Age | Commit message (Collapse) | Author |
|
This enum was added and used in commit aa3496accc41 ("bpf: Refactor kptr_off_tab
into btf_record"). Later refactoring in commit db559117828d ("bpf: Consolidate
spin_lock, timer management into btf_record") resulted in the enum
values no longer being used anywhere.
Let's remove them.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230309180111.1618459-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
kernel_type_name was introduced in commit 9e15db66136a ("bpf: Implement accurate raw_tp context access via BTF")
with type signature:
const char *kernel_type_name(u32 id)
At that time the function used global btf_vmlinux BTF for all id lookups. Later,
in commit 22dc4a0f5ed1 ("bpf: Remove hard-coded btf_vmlinux assumption from BPF verifier"),
the type signature was changed to:
static const char *kernel_type_name(const struct btf* btf, u32 id)
With the btf parameter used for lookups instead of global btf_vmlinux.
The helper will function as expected for type name lookup using non-kernel BTFs,
and will be used for such in further patches in the series. Let's rename it to
avoid incorrect assumptions that might arise when seeing the current name.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230309180111.1618459-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This patch refactors local_storage freeing logic into
bpf_local_storage_free(). It is a preparation work for a later
patch that uses bpf_mem_cache_alloc/free. The other kfree(local_storage)
cases are also changed to bpf_local_storage_free(..., reuse_now = true).
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230308065936.1550103-12-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The existing bpf_local_storage_free_rcu is renamed to
bpf_local_storage_free_trace_rcu. A new bpf_local_storage_rcu
callback is added to do the kfree instead of using kfree_rcu.
It is a preparation work for a later patch using
bpf_mem_cache_alloc/free.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230308065936.1550103-11-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This patch refactors the selem freeing logic into bpf_selem_free().
It is a preparation work for a later patch using
bpf_mem_cache_alloc/free. The other kfree(selem) cases
are also changed to bpf_selem_free(..., reuse_now = true).
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230308065936.1550103-10-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add bpf_selem_free_rcu() callback to do the kfree() instead
of using kfree_rcu. It is a preparation work for using
bpf_mem_cache_alloc/free in a later patch.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230308065936.1550103-9-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This patch removes the bpf_selem_free_fields*_rcu. The
bpf_obj_free_fields() can be done before the call_rcu_trasks_trace()
and kfree_rcu(). It is needed when a later patch uses
bpf_mem_cache_alloc/free. In bpf hashtab, bpf_obj_free_fields()
is also called before calling bpf_mem_cache_free. The discussion
can be found in
https://lore.kernel.org/bpf/f67021ee-21d9-bfae-6134-4ca542fab843@linux.dev/
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230308065936.1550103-8-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This patch re-purpose the use_trace_rcu to mean
if the freed memory can be reused immediately or not.
The use_trace_rcu is renamed to reuse_now. Other than
the boolean test is reversed, it should be a no-op.
The following explains the reason for the rename and how it will
be used in a later patch.
In a later patch, bpf_mem_cache_alloc/free will be used
in the bpf_local_storage. The bpf mem allocator will reuse
the freed memory immediately. Some of the free paths in
bpf_local_storage does not support memory to be reused immediately.
These paths are the "delete" elem cases from the bpf_*_storage_delete()
helper and the map_delete_elem() syscall. Note that "delete" elem
before the owner's (sk/task/cgrp/inode) lifetime ended is not
the common usage for the local storage.
The common free path, bpf_local_storage_destroy(), can reuse the
memory immediately. This common path means the storage stays with
its owner until the owner is destroyed.
The above mentioned "delete" elem paths that cannot
reuse immediately always has the 'use_trace_rcu == true'.
The cases that is safe for immediate reuse always have
'use_trace_rcu == false'. Instead of adding another arg
in a later patch, this patch re-purpose this arg
to reuse_now and have the test logic reversed.
In a later patch, 'reuse_now == true' will free to the
bpf_mem_cache_free() where the memory can be reused
immediately. 'reuse_now == false' will go through the
call_rcu_tasks_trace().
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230308065936.1550103-7-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This patch remembers which smap triggers the allocation
of a 'struct bpf_local_storage' object. The local_storage is
allocated during the very first selem added to the owner.
The smap pointer is needed when using the bpf_mem_cache_free
in a later patch because it needs to free to the correct
smap's bpf_mem_alloc object.
When a selem is being removed, it needs to check if it is
the selem that triggers the creation of the local_storage.
If it is, the local_storage->smap pointer will be reset to NULL.
This NULL reset is done under the local_storage->lock in
bpf_selem_unlink_storage_nolock() when a selem is being removed.
