/extable.c:147 [inline]
__kernel_text_address+0x9a/0x110 kernel/extable.c:102
unwind_get_return_address+0x4c/0x90 arch/x86/kernel/unwind_frame.c:19
arch_stack_walk+0x98/0xe0 arch/x86/kernel/stacktrace.c:26
stack_trace_save+0xb6/0x150 kernel/stacktrace.c:123
save_stack mm/kasan/common.c:69 [inline]
set_track mm/kasan/common.c:77 [inline]
__kasan_kmalloc+0x11c/0x1b0 mm/kasan/common.c:510
kasan_slab_alloc+0xf/0x20 mm/kasan/common.c:518
slab_post_alloc_hook mm/slab.h:584 [inline]
slab_alloc mm/slab.c:3319 [inline]
kmem_cache_alloc+0x1f5/0x2e0 mm/slab.c:3483
getname_flags+0xba/0x640 fs/namei.c:138
getname+0x19/0x20 fs/namei.c:209
do_sys_open+0x261/0x560 fs/open.c:1091
__do_sys_open fs/open.c:1115 [inline]
__se_sys_open fs/open.c:1110 [inline]
__x64_sys_open+0x87/0x90 fs/open.c:1110
do_syscall_64+0xf7/0x1c0 arch/x86/entry/common.c:290
entry_SYSCALL_64_after_hwframe+0x49/0xbe
[...]
After further debugging it turns out that we walk kallsyms while in parallel
we tear down a BPF program which contains subprograms that have been JITed
though the program itself has not been fully exposed and is eventually bailing
out with error.
The bpf_prog_kallsyms_del_subprogs() in bpf_prog_load()'s error path removes
the symbols, however, bpf_prog_free() tears down the JIT memory too early via
scheduled work. Instead, it needs to properly respect RCU grace period as the
kallsyms walk for BPF is under RCU.
Fix it by refactoring __bpf_prog_put()'s tear down and reuse it in our error
path where we defer final destruction when we have subprogs in the program.
Fixes: 7d1982b4e335 ("bpf: fix panic in prog load calls cleanup")
Fixes: 1c2a088a6626 ("bpf: x64: add JIT support for multi-function programs")
Reported-by: syzbot+710043c5d1d5b5013bc7@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: syzbot+710043c5d1d5b5013bc7@syzkaller.appspotmail.com
Link: https://lore.kernel.org/bpf/55f6367324c2d7e9583fa9ccf5385dcbba0d7a6e.1571752452.git.daniel@iogearbox.net
|
|
Commit:
8a58ddae2379 ("perf/core: Fix exclusive events' grouping")
allows CAP_EXCLUSIVE events to be grouped with other events. Since all
of those also happen to be AUX events (which is not the case the other
way around, because arch/s390), this changes the rules for stopping the
output: the AUX event may not be on its PMU's context any more, if it's
grouped with a HW event, in which case it will be on that HW event's
context instead. If that's the case, munmap() of the AUX buffer can't
find and stop the AUX event, potentially leaving the last reference with
the atomic context, which will then end up freeing the AUX buffer. This
will then trip warnings:
Fix this by using the context's PMU context when looking for events
to stop, instead of the event's PMU context.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20191022073940.61814-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
A race condition exists while initialiazing perf_trace_buf from
perf_trace_init() and perf_kprobe_init().
CPU0 CPU1
perf_trace_init()
mutex_lock(&event_mutex)
perf_trace_event_init()
perf_trace_event_reg()
total_ref_count == 0
buf = alloc_percpu()
perf_trace_buf[i] = buf
tp_event->class->reg() //fails perf_kprobe_init()
goto fail perf_trace_event_init()
perf_trace_event_reg()
fail:
total_ref_count == 0
total_ref_count == 0
buf = alloc_percpu()
perf_trace_buf[i] = buf
tp_event->class->reg()
total_ref_count++
free_percpu(perf_trace_buf[i])
perf_trace_buf[i] = NULL
Any subsequent call to perf_trace_event_reg() will observe total_ref_count > 0,
causing the perf_trace_buf to be always NULL. This can result in perf_trace_buf
getting accessed from perf_trace_buf_alloc() without being initialized. Acquiring
event_mutex in perf_kprobe_init() before calling perf_trace_event_init() should
fix this race.
