summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2019-04-05bpf: Reject indirect var_off stack access in unpriv modeAndrey Ignatov
Proper support of indirect stack access with variable offset in unprivileged mode (!root) requires corresponding support in Spectre masking for stack ALU in retrieve_ptr_limit(). There are no use-case for variable offset in unprivileged mode though so make verifier reject such accesses for simplicity. Pointer arithmetics is one (and only?) way to cause variable offset and it's already rejected in unpriv mode so that verifier won't even get to helper function whose argument contains variable offset, e.g.: 0: (7a) *(u64 *)(r10 -16) = 0 1: (7a) *(u64 *)(r10 -8) = 0 2: (61) r2 = *(u32 *)(r1 +0) 3: (57) r2 &= 4 4: (17) r2 -= 16 5: (0f) r2 += r10 variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16 size=1R2 stack pointer arithmetic goes out of range, prohibited for !root Still it looks like a good idea to reject variable offset indirect stack access for unprivileged mode in check_stack_boundary() explicitly. Fixes: 2011fccfb61b ("bpf: Support variable offset stack access from helpers") Reported-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-05bpf: Reject indirect var_off stack access in raw modeAndrey Ignatov
It's hard to guarantee that whole memory is marked as initialized on helper return if uninitialized stack is accessed with variable offset since specific bounds are unknown to verifier. This may cause uninitialized stack leaking. Reject such an access in check_stack_boundary to prevent possible leaking. There are no known use-cases for indirect uninitialized stack access with variable offset so it shouldn't break anything. Fixes: 2011fccfb61b ("bpf: Support variable offset stack access from helpers") Reported-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-05syscalls: Remove start and number from syscall_get_arguments() argsSteven Rostedt (Red Hat)
At Linux Plumbers, Andy Lutomirski approached me and pointed out that the function call syscall_get_arguments() implemented in x86 was horribly written and not optimized for the standard case of passing in 0 and 6 for the starting index and the number of system calls to get. When looking at all the users of this function, I discovered that all instances pass in only 0 and 6 for these arguments. Instead of having this function handle different cases that are never used, simply rewrite it to return the first 6 arguments of a system call. This should help out the performance of tracing system calls by ptrace, ftrace and perf. Link: http://lkml.kernel.org/r/20161107213233.754809394@goodmis.org Cc: Oleg Nesterov <oleg@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Dave Martin <dave.martin@arm.com> Cc: "Dmitry V. Levin" <ldv@altlinux.org> Cc: x86@kernel.org Cc: linux-snps-arc@lists.infradead.org Cc: linux-kernel@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-c6x-dev@linux-c6x.org Cc: uclinux-h8-devel@lists.sourceforge.jp Cc: linux-hexagon@vger.kernel.org Cc: linux-ia64@vger.kernel.org Cc: linux-mips@vger.kernel.org Cc: nios2-dev@lists.rocketboards.org Cc: openrisc@lists.librecores.org Cc: linux-parisc@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-riscv@lists.infradead.org Cc: linux-s390@vger.kernel.org Cc: linux-sh@vger.kernel.org Cc: sparclinux@vger.kernel.org Cc: linux-um@lists.infradead.org Cc: linux-xtensa@linux-xtensa.org Cc: linux-arch@vger.kernel.org Acked-by: Paul Burton <paul.burton@mips.com> # MIPS parts Acked-by: Max Filippov <jcmvbkbc@gmail.com> # For xtensa changes Acked-by: Will Deacon <will.deacon@arm.com> # For the arm64 bits Reviewed-by: Thomas Gleixner <tglx@linutronix.de> # for x86 Reviewed-by: Dmitry V. Levin <ldv@altlinux.org> Reported-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-04-05genirq: Initialize request_mutex if CONFIG_SPARSE_IRQ=nKefeng Wang
When CONFIG_SPARSE_IRQ is disable, the request_mutex in struct irq_desc is not initialized which causes malfunction. Fixes: 9114014cf4e6 ("genirq: Add mutex to irq desc to serialize request/free_irq()") Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Mukesh Ojha <mojha@codeaurora.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: <linux-arm-kernel@lists.infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190404074512.145533-1-wangkefeng.wang@huawei.com
2019-04-04Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netLinus Torvalds
Pull networking fixes from David Miller: 1) Several hash table refcount fixes in batman-adv, from Sven Eckelmann. 2) Use after free in bpf_evict_inode(), from Daniel Borkmann. 3) Fix mdio bus registration in ixgbe, from Ivan Vecera. 4) Unbounded loop in __skb_try_recv_datagram(), from Paolo Abeni. 5) ila rhashtable corruption fix from Herbert Xu. 6) Don't allow upper-devices to be added to vrf devices, from Sabrina Dubroca. 7) Add qmi_wwan device ID for Olicard 600, from Bjørn Mork. 8) Don't leave skb->next poisoned in __netif_receive_skb_list_ptype, from Alexander Lobakin. 9) Missing IDR checks in mlx5 driver, from Aditya Pakki. 10) Fix false connection termination in ktls, from Jakub Kicinski. 11) Work around some ASPM issues with r8169 by disabling rx interrupt coalescing on certain chips. From Heiner Kallweit. 12) Properly use per-cpu qstat values on NOLOCK qdiscs, from Paolo Abeni. 13) Fully initialize sockaddr_in structures in SCTP, from Xin Long. 14) Various BPF flow dissector fixes from Stanislav Fomichev. 15) Divide by zero in act_sample, from Davide Caratti. 16) Fix bridging multicast regression introduced by rhashtable conversion, from Nikolay Aleksandrov. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (106 commits) ibmvnic: Fix completion structure initialization ipv6: sit: reset ip header pointer in ipip6_rcv net: bridge: always clear mcast matching struct on reports and leaves libcxgb: fix incorrect ppmax calculation vlan: conditional inclusion of FCoE hooks to match netdevice.h and bnx2x sch_cake: Make sure we can write the IP header before changing DSCP bits sch_cake: Use tc_skb_protocol() helper for getting packet protocol tcp: Ensure DCTCP reacts to losses net/sched: act_sample: fix divide by zero in the traffic path net: thunderx: fix NULL pointer dereference in nicvf_open/nicvf_stop net: hns: Fix sparse: some warnings in HNS drivers net: hns: Fix WARNING when remove HNS driver with SMMU enabled net: hns: fix ICMP6 neighbor solicitation messages discard problem net: hns: Fix probabilistic memory overwrite when HNS driver initialized net: hns: Use NAPI_POLL_WEIGHT for hns driver net: hns: fix KASAN: use-after-free in hns_nic_net_xmit_hw() flow_dissector: rst'ify documentation ipv6: Fix