Also note that the local_storage may not go away even
local_storage->smap is NULL because there may be other
selem still stored in the local_storage.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230308065936.1550103-6-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
__bpf_selem_unlink_storage is taking the spin lock and there is
no name collision also. Having the preceding '__' is confusing
when reviewing the later patch.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230308065936.1550103-5-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
bpf_local_storage_map_alloc() is the only caller of
__bpf_local_storage_map_alloc(). The remaining logic in
bpf_local_storage_map_alloc() is only a one liner setting
the smap->cache_idx.
Remove __bpf_local_storage_map_alloc() to simplify code.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230308065936.1550103-4-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This patch first renames bpf_local_storage_unlink_nolock to
bpf_local_storage_destroy(). It better reflects that it is only
used when the storage's owner (sk/task/cgrp/inode) is being kfree().
All bpf_local_storage_destroy's caller is taking the spin lock and
then free the storage. This patch also moves these two steps into
the bpf_local_storage_destroy.
This is a preparation work for a later patch that uses
bpf_mem_cache_alloc/free in the bpf_local_storage.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230308065936.1550103-3-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This patch moves the bpf_local_storage_free_rcu() and
bpf_selem_unlink_map() to static because they are
not used outside of bpf_local_storage.c.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230308065936.1550103-2-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
When doing state comparison, if old state has register that is not
marked as REG_LIVE_READ, then we just skip comparison, regardless what's
the state of corresponing register in current state. This is because not
REG_LIVE_READ register is irrelevant for further program execution and
correctness. All good here.
But when we get to precision propagation, after two states were declared
equivalent, we don't take into account old register's liveness, and thus
attempt to propagate precision for register in current state even if
that register in old state was not REG_LIVE_READ anymore. This is bad,
because register in current state could be anything at all and this
could cause -EFAULT due to internal logic bugs.
Fix by taking into account REG_LIVE_READ liveness mark to keep the logic
in state comparison in sync with precision propagation.
Fixes: a3ce685dd01a ("bpf: fix precision tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230309224131.57449-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
State equivalence check and checkpointing performed in is_state_visited()
employs certain heuristics to try to save memory by avoiding state checkpoints
if not enough jumps and instructions happened since last checkpoint. This leads
to unpredictability of whether a particular instruction will be checkpointed
and how regularly. While normally this is not causing much problems (except
inconveniences for predictable verifier tests, which we overcome with
BPF_F_TEST_STATE_FREQ flag), turns out it's not the case for open-coded
iterators.
Checking and saving state checkpoints at iter_next() call is crucial for fast
convergence of open-coded iterator loop logic, so we need to force it. If we
don't do that, is_state_visited() might skip saving a checkpoint, causing
unnecessarily long sequence of not checkpointed instructions and jumps, leading
to exhaustion of jump history buffer, and potentially other undesired outcomes.
It is expected that with correct open-coded iterators convergence will happen
quickly, so we don't run a risk of exhausting memory.
This patch adds, in addition to prune and jump instruction marks, also a
"forced checkpoint" mark, and makes sure that any iter_next() call instruction
is marked as such.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230310060149.625887-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Documentation/bpf/bpf_devel_QA.rst
b7abcd9c656b ("bpf, doc: Link to submitting-patches.rst for general patch submission info")
d56b0c461d19 ("bpf, docs: Fix link to netdev-FAQ target")
https://lore.kernel.org/all/20230307095812.236eb1be@canb.auug.org.au/
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
KASAN reported follow problem:
BUG: KASAN: use-after-free in lookup_rec
Read of size 8 at addr ffff000199270ff0 by task modprobe
CPU: 2 Comm: modprobe
Call trace:
kasan_report
__asan_load8
lookup_rec
ftrace_location
arch_check_ftrace_location
check_kprobe_address_safe
register_kprobe
When checking pg->records[pg->index - 1].ip in lookup_rec(), it can get a
pg which is newly added to ftrace_pages_start in ftrace_process_locs().
Before the first pg->index++, index is 0 and accessing pg->records[-1].ip
will cause this problem.
Don't check the ip when pg->index is 0.
Link: https://lore.kernel.org/linux-trace-kernel/20230309080230.36064-1-chenzhongjin@huawei.com
Cc: stable@vger.kernel.org
Fixes: 9644302e3315 ("ftrace: Speed up search by skipping pages by address")
Suggested-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The function hist_field_name() cannot handle being passed a NULL field
parameter. It should never be NULL, but due to a previous bug, NULL was
passed to the function and the kernel crashed due to a NULL dereference.
Mark Rutland reported this to me on IRC.
The bug was fixed, but to prevent future bugs from crashing the kernel,
check the field and add a WARN_ON() if it is NULL.
Link: https://lkml.kernel.org/r/20230302020810.762384440@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reported-by: Mark Rutland <mark.rutland@arm.com>
Fixes: c6afad49d127f ("tracing: Add hist trigger 'sym' and 'sym-offset' modifiers")
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Histogram values can not be strings, stacktraces, graphs, symbols,
syscalls, or grouped in buckets or log. Give an error if a value is set to
do so.