The race caused the following bug:
Unable to handle kernel paging request at virtual address 0000003106f2003c
Mem abort info:
ESR = 0x96000045
Exception class = DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000045
CM = 0, WnR = 1
user pgtable: 4k pages, 39-bit VAs, pgdp = ffffffc034b9b000
[0000003106f2003c] pgd=0000000000000000, pud=0000000000000000
Internal error: Oops: 96000045 [#1] PREEMPT SMP
Process syz-executor (pid: 18393, stack limit = 0xffffffc093190000)
pstate: 80400005 (Nzcv daif +PAN -UAO)
pc : __memset+0x20/0x1ac
lr : memset+0x3c/0x50
sp : ffffffc09319fc50
__memset+0x20/0x1ac
perf_trace_buf_alloc+0x140/0x1a0
perf_trace_sys_enter+0x158/0x310
syscall_trace_enter+0x348/0x7c0
el0_svc_common+0x11c/0x368
el0_svc_handler+0x12c/0x198
el0_svc+0x8/0xc
Ramdumps showed the following:
total_ref_count = 3
perf_trace_buf = (
0x0 -> NULL,
0x0 -> NULL,
0x0 -> NULL,
0x0 -> NULL)
Link: http://lkml.kernel.org/r/1571120245-4186-1-git-send-email-prsood@codeaurora.org
Cc: stable@vger.kernel.org
Fixes: e12f03d7031a9 ("perf/core: Implement the 'perf_kprobe' PMU")
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Prateek Sood <prsood@codeaurora.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
It seems I forgot to add handling of devmap_hash type maps to the device
unregister hook for devmaps. This omission causes devices to not be
properly released, which causes hangs.
Fix this by adding the missing handler.
Fixes: 6f9d451ab1a3 ("xdp: Add devmap_hash map type for looking up devices by hashed index")
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191019111931.2981954-1-toke@redhat.com
|
|
Reset all signal handlers of the child not set to SIG_IGN to SIG_DFL.
Mutually exclusive with CLONE_SIGHAND to not disturb other thread's
signal handler.
In the spirit of closer cooperation between glibc developers and kernel
developers (cf. [2]) this patchset came out of a discussion on the glibc
mailing list for improving posix_spawn() (cf. [1], [3], [4]). Kernel
support for this feature has been explicitly requested by glibc and I
see no reason not to help them with this.
The child helper process on Linux posix_spawn must ensure that no signal
handlers are enabled, so the signal disposition must be either SIG_DFL
or SIG_IGN. However, it requires a sigprocmask to obtain the current
signal mask and at least _NSIG sigaction calls to reset the signal
handlers for each posix_spawn call or complex state tracking that might
lead to data corruption in glibc. Adding this flags lets glibc avoid
these problems.
[1]: https://www.sourceware.org/ml/libc-alpha/2019-10/msg00149.html
[3]: https://www.sourceware.org/ml/libc-alpha/2019-10/msg00158.html
[4]: https://www.sourceware.org/ml/libc-alpha/2019-10/msg00160.html
[2]: https://lwn.net/Articles/799331/
'[...] by asking for better cooperation with the C-library projects
in general. They should be copied on patches containing ABI
changes, for example. I noted that there are often times where
C-library developers wish the kernel community had done things
differently; how could those be avoided in the future? Members of
the audience suggested that more glibc developers should perhaps
join the linux-api list. The other suggestion was to "copy Florian
on everything".'
Cc: Florian Weimer <fweimer@redhat.com>
Cc: libc-alpha@sourceware.org
Cc: linux-api@vger.kernel.org
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20191014104538.3096-1-christian.brauner@ubuntu.com
|
|
The following commit from the v5.4 merge window:
d44248a41337 ("perf/core: Rework memory accounting in perf_mmap()")
... breaks auxiliary trace buffer tracking.
If I run command 'perf record -e rbd000' to record samples and saving
them in the **auxiliary** trace buffer then the value of 'locked_vm' becomes
negative after all trace buffers have been allocated and released:
During allocation the values increase:
[52.250027] perf_mmap user->locked_vm:0x87 pinned_vm:0x0 ret:0
[52.250115] perf_mmap user->locked_vm:0x107 pinned_vm:0x0 ret:0
[52.250251] perf_mmap user->locked_vm:0x188 pinned_vm:0x0 ret:0
[52.250326] perf_mmap user->locked_vm:0x208 pinned_vm:0x0 ret:0
[52.250441] perf_mmap user->locked_vm:0x289 pinned_vm:0x0 ret:0
[52.250498] perf_mmap user->locked_vm:0x309 pinned_vm:0x0 ret:0
[52.250613] perf_mmap user->locked_vm:0x38a pinned_vm:0x0 ret:0
[52.250715] perf_mmap user->locked_vm:0x408 pinned_vm:0x2 ret:0
[52.250834] perf_mmap user->locked_vm:0x408 pinned_vm:0x83 ret:0
[52.250915] perf_mmap user->locked_vm:0x408 pinned_vm:0x103 ret:0
[52.251061] perf_mmap user->locked_vm:0x408 pinned_vm:0x184 ret:0
[52.251146] perf_mmap user->locked_vm:0x408 pinned_vm:0x204 ret:0
[52.251299] perf_mmap user->locked_vm:0x408 pinned_vm:0x285 ret:0
[52.251383] perf_mmap user->locked_vm:0x408 pinned_vm:0x305 ret:0
[52.251544] perf_mmap user->locked_vm:0x408 pinned_vm:0x386 ret:0
[52.251634] perf_mmap user->locked_vm:0x408 pinned_vm:0x406 ret:0
[52.253018] perf_mmap user->locked_vm:0x408 pinned_vm:0x487 ret:0
[52.253197] perf_mmap user->locked_vm:0x408 pinned_vm:0x508 ret:0
[52.253374] perf_mmap user->locked_vm:0x408 pinned_vm:0x589 ret:0
[52.253550] perf_mmap user->locked_vm:0x408 pinned_vm:0x60a ret:0
[52.253726] perf_mmap user->locked_vm:0x408 pinned_vm:0x68b ret:0
[52.253903] perf_mmap user->locked_vm:0x408 pinned_vm:0x70c ret:0
[52.254084] perf_mmap user->locked_vm:0x408 pinned_vm:0x78d ret:0
[52.254263] perf_mmap user->locked_vm:0x408 pinned_vm:0x80e ret:0
The value of user->locked_vm increases to a limit then the memory
is tracked by pinned_vm.
During deallocation the size is subtracted from pinned_vm until
it hits a limit. Then a larger value is subtracted from locked_vm
leading to a large number (because of type unsigned):
[64.267797] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x78d
[64.267826] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x70c
[64.267848] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x68b
[64.267869] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x60a
[64.267891] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x589
[64.267911] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x508
[64.267933] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x487
[64.267952] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x406
[64.268883] perf_mmap_close mmap_user->locked_vm:0x307 pinned_vm:0x406
[64.269117] perf_mmap_close mmap_user->locked_vm:0x206 pinned_vm:0x406
[64.269433] perf_mmap_close mmap_user->locked_vm:0x105 pinned_vm:0x406
[64.269536] perf_mmap_close mmap_user->locked_vm:0x4 pinned_vm:0x404
[64.269797] perf_mmap_close mmap_user->locked_vm:0xffffffffffffff84 pinned_vm:0x303
[64.270105] perf_mmap_close mmap_user->locked_vm:0xffffffffffffff04 pinned_vm:0x202
[64.270374] perf_mmap_close mmap_user->locked_vm:0xfffffffffffffe84 pinned_vm:0x101
[64.270628] perf_mmap_close mmap_user->locked_vm:0xfffffffffffffe04 pinned_vm:0x0
This value sticks for the user until system is rebooted, causing
follow-on system calls using locked_vm resource limit to fail.
Note: There is no issue using the normal trace buffer.
In fact the issue is in perf_mmap_close(). During allocation auxiliary
trace buffer memory is either traced as 'extra' and added to 'pinned_vm'
or trace as 'user_extra' and added to 'locked_vm'. This applies for
normal trace buffers and auxiliary trace buffer.
However in function perf_mmap_close() all auxiliary trace buffer is
subtraced from 'locked_vm' and never from 'pinned_vm'. This breaks the
ballance.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: gor@linux.ibm.com
Cc: hechaol@fb.com
Cc: heiko.carstens@de.ibm.com
Cc: linux-perf-users@vger.kernel.org
Cc: songliubraving@fb.com
Fixes: d44248a41337 ("perf/core: Rework memory accounting in perf_mmap()")
Link: https://lkml.kernel.org/r/20191021083354.67868-1-tmricht@linux.ibm.com
[ Minor readability edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The slow wake up path computes per sched_group statisics to select the
idlest group, which is quite similar to what load_balance() is doing
for selecting busiest group. Rework find_idlest_group() to classify the
sched_group and select the idlest one following the same steps as
load_balance().
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-12-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
find_idlest_group() now reads CPU's load_avg in two different ways.
Consolidate the function to read and use load_avg only once and simplify
the algorithm to only look for the group with lowest load_avg.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-11-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Runnable load was originally introduced to take into account the case where
blocked load biases the wake up path which may end to select an overloaded
CPU with a large number of runnable tasks instead of an underutilized
CPU with a huge blocked load.
Tha wake up path now starts looking for idle CPUs before comparing
runnable load and it's worth aligning the wake up path with the
load_balance() logic.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-10-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Utilization is used to detect a misfit task but the load is then used to
select the task on the CPU which can lead to select a small task with
high weight instead of the task that triggered the misfit migration.