Note, the histogram code was not prepared to handle these modifiers for
histograms and caused a bug.
Mark Rutland reported:
# echo 'p:copy_to_user __arch_copy_to_user n=$arg2' >> /sys/kernel/tracing/kprobe_events
# echo 'hist:keys=n:vals=hitcount.buckets=8:sort=hitcount' > /sys/kernel/tracing/events/kprobes/copy_to_user/trigger
# cat /sys/kernel/tracing/events/kprobes/copy_to_user/hist
[ 143.694628] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
[ 143.695190] Mem abort info:
[ 143.695362] ESR = 0x0000000096000004
[ 143.695604] EC = 0x25: DABT (current EL), IL = 32 bits
[ 143.695889] SET = 0, FnV = 0
[ 143.696077] EA = 0, S1PTW = 0
[ 143.696302] FSC = 0x04: level 0 translation fault
[ 143.702381] Data abort info:
[ 143.702614] ISV = 0, ISS = 0x00000004
[ 143.702832] CM = 0, WnR = 0
[ 143.703087] user pgtable: 4k pages, 48-bit VAs, pgdp=00000000448f9000
[ 143.703407] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000
[ 143.704137] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[ 143.704714] Modules linked in:
[ 143.705273] CPU: 0 PID: 133 Comm: cat Not tainted 6.2.0-00003-g6fc512c10a7c #3
[ 143.706138] Hardware name: linux,dummy-virt (DT)
[ 143.706723] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 143.707120] pc : hist_field_name.part.0+0x14/0x140
[ 143.707504] lr : hist_field_name.part.0+0x104/0x140
[ 143.707774] sp : ffff800008333a30
[ 143.707952] x29: ffff800008333a30 x28: 0000000000000001 x27: 0000000000400cc0
[ 143.708429] x26: ffffd7a653b20260 x25: 0000000000000000 x24: ffff10d303ee5800
[ 143.708776] x23: ffffd7a6539b27b0 x22: ffff10d303fb8c00 x21: 0000000000000001
[ 143.709127] x20: ffff10d303ec2000 x19: 0000000000000000 x18: 0000000000000000
[ 143.709478] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
[ 143.709824] x14: 0000000000000000 x13: 203a6f666e692072 x12: 6567676972742023
[ 143.710179] x11: 0a230a6d6172676f x10: 000000000000002c x9 : ffffd7a6521e018c
[ 143.710584] x8 : 000000000000002c x7 : 7f7f7f7f7f7f7f7f x6 : 000000000000002c
[ 143.710915] x5 : ffff10d303b0103e x4 : ffffd7a653b20261 x3 : 000000000000003d
[ 143.711239] x2 : 0000000000020001 x1 : 0000000000000001 x0 : 0000000000000000
[ 143.711746] Call trace:
[ 143.712115] hist_field_name.part.0+0x14/0x140
[ 143.712642] hist_field_name.part.0+0x104/0x140
[ 143.712925] hist_field_print+0x28/0x140
[ 143.713125] event_hist_trigger_print+0x174/0x4d0
[ 143.713348] hist_show+0xf8/0x980
[ 143.713521] seq_read_iter+0x1bc/0x4b0
[ 143.713711] seq_read+0x8c/0xc4
[ 143.713876] vfs_read+0xc8/0x2a4
[ 143.714043] ksys_read+0x70/0xfc
[ 143.714218] __arm64_sys_read+0x24/0x30
[ 143.714400] invoke_syscall+0x50/0x120
[ 143.714587] el0_svc_common.constprop.0+0x4c/0x100
[ 143.714807] do_el0_svc+0x44/0xd0
[ 143.714970] el0_svc+0x2c/0x84
[ 143.715134] el0t_64_sync_handler+0xbc/0x140
[ 143.715334] el0t_64_sync+0x190/0x194
[ 143.715742] Code: a9bd7bfd 910003fd a90153f3 aa0003f3 (f9400000)
[ 143.716510] ---[ end trace 0000000000000000 ]---
Segmentation fault
Link: https://lkml.kernel.org/r/20230302020810.559462599@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: c6afad49d127f ("tracing: Add hist trigger 'sym' and 'sym-offset' modifiers")
Reported-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Bring dynamic debug in line with other subsystems by using the module
notifier callbacks. This results in a net decrease in core module
code.
Additionally, Jim Cromie has a new dynamic debug classmap feature,
which requires that jump labels be initialized prior to dynamic debug.
Specifically, the new feature toggles a jump label from the existing
dynamic_debug_setup() function. However, this does not currently work
properly, because jump labels are initialized via the
'module_notify_list' notifier chain, which is invoked after the
current call to dynamic_debug_setup(). Thus, this patch ensures that
jump labels are initialized prior to dynamic debug by setting the
dynamic debug notifier priority to 0, while jump labels have the
higher priority of 1.