Check that task can't fit the CPU's capacity when selecting the misfit
task instead of using the load.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Link: https://lkml.kernel.org/r/1571405198-27570-9-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When there is only one CPU per group, using the idle CPUs to evenly spread
tasks doesn't make sense and nr_running is a better metrics.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-8-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
'runnable load' was originally introduced to take into account the case
where blocked load biases the load balance decision which was selecting
underutilized groups with huge blocked load whereas other groups were
overloaded.
The load is now only used when groups are overloaded. In this case,
it's worth being conservative and taking into account the sleeping
tasks that might wake up on the CPU.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-7-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
CFS load_balance() only takes care of CFS tasks whereas CPUs can be used by
other scheduling classes. Typically, a CFS task preempted by an RT or deadline
task will not get a chance to be pulled by another CPU because
load_balance() doesn't take into account tasks from other classes.
Add sum of nr_running in the statistics and use it to detect such
situations.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-6-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The load_balance() algorithm contains some heuristics which have become
meaningless since the rework of the scheduler's metrics like the
introduction of PELT.
Furthermore, load is an ill-suited metric for solving certain task
placement imbalance scenarios.
For instance, in the presence of idle CPUs, we should simply try to get at
least one task per CPU, whereas the current load-based algorithm can actually
leave idle CPUs alone simply because the load is somewhat balanced.
The current algorithm ends up creating virtual and meaningless values like
the avg_load_per_task or tweaks the state of a group to make it overloaded
whereas it's not, in order to try to migrate tasks.
load_balance() should better qualify the imbalance of the group and clearly
define what has to be moved to fix this imbalance.
The type of sched_group has been extended to better reflect the type of
imbalance. We now have:
group_has_spare
group_fully_busy
group_misfit_task
group_asym_packing
group_imbalanced
group_overloaded
Based on the type of sched_group, load_balance now sets what it wants to
move in order to fix the imbalance. It can be some load as before but also
some utilization, a number of task or a type of task:
migrate_task
migrate_util
migrate_load
migrate_misfit
This new load_balance() algorithm fixes several pending wrong tasks
placement:
- the 1 task per CPU case with asymmetric system
- the case of cfs task preempted by other class
- the case of tasks not evenly spread on groups with spare capacity
Also the load balance decisions have been consolidated in the 3 functions
below after removing the few bypasses and hacks of the current code:
- update_sd_pick_busiest() select the busiest sched_group.
- find_busiest_group() checks if there is an imbalance between local and
busiest group.
- calculate_imbalance() decides what have to be moved.
Finally, the now unused field total_running of struct sd_lb_stats has been
removed.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: riel@surriel.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-5-git-send-email-vincent.guittot@linaro.org
[ Small readability and spelling updates. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Clean up load_balance() and remove meaningless calculation and fields before
adding a new algorithm.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-4-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Rename sum_nr_running to sum_h_nr_running because it effectively tracks
cfs->h_nr_running so we can use sum_nr_running to track rq->nr_running
when needed.
There are no functional changes.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: srikar@linux.vnet.ibm.com
Link: https://lkml.kernel.org/r/1571405198-27570-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Clean up asym packing to follow the default load balance behavior:
- classify the group by creating a group_asym_packing field.
- calculate the imbalance in calculate_imbalance() instead of bypassing it.
We don't need to test twice same conditions anymore to detect asym packing
and we consolidate the calculation of imbalance in calculate_imbalance().
There is no functional changes.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hdanton@sina.com
Cc: parth@linux.ibm.com
Cc: pauld@redhat.com
Cc: quentin.perret@arm.com
Cc: srikar@linux.vnet.ibm.com
Cc: valentin.schneider@arm.com
Link: https://lkml.kernel.org/r/1571405198-27570-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Introduce frequency QoS, based on the "raw" low-level PM QoS, to
represent min and max frequency requests and aggregate constraints.
The min and max frequency requests are to be represented by
struct freq_qos_request objects and the aggregate constraints are to
be represented by struct freq_constraints objects. The latter are
expected to be initialized with the help of freq_constraints_init().
The freq_qos_read_value() helper is defined to retrieve the aggregate
constraints values from a given struct freq_constraints object and
there are the freq_qos_add_request(), freq_qos_update_request() and
freq_qos_remove_request() helpers to manipulate the min and max
frequency requests. It is assumed that the the helpers will not
run concurrently with each other for the same struct freq_qos_request
object, so if that may be the case, their uses must ensure proper
synchronization between them (e.g. through locking).
In addition, freq_qos_add_notifier() and freq_qos_remove_notifier()
are provided to add and remove notifiers that will trigger on aggregate
constraint changes to and from a given struct freq_constraints object,
respectively.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
|
|
When looking for a bit by number we make use of the cached result from the
preceding lookup to speed up operation. Firstly we check if the requested
pfn is within the cached zone and if not lookup the new zone. We then
check if the offset for that pfn falls within the existing cached node.
This happens regardless of whether the node is within the zone we are
now scanning. With certain memory layouts it is possible for this to
false trigger creating a temporary alias for the pfn to a different bit.
This leads the hibernation code to free memory which it was never allocated
with the expected fallout.
Ensure the zone we are scanning matches the cached zone before considering
the cached node.
Deep thanks go to Andrea for many, many, many hours of hacking and testing
that went into cornering this bug.
Reported-by: Andrea Righi <andrea.righi@canonical.com>
Tested-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Andy Whitcroft <apw@canonical.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Several cases of overlapping changes which were for the most
part trivially resolvable.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull more Kbuild fixes from Masahiro Yamada:
- fix a bashism of setlocalversion
- do not use the too new --sort option of tar
* tag 'kbuild-fixes-v5.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
kheaders: substituting --sort in archive creation
scripts: setlocalversion: fix a bashism
kbuild: update comment about KBUILD_ALLDIRS
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull hrtimer fixlet from Thomas Gleixner:
"A single commit annotating the lockcless access to timer->base with
READ_ONCE() and adding the WRITE_ONCE() counterparts for completeness"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
hrtimer: Annotate lockless access to timer->base
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull stop-machine fix from Thomas Gleixner:
"A single fix, amending stop machine with WRITE/READ_ONCE() to address
the fallout of KCSAN"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
stop_machine: Avoid potential race behaviour
|
|
Attaching uprobe to text section in THP splits the PMD mapped page table
into PTE mapped entries. On uprobe detach, we would like to regroup PMD
mapped page table entry to regain performance benefit of THP.
However, the regroup is broken For perf_event based trace_uprobe. This
is because perf_event based trace_uprobe calls uprobe_unregister twice
on close: first in TRACE_REG_PERF_CLOSE, then in
TRACE_REG_PERF_UNREGISTER. The second call will split the PMD mapped
page table entry, which is not the desired behavior.
Fix this by only use FOLL_SPLIT_PMD for uprobe register case.
Add a WARN() to confirm uprobe unregister never work on huge pages, and
abort the operation when this WARN() triggers.
Link: http://lkml.kernel.org/r/20191017164223.2762148-6-songliubraving@fb.com
Fixes: 5a52c9df62b4 ("uprobe: use FOLL_SPLIT_PMD instead of FOLL_SPLIT")
Signed-off-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Tetsuo pointed out that without an explicit cast, the cost calculation for
devmap_hash type maps could overflow on 32-bit builds. This adds the
missing cast.
Fixes: 6f9d451ab1a3 ("xdp: Add devmap_hash map type for looking up devices by hashed index")
Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20191017105702.2807093-1-toke@redhat.com
|
|
If CONFIG_NET is n, building fails:
kernel/trace/bpf_trace.o: In function `raw_tp_prog_func_proto':
bpf_trace.c:(.text+0x1a34): undefined reference to `bpf_skb_output_proto'
Wrap it into a #ifdef to fix this.
Fixes: a7658e1a4164 ("bpf: Check types of arguments passed into helpers")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20191018090344.26936-1-yuehaibing@huawei.com
|
|
Only raw_tracepoint program type can have bpf_attr.attach_btf_id >= 0.
Make sure to reject other program types that accidentally set it to non-zero.
Fixes: ccfe29eb29c2 ("bpf: Add attach_btf_id attribute to program load")
Reported-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20191018060933.2950231-1-ast@kernel.org
|
|
In the format of synthetic events, the "gfp_t" is shown as "signed:1",
but in fact the "gfp_t" is "unsigned", should be shown as "signed:0".
The issue can be reproduced by the following commands:
echo 'memlatency u64 lat; unsigned int order; gfp_t gfp_flags; int migratetype' > /sys/kernel/debug/tracing/synthetic_events
cat /sys/kernel/debug/tracing/events/synthetic/memlatency/format
name: memlatency
ID: 2233
format:
field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:u64 lat; offset:8; size:8; signed:0;
field:unsigned int order; offset:16; size:4; signed:0;
field:gfp_t gfp_flags; offset:24; size:4; signed:1;
field:int migratetype; offset:32; size:4; signed:1;
print fmt: "lat=%llu, order=%u, gfp_flags=%x, migratetype=%d", REC->lat, REC->order, REC->gfp_flags, REC->migratetype
Link: http://lkml.kernel.org/r/20191018012034.6404-1-zhengjun.xing@linux.intel.com
Reviewed-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Zhengjun Xing <zhengjun.xing@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management fixes from Rafael Wysocki:
"These include a fix for a recent regression in the ACPI CPU
performance scaling code, a PCI device power management fix,
a system shutdown fix related to cpufreq, a removal of an ACPI
suspend-to-idle blacklist entry and a build warning fix.