Tested by Jim using his new test case, and I've verfied the correct
printing via: # modprobe test_dynamic_debug dyndbg.
Link: https://lore.kernel.org/lkml/20230113193016.749791-21-jim.cromie@gmail.com/
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202302190427.9iIK2NfJ-lkp@intel.com/
Tested-by: Jim Cromie <jim.cromie@gmail.com>
Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
CC: Jim Cromie <jim.cromie@gmail.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
Since commit ee6d3dd4ed48 ("driver core: make kobj_type constant.")
the driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definition to prevent
modification at runtime.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
The function within is defined in the main.c file, but not called
elsewhere, so remove this unused function.
This routine became no longer used after commit ("module: replace
module_layout with module_memory").
kernel/module/main.c:3007:19: warning: unused function 'within'.
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Link: https://bugzilla.openanolis.cn/show_bug.cgi?id=4035
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
[mcgrof: adjust commit log to explain why this change is needed]
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
module_layout manages different types of memory (text, data, rodata, etc.)
in one allocation, which is problematic for some reasons:
1. It is hard to enable CONFIG_STRICT_MODULE_RWX.
2. It is hard to use huge pages in modules (and not break strict rwx).
3. Many archs uses module_layout for arch-specific data, but it is not
obvious how these data are used (are they RO, RX, or RW?)
Improve the scenario by replacing 2 (or 3) module_layout per module with
up to 7 module_memory per module:
MOD_TEXT,
MOD_DATA,
MOD_RODATA,
MOD_RO_AFTER_INIT,
MOD_INIT_TEXT,
MOD_INIT_DATA,
MOD_INIT_RODATA,
and allocating them separately. This adds slightly more entries to
mod_tree (from up to 3 entries per module, to up to 7 entries per
module). However, this at most adds a small constant overhead to
__module_address(), which is expected to be fast.
Various archs use module_layout for different data. These data are put
into different module_memory based on their location in module_layout.
IOW, data that used to go with text is allocated with MOD_MEM_TYPE_TEXT;
data that used to go with data is allocated with MOD_MEM_TYPE_DATA, etc.
module_memory simplifies quite some of the module code. For example,
ARCH_WANTS_MODULES_DATA_IN_VMALLOC is a lot cleaner, as it just uses a
different allocator for the data. kernel/module/strict_rwx.c is also
much cleaner with module_memory.
Signed-off-by: Song Liu <song@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Paolo Abeni:
"Including fixes from netfilter and bpf.
Current release - regressions:
- core: avoid skb end_offset change in __skb_unclone_keeptruesize()
- sched:
- act_connmark: handle errno on tcf_idr_check_alloc
- flower: fix fl_change() error recovery path
- ieee802154: prevent user from crashing the host
Current release - new code bugs:
- eth: bnxt_en: fix the double free during device removal
- tools: ynl:
- fix enum-as-flags in the generic CLI
- fully inherit attrs in subsets
- re-license uniformly under GPL-2.0 or BSD-3-clause
Previous releases - regressions:
- core: use indirect calls helpers for sk_exit_memory_pressure()
- tls:
- fix return value for async crypto
- avoid hanging tasks on the tx_lock
- eth: ice: copy last block omitted in ice_get_module_eeprom()
Previous releases - always broken:
- core: avoid double iput when sock_alloc_file fails
- af_unix: fix struct pid leaks in OOB support
- tls:
- fix possible race condition
- fix device-offloaded sendpage straddling records
- bpf:
- sockmap: fix an infinite loop error
- test_run: fix &xdp_frame misplacement for LIVE_FRAMES
- fix resolving BTF_KIND_VAR after ARRAY, STRUCT, UNION, PTR
- netfilter: tproxy: fix deadlock due to missing BH disable
- phylib: get rid of unnecessary locking
- eth: bgmac: fix *initial* chip reset to support BCM5358
- eth: nfp: fix csum for ipsec offload
- eth: mtk_eth_soc: fix RX data corruption issue
Misc:
- usb: qmi_wwan: add telit 0x1080 composition"
* tag 'net-6.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (64 commits)
tools: ynl: fix enum-as-flags in the generic CLI
tools: ynl: move the enum classes to shared code
net: avoid double iput when sock_alloc_file fails
af_unix: fix struct pid leaks in OOB support
eth: fealnx: bring back this old driver
net: dsa: mt7530: permit port 5 to work without port 6 on MT7621 SoC
net: microchip: sparx5: fix deletion of existing DSCP mappings
octeontx2-af: Unlock contexts in the queue context cache in case of fault detection
net/smc: fix fallback failed while sendmsg with fastopen
ynl: re-license uniformly under GPL-2.0 OR BSD-3-Clause
mailmap: update entries for Stephen Hemminger
mailmap: add entry for Maxim Mikityanskiy
nfc: change order inside nfc_se_io error path
ethernet: ice: avoid gcc-9 integer overflow warning
ice: don't ignore return codes in VSI related code
ice: Fix DSCP PFC TLV creation
net: usb: qmi_wwan: add Telit 0x1080 composition
net: usb: cdc_mbim: avoid altsetting toggling for Telit FE990
netfilter: conntrack: adopt safer max chain length
net: tls: fix device-offloaded sendpage straddling records
...