Specifics:
- Fix possible NULL pointer dereference in the ACPI processor scaling
initialization code introduced by a recent cpufreq update (Rafael
Wysocki).
- Fix possible deadlock due to suspending cpufreq too late during
system shutdown (Rafael Wysocki).
- Make the PCI device system resume code path be more consistent with
its PM-runtime counterpart to fix an issue with missing delay on
transitions from D3cold to D0 during system resume from
suspend-to-idle on some systems (Rafael Wysocki).
- Drop Dell XPS13 9360 from the LPS0 Idle _DSM blacklist to make it
use suspend-to-idle by default (Mario Limonciello).
- Fix build warning in the core system suspend support code (Ben
Dooks)"
* tag 'pm-5.4-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
ACPI: processor: Avoid NULL pointer dereferences at init time
PCI: PM: Fix pci_power_up()
PM: sleep: include <linux/pm_runtime.h> for pm_wq
cpufreq: Avoid cpufreq_suspend() deadlock on system shutdown
ACPI: PM: Drop Dell XPS13 9360 from LPS0 Idle _DSM blacklist
|
|
As said in commit f2c2cbcc35d4 ("powerpc: Use pr_warn instead of
pr_warning"), removing pr_warning so all logging messages use a
consistent <prefix>_warn style. Let's do it.
Link: http://lkml.kernel.org/r/20191018031850.48498-26-wangkefeng.wang@huawei.com
To: linux-kernel@vger.kernel.org
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
|
|
As said in commit f2c2cbcc35d4 ("powerpc: Use pr_warn instead of
pr_warning"), removing pr_warning so all logging messages use a
consistent <prefix>_warn style. Let's do it.
Link: http://lkml.kernel.org/r/20191018031850.48498-25-wangkefeng.wang@huawei.com
To: linux-kernel@vger.kernel.org
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
|
|
* pm-cpufreq:
ACPI: processor: Avoid NULL pointer dereferences at init time
cpufreq: Avoid cpufreq_suspend() deadlock on system shutdown
* pm-sleep:
PM: sleep: include <linux/pm_runtime.h> for pm_wq
ACPI: PM: Drop Dell XPS13 9360 from LPS0 Idle _DSM blacklist
|
|
Currently perf_mmap_alloc_page() is used to allocate memory in
rb_alloc(), but using free_page() to free memory in the failure path.
It's better to use perf_mmap_free_page() instead.
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <jolsa@redhat.co>
Cc: <acme@kernel.org>
Cc: <mingo@redhat.com>
Cc: <mark.rutland@arm.com>
Cc: <namhyung@kernel.org>
Cc: <alexander.shishkin@linux.intel.com>
Link: https://lkml.kernel.org/r/575c7e8c-90c7-4e3a-b41d-f894d8cdbd7f@huawei.com
|
|
In perf_mmap_free_page(), the unsigned long type is converted to the
pointer type, but where the call is made, the pointer type is converted
to the unsigned long type. There is no need to do these operations.
Modify the parameter type of perf_mmap_free_page() to pointer type.
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <jolsa@redhat.co>
Cc: <acme@kernel.org>
Cc: <mingo@redhat.com>
Cc: <mark.rutland@arm.com>
Cc: <namhyung@kernel.org>
Cc: <alexander.shishkin@linux.intel.com>
Link: https://lkml.kernel.org/r/e6ae3f0c-d04c-50f9-544a-aee3b30330cd@huawei.com
|
|
In current mainline, the degree of access to perf_event_open(2) system
call depends on the perf_event_paranoid sysctl. This has a number of
limitations:
1. The sysctl is only a single value. Many types of accesses are controlled
based on the single value thus making the control very limited and
coarse grained.
2. The sysctl is global, so if the sysctl is changed, then that means
all processes get access to perf_event_open(2) opening the door to
security issues.
This patch adds LSM and SELinux access checking which will be used in
Android to access perf_event_open(2) for the purposes of attaching BPF
programs to tracepoints, perf profiling and other operations from
userspace. These operations are intended for production systems.
5 new LSM hooks are added:
1. perf_event_open: This controls access during the perf_event_open(2)
syscall itself. The hook is called from all the places that the
perf_event_paranoid sysctl is checked to keep it consistent with the
systctl. The hook gets passed a 'type' argument which controls CPU,
kernel and tracepoint accesses (in this context, CPU, kernel and
tracepoint have the same semantics as the perf_event_paranoid sysctl).