|
|
Since commit ee6d3dd4ed48 ("driver core: make kobj_type constant.")
the driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definitions to prevent
modification at runtime.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20230217-kobj_type-livepatch-v1-1-06ded292e897@weissschuh.net
|
|
ELF is acronym.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/Y/3vWjQ/SBA5a0i5@p183
|
|
Implement the first open-coded iterator type over a range of integers.
It's public API consists of:
- bpf_iter_num_new() constructor, which accepts [start, end) range
(that is, start is inclusive, end is exclusive).
- bpf_iter_num_next() which will keep returning read-only pointer to int
until the range is exhausted, at which point NULL will be returned.
If bpf_iter_num_next() is kept calling after this, NULL will be
persistently returned.
- bpf_iter_num_destroy() destructor, which needs to be called at some
point to clean up iterator state. BPF verifier enforces that iterator
destructor is called at some point before BPF program exits.
Note that `start = end = X` is a valid combination to setup an empty
iterator. bpf_iter_num_new() will return 0 (success) for any such
combination.
If bpf_iter_num_new() detects invalid combination of input arguments, it
returns error, resets iterator state to, effectively, empty iterator, so
any subsequent call to bpf_iter_num_next() will keep returning NULL.
BPF verifier has no knowledge that returned integers are in the
[start, end) value range, as both `start` and `end` are not statically
known and enforced: they are runtime values.
While the implementation is pretty trivial, some care needs to be taken
to avoid overflows and underflows. Subsequent selftests will validate
correctness of [start, end) semantics, especially around extremes
(INT_MIN and INT_MAX).
Similarly to bpf_loop(), we enforce that no more than BPF_MAX_LOOPS can
be specified.
bpf_iter_num_{new,next,destroy}() is a logical evolution from bounded
BPF loops and bpf_loop() helper and is the basis for implementing
ergonomic BPF loops with no statically known or verified bounds.
Subsequent patches implement bpf_for() macro, demonstrating how this can
be wrapped into something that works and feels like a normal for() loop
in C language.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230308184121.1165081-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Teach verifier about the concept of the open-coded (or inline) iterators.
This patch adds generic iterator loop verification logic, new STACK_ITER
stack slot type to contain iterator state, and necessary kfunc plumbing
for iterator's constructor, destructor and next methods. Next patch
implements first specific iterator (numbers iterator for implementing
for() loop logic). Such split allows to have more focused commits for
verifier logic and separate commit that we could point later to
demonstrating what does it take to add a new kind of iterator.
Each kind of iterator has its own associated struct bpf_iter_<type>,
where <type> denotes a specific type of iterator. struct bpf_iter_<type>
state is supposed to live on BPF program stack, so there will be no way
to change its size later on without breaking backwards compatibility, so
choose wisely! But given this struct is specific to a given <type> of
iterator, this allows a lot of flexibility: simple iterators could be
fine with just one stack slot (8 bytes), like numbers iterator in the
next patch, while some other more complicated iterators might need way
more to keep their iterator state. Either way, such design allows to
avoid runtime memory allocations, which otherwise would be necessary if
we fixed on-the-stack size and it turned out to be too small for a given
iterator implementation.
The way BPF verifier logic is implemented, there are no artificial
restrictions on a number of active iterators, it should work correctly
using multiple active iterators at the same time. This also means you
can have multiple nested iteration loops. struct bpf_iter_<type>
reference can be safely passed to subprograms as well.
General flow is easiest to demonstrate with a simple example using
number iterator implemented in next patch. Here's the simplest possible
loop:
struct bpf_iter_num it;
int *v;
bpf_iter_num_new(&it, 2, 5);
while ((v = bpf_iter_num_next(&it))) {
bpf_printk("X = %d", *v);
}
bpf_iter_num_destroy(&it);
Above snippet should output "X = 2", "X = 3", "X = 4". Note that 5 is
exclusive and is not returned. This matches similar APIs (e.g., slices
in Go or Rust) that implement a range of elements, where end index is
non-inclusive.
In the above example, we see a trio of function:
- constructor, bpf_iter_num_new(), which initializes iterator state
(struct bpf_iter_num it) on the stack. If any of the input arguments
are invalid, constructor should make sure to still initialize it such
that subsequent bpf_iter_num_next() calls will return NULL. I.e., on
error, return error and construct empty iterator.
- next method, bpf_iter_num_next(), which accepts pointer to iterator
state and produces an element. Next method should always return
a pointer. The contract between BPF verifier is that next method will
always eventually return NULL when elements are exhausted. Once NULL is
returned, subsequent next calls should keep returning NULL. In the
case of numbers iterator, bpf_iter_num_next() returns a pointer to an int
(storage for this integer is inside the iterator state itself),
which can be dereferenced after corresponding NULL check.
- once done with the iterator, it's mandated that user cleans up its
state with the call to destructor, bpf_iter_num_destroy() in this
case. Destructor frees up any resources and marks stack space used by
struct bpf_iter_num as usable for something else.
Any other iterator implementation will have to implement at least these
three methods. It is enforced that for any given type of iterator only
applicable constructor/destructor/next are callable. I.e., verifier
ensures you can't pass number iterator state into, say, cgroup
iterator's next method.
It is important to keep the naming pattern consistent to be able to
create generic macros to help with BPF iter usability. E.g., one
of the follow up patches adds generic bpf_for_each() macro to bpf_misc.h
in selftests, which allows to utilize iterator "trio" nicely without
having to code the above somewhat tedious loop explicitly every time.
This is enforced at kfunc registration point by one of the previous
patches in this series.
At the implementation level, iterator state tracking for verification
purposes is very similar to dynptr. We add STACK_ITER stack slot type,
reserve necessary number of slots, depending on
sizeof(struct bpf_iter_<type>), and keep track of necessary extra state
in the "main" slot, which is marked with non-zero ref_obj_id. Other
slots are also marked as STACK_ITER, but have zero ref_obj_id. This is
simpler than having a separate "is_first_slot" flag.
Another big distinction is that STACK_ITER is *always refcounted*, which
simplifies implementation without sacrificing usability. So no need for
extra "iter_id", no need to anticipate reuse of STACK_ITER slots for new
constructors, etc. Keeping it simple here.
As far as the verification logic goes, there are two extensive comments:
in process_iter_next_call() and iter_active_depths_differ() explaining
some important and sometimes subtle aspects. Please refer to them for
details.
But from 10,000-foot point of view, next methods are the points of
forking a verification state, which are conceptually similar to what
verifier is doing when validating conditional jump. We branch out at
a `call bpf_iter_<type>_next` instruction and simulate two outcomes:
NULL (iteration is done) and non-NULL (new element is returned). NULL is
simulated first and is supposed to reach exit without looping. After
that non-NULL case is validated and it either reaches exit (for trivial
examples with no real loop), or reaches another `call bpf_iter_<type>_next`
instruction with the state equivalent to already (partially) validated
one. State equivalency at that point means we technically are going to
be looping forever without "breaking out" out of established "state
envelope" (i.e., subsequent iterations don't add any new knowledge or
constraints to the verifier state, so running 1, 2, 10, or a million of
them doesn't matter). But taking into account the contract stating that
iterator next method *has to* return NULL eventually, we can conclude
that loop body is safe and will eventually terminate. Given we validated
logic outside of the loop (NULL case), and concluded that loop body is
safe (though potentially looping many times), verifier can claim safety
of the overall program logic.
The rest of the patch is necessary plumbing for state tracking, marking,
validation, and necessary further kfunc plumbing to allow implementing
iterator constructor, destructor, and next methods.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230308184121.1165081-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add ability to register kfuncs that implement BPF open-coded iterator
contract and enforce naming and function proto convention. Enforcement
happens at the time of kfunc registration and significantly simplifies
the rest of iterators logic in the verifier.
More details follow in subsequent patches, but we enforce the following
conditions.
All kfuncs (constructor, next, destructor) have to be named consistenly
as bpf_iter_<type>_{new,next,destroy}(), respectively. <type> represents
iterator type, and iterator state should be represented as a matching
`struct bpf_iter_<type>` state type. Also, all iter kfuncs should have
a pointer to this `struct bpf_iter_<type>` as the very first argument.
Additionally:
- Constructor, i.e., bpf_iter_<type>_new(), can have arbitrary extra
number of arguments. Return type is not enforced either.
- Next method, i.e., bpf_iter_<type>_next(), has to return a pointer
type and should have exactly one argument: `struct bpf_iter_<type> *`
(const/volatile/restrict and typedefs are ignored).
- Destructor, i.e., bpf_iter_<type>_destroy(), should return void and
should have exactly one argument, similar to the next method.
- struct bpf_iter_<type> size is enforced to be positive and
a multiple of 8 bytes (to fit stack slots correctly).
Such strictness and consistency allows to build generic helpers
abstracting important, but boilerplate, details to be able to use
open-coded iterators effectively and ergonomically (see bpf_for_each()
in subsequent patches). It also simplifies the verifier logic in some
places. At the same time, this doesn't hurt generality of possible
iterator implementations. Win-win.