Additionally, I added an 'open' type which is similar to
perf_event_paranoid sysctl == 3 patch carried in Android and several other
distros but was rejected in mainline [1] in 2016.
2. perf_event_alloc: This allocates a new security object for the event
which stores the current SID within the event. It will be useful when
the perf event's FD is passed through IPC to another process which may
try to read the FD. Appropriate security checks will limit access.
3. perf_event_free: Called when the event is closed.
4. perf_event_read: Called from the read(2) and mmap(2) syscalls for the event.
5. perf_event_write: Called from the ioctl(2) syscalls for the event.
[1] https://lwn.net/Articles/696240/
Since Peter had suggest LSM hooks in 2016 [1], I am adding his
Suggested-by tag below.
To use this patch, we set the perf_event_paranoid sysctl to -1 and then
apply selinux checking as appropriate (default deny everything, and then
add policy rules to give access to domains that need it). In the future
we can remove the perf_event_paranoid sysctl altogether.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Co-developed-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: James Morris <jmorris@namei.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: rostedt@goodmis.org
Cc: Yonghong Song <yhs@fb.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: jeffv@google.com
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: primiano@google.com
Cc: Song Liu <songliubraving@fb.com>
Cc: rsavitski@google.com
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Matthew Garrett <matthewgarrett@google.com>
Link: https://lkml.kernel.org/r/20191014170308.70668-1-joel@joelfernandes.org
|
|
As pointed out in commit
182a85f8a119 ("sched: Disable wakeup balancing")
SD_BALANCE_WAKE is a tad too aggressive, and is usually left unset.
However, it turns out cpuset domain relaxation will unconditionally set it
on domains below the relaxation level. This made sense back when
SD_BALANCE_WAKE was set unconditionally, but it no longer is the case.
We can improve things slightly by noticing that set_domain_attribute() is
always called after sd_init(), so rather than setting flags we can rely on
whatever sd_init() is doing and only clear certain flags when above the
relaxation level.
While at it, slightly clean up the function and flip the relax level
check to be more human readable.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mingo@kernel.org
Cc: vincent.guittot@linaro.org
Cc: juri.lelli@redhat.com
Cc: seto.hidetoshi@jp.fujitsu.com
Cc: qperret@google.com
Cc: Dietmar.Eggemann@arm.com
Cc: morten.rasmussen@arm.com
Link: https://lkml.kernel.org/r/20191014164408.32596-1-valentin.schneider@arm.com
|
|
Introduce new helper that reuses existing skb perf_event output
implementation, but can be called from raw_tracepoint programs
that receive 'struct sk_buff *' as tracepoint argument or
can walk other kernel data structures to skb pointer.
In order to do that teach verifier to resolve true C types
of bpf helpers into in-kernel BTF ids.
The type of kernel pointer passed by raw tracepoint into bpf
program will be tracked by the verifier all the way until
it's passed into helper function.
For example:
kfree_skb() kernel function calls trace_kfree_skb(skb, loc);
bpf programs receives that skb pointer and may eventually
pass it into bpf_skb_output() bpf helper which in-kernel is
implemented via bpf_skb_event_output() kernel function.
Its first argument in the kernel is 'struct sk_buff *'.
The verifier makes sure that types match all the way.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-11-ast@kernel.org
|
|
Pointer to BTF object is a pointer to kernel object or NULL.
Such pointers can only be used by BPF_LDX instructions.
The verifier changed their opcode from LDX|MEM|size
to LDX|PROBE_MEM|size to make JITing easier.
The number of entries in extable is the number of BPF_LDX insns
that access kernel memory via "pointer to BTF type".
Only these load instructions can fault.
Since x86 extable is relative it has to be allocated in the same
memory region as JITed code.
Allocate it prior to last pass of JITing and let the last pass populate it.
Pointer to extable in bpf_prog_aux is necessary to make page fault
handling fast.
Page fault handling is done in two steps:
1. bpf_prog_kallsyms_find() finds BPF program that page faulted.
It's done by walking rb tree.
2. then extable for given bpf program is binary searched.
This process is similar to how page faulting is done for kernel modules.
The exception handler skips over faulting x86 instruction and
initializes destination register with zero. This mimics exact
behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed).
JITs for other architectures can add support in similar way.
Until then they will reject unknown opcode and fallback to interpreter.
Since extable should be aligned and placed near JITed code
make bpf_jit_binary_alloc() return 4 byte aligned image offset,
so that extable aligning formula in bpf_int_jit_compile() doesn't need
to rely on internal implementation of bpf_jit_binary_alloc().