Constructor kfunc is marked with a new KF_ITER_NEW flags, next method is
marked with KF_ITER_NEXT (and should also have KF_RET_NULL, of course),
while destructor kfunc is marked as KF_ITER_DESTROY.
Additionally, we add a trivial kfunc name validation: it should be
a valid non-NULL and non-empty string.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230308184121.1165081-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Factor out logic to fetch basic kfunc metadata based on struct bpf_insn.
This is not exactly short or trivial code to just copy/paste and this
information is sometimes necessary in other parts of the verifier logic.
Subsequent patches will rely on this to determine if an instruction is
a kfunc call to iterator next method.
No functional changes intended, including that verbose() warning
behavior when kfunc is not allowed for a particular program type.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230308184121.1165081-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Before commit 076cbf5d2163 ("x86/xen: don't let xen_pv_play_dead()
return"), in Xen, when a previously offlined CPU was brought back
online, it unexpectedly resumed execution where it left off in the
middle of the idle loop.
There were some hacks to make that work, but the behavior was surprising
as do_idle() doesn't expect an offlined CPU to return from the dead (in
arch_cpu_idle_dead()).
Now that Xen has been fixed, and the arch-specific implementations of
arch_cpu_idle_dead() also don't return, give it a __noreturn attribute.
This will cause the compiler to complain if an arch-specific
implementation might return. It also improves code generation for both
caller and callee.
Also fixes the following warning:
vmlinux.o: warning: objtool: do_idle+0x25f: unreachable instruction
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/60d527353da8c99d4cf13b6473131d46719ed16d.1676358308.git.jpoimboe@kernel.org
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
|
|
arch_cpu_idle_dead() should never return. Make it so.
Link: https://lore.kernel.org/r/cf5ad95eef50f7704bb30e7770c59bfe23372af7.1676358308.git.jpoimboe@kernel.org
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
|
|
Currently, calling clone3() with CLONE_NEWTIME in clone_args->flags
fails with -EINVAL. This is because CLONE_NEWTIME intersects with
CSIGNAL. However, CSIGNAL was deprecated when clone3 was introduced in
commit 7f192e3cd316 ("fork: add clone3"), allowing re-use of that part
of clone flags.
Fix this by explicitly allowing CLONE_NEWTIME in clone3_args_valid. This
is also in line with the respective check in check_unshare_flags which
allow CLONE_NEWTIME for unshare().
Fixes: 769071ac9f20 ("ns: Introduce Time Namespace")
Cc: Andrey Vagin <avagin@openvz.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
The watch_queue_set_size() allocation error paths return the ret value
set via the prior pipe_resize_ring() call, which will always be zero.
As a result, IOC_WATCH_QUEUE_SET_SIZE callers such as "keyctl watch"
fail to detect kernel wqueue->notes allocation failures and proceed to
KEYCTL_WATCH_KEY, with any notifications subsequently lost.
Fixes: c73be61cede58 ("pipe: Add general notification queue support")
Signed-off-by: David Disseldorp <ddiss@suse.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
In PREEMPT_RT kernels, both spin_lock() and spin_lock_irq() are converted
to sleepable rt_spin_lock(). This means that the interrupt related
suffixes for spin_lock/unlock(_irq, irqsave/irqrestore) do not affect
the CPU's interrupt state. This commit therefore adds raw spin-lock
torture tests. This in turn permits pure spin locks to be tested in
PREEMPT_RT kernels.
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Suggested-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
If we're using nested locking to stress things, occasionally
skip taking the main lock, so that we can get some different
contention patterns between the writers (to hopefully get two
disjoint blocked trees)
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: kernel-team@android.com
Co-developed-by: Connor O'Brien <connoro@google.com>
Signed-off-by: Connor O'Brien <connoro@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
This patch adds randomized nested locking to the rtmutex torture
tests. Additionally it adds LOCK09 config files for testing
rtmutexes with nested locking.
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: kernel-team@android.com
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Co-developed-by: Connor O'Brien <connoro@google.com>
Signed-off-by: Connor O'Brien <connoro@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
This patch adds randomized nested locking to the mutex torture
tests, as well as new LOCK08 config files for testing mutexes
with nested locking
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: kernel-team@android.com
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Co-developed-by: Connor O'Brien <connoro@google.com>
Signed-off-by: Connor O'Brien <connoro@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
In order to extend locktorture to support lock nesting, add
nested_lock() and nested_unlock() hooks to the torture ops.
These take a 32bit lockset mask which is generated at random,
so some number of locks will be taken before the main lock is
taken and released afterwards.
Additionally, add nested_locks module parameter to allow
specifying the number of nested locks to be used.
This has been helpful to uncover issues in the proxy-exec
series development.