On x86 gcc defaults to 16-byte alignment for regular kernel functions
due to better performance. JITed code may be aligned to 16 in the future,
but it will use 4 in the meantime.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
|
|
Pointer to BTF object is a pointer to kernel object or NULL.
The memory access in the interpreter has to be done via probe_kernel_read
to avoid page faults.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-9-ast@kernel.org
|
|
BTF type id specified at program load time has all
necessary information to attach that program to raw tracepoint.
Use kernel type name to find raw tracepoint.
Add missing CHECK_ATTR() condition.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-8-ast@kernel.org
|
|
libbpf analyzes bpf C program, searches in-kernel BTF for given type name
and stores it into expected_attach_type.
The kernel verifier expects this btf_id to point to something like:
typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc);
which represents signature of raw_tracepoint "kfree_skb".
Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb'
and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint.
In first case it passes btf_id of 'struct sk_buff *' back to the verifier core
and 'void *' in second case.
Then the verifier tracks PTR_TO_BTF_ID as any other pointer type.
Like PTR_TO_SOCKET points to 'struct bpf_sock',
PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on.
PTR_TO_BTF_ID points to in-kernel structs.
If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF
then PTR_TO_BTF_ID#1234 points to one of in kernel skbs.
When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32)
the btf_struct_access() checks which field of 'struct sk_buff' is
at offset 32. Checks that size of access matches type definition
of the field and continues to track the dereferenced type.
If that field was a pointer to 'struct net_device' the r2's type
will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device'
in vmlinux's BTF.
Such verifier analysis prevents "cheating" in BPF C program.
The program cannot cast arbitrary pointer to 'struct sk_buff *'
and access it. C compiler would allow type cast, of course,
but the verifier will notice type mismatch based on BPF assembly
and in-kernel BTF.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
|
|
Add attach_btf_id attribute to prog_load command.
It's similar to existing expected_attach_type attribute which is
used in several cgroup based program types.
Unfortunately expected_attach_type is ignored for
tracing programs and cannot be reused for new purpose.
Hence introduce attach_btf_id to verify bpf programs against
given in-kernel BTF type id at load time.
It is strictly checked to be valid for raw_tp programs only.
In a later patches it will become:
btf_id == 0 semantics of existing raw_tp progs.
btd_id > 0 raw_tp with BTF and additional type safety.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-5-ast@kernel.org
|
|
If in-kernel BTF exists parse it and prepare 'struct btf *btf_vmlinux'
for further use by the verifier.
In-kernel BTF is trusted just like kallsyms and other build artifacts
embedded into vmlinux.
Yet run this BTF image through BTF verifier to make sure
that it is valid and it wasn't mangled during the build.
If in-kernel BTF is incorrect it means either gcc or pahole or kernel
are buggy. In such case disallow loading BPF programs.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-4-ast@kernel.org
|
|
Use the new pid_has_task() helper in pidfd_open(). This simplifies the
code and avoids taking rcu_read_{lock,unlock}() and leads to overall
nicer code.
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20191017101832.5985-5-christian.brauner@ubuntu.com
|
|
Replace hlist_empty() with the new pid_has_task() helper which is more
idiomatic, easier to grep for, and unifies how callers perform this check.
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20191017101832.5985-4-christian.brauner@ubuntu.com
|
|
Replace hlist_empty() with the new pid_has_task() helper which is more
idiomatic, easier to grep for, and unifies how callers perform this
check.
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20191017101832.5985-3-christian.brauner@ubuntu.com
|
|
Currently, when a task is dead we still print the pid it used to use in
the fdinfo files of its pidfds. This doesn't make much sense since the
pid may have already been reused. So verify that the task is still alive
by introducing the pid_has_task() helper which will be used by other
callers in follow-up patches.
If the task is not alive anymore, we will print -1. This allows us to
differentiate between a task not being present in a given pid namespace
- in which case we already print 0 - and a task having been reaped.
Note that this uses PIDTYPE_PID for the check. Technically, we could've
checked PIDTYPE_TGID since pidfds currently only refer to thread-group
leaders but if they won't anymore in the future then this check becomes
problematic without it being immediately obvious to non-experts imho. If
a thread is created via clone(CLONE_THREAD) than struct pid has a single
non-empty list pid->tasks[PIDTYPE_PID] and this pid can't be used as a
PIDTYPE_TGID meaning pid->tasks[PIDTYPE_TGID] will return NULL even
though the thread-group leader might still be very much alive. So
checking PIDTYPE_PID is fine and is easier to maintain should we ever
allow pidfds to refer to threads.
Cc: Jann Horn <jannh@google.com>
Cc: Christian Kellner <christian@kellner.me>
Cc: linux-api@vger.kernel.org
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20191017101832.5985-1-christian.brauner@ubuntu.com
|