This was inspired by locktorture extensions originally implemented
by Connor O'Brien, for stress testing the proxy-execution series:
https://lore.kernel.org/lkml/20221003214501.2050087-12-connoro@google.com/
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: kernel-team@android.com
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Co-developed-by: Connor O'Brien <connoro@google.com>
Signed-off-by: Connor O'Brien <connoro@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
We have implemented memory usage callback for all maps, and we enforce
any newly added map having a callback as well. We check this callback at
map creation time. If it doesn't have the callback, we will return
EINVAL.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230305124615.12358-19-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
A new helper is introduced to calculate offload map memory usage. But
currently the memory dynamically allocated in netdev dev_ops, like
nsim_map_update_elem, is not counted. Let's just put it aside now.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230305124615.12358-18-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
A new helper is introduced into bpf_local_storage map to calculate the
memory usage. This helper is also used by other maps like
bpf_cgrp_storage, bpf_inode_storage, bpf_task_storage and etc.
Note that currently the dynamically allocated storage elements are not
counted in the usage, since it will take extra runtime overhead in the
elements update or delete path. So let's put it aside now, and implement
it in the future when someone really need it.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230305124615.12358-15-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
A new helper is introduced to calculate local_storage map memory usage.
Currently the dynamically allocated elements are not counted, since it
will take runtime overhead in the element update or delete path. So
let's put it aside currently, and implement it in the future if the user
really needs it.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230305124615.12358-14-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
A new helper is introduced to calculate bpf_struct_ops memory usage.
The result as follows,
- before
1: struct_ops name count_map flags 0x0
key 4B value 256B max_entries 1 memlock 4096B
btf_id 73
- after
1: struct_ops name count_map flags 0x0
key 4B value 256B max_entries 1 memlock 5016B
btf_id 73
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230305124615.12358-13-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
A new helper is introduced to calculate queue_stack_maps memory usage.
The result as follows,
- before
20: queue name count_map flags 0x0
key 0B value 4B max_entries 65536 memlock 266240B
21: stack name count_map flags 0x0
key 0B value 4B max_entries 65536 memlock 266240B
- after
20: queue name count_map flags 0x0
key 0B value 4B max_entries 65536 memlock 524288B
21: stack name count_map flags 0x0
key 0B value 4B max_entries 65536 memlock 524288B
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230305124615.12358-12-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
A new helper is introduced to calculate the memory usage of devmap and
devmap_hash. The number of dynamically allocated elements are recored
for devmap_hash already, but not for devmap. To track the memory size of
dynamically allocated elements, this patch also count the numbers for
devmap.
The result as follows,
- before
40: devmap name count_map flags 0x80
key 4B value 4B max_entries 65536 memlock 524288B
41: devmap_hash name count_map flags 0x80
key 4B value 4B max_entries 65536 memlock 524288B
- after
40: devmap name count_map flags 0x80 <<<< no elements
key 4B value 4B max_entries 65536 memlock 524608B
41: devmap_hash name count_map flags 0x80 <<<< no elements
key 4B value 4B max_entries 65536 memlock 524608B
Note that the number of buckets is same with max_entries for devmap_hash
in this case.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230305124615.12358-11-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
A new helper is introduced to calculate cpumap memory usage. The size of
cpu_entries can be dynamically changed when we update or delete a cpumap
element, but this patch doesn't include the memory size of cpu_entry
yet. We can dynamically calculate the memory usage when we alloc or free
a cpu_entry, but it will take extra runtime overhead, so let just put it
aside currently. Note that the size of different cpu_entry may be
different as well.
The result as follows,
- before
48: cpumap name count_map flags 0x4
key 4B value 4B max_entries 64 memlock 4096B
- after
48: cpumap name count_map flags 0x4
key 4B value 4B max_entries 64 memlock 832B
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230305124615.12358-10-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Introduce a new helper to calculate the bloom_filter memory usage.
The result as follows,
- before
16: bloom_filter flags 0x0
key 0B value 8B max_entries 65536 memlock 524288B
- after
16: bloom_filter flags 0x0
key 0B value 8B max_entries 65536 memlock 65856B
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230305124615.12358-9-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
A new helper ringbuf_map_mem_usage() is introduced to calculate ringbuf
memory usage.
The result as follows,
- before
15: ringbuf name count_map flags 0x0
key 0B value 0B max_entries 65536 memlock 0B
- after
15: ringbuf name count_map flags 0x0
key 0B value 0B max_entries 65536 memlock 78424B
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230305124615.12358-8-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
A new helper is introduced to calculate reuseport_array memory usage.
The result as follows,
- before
14: reuseport_sockarray name count_map flags 0x0
key 4B value 8B max_entries 65536 memlock 1048576B
- after
14: reuseport_sockarray name count_map flags 0x0
key 4B value 8B max_entries 65536 memlock 524544B
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230305124615.12358-7-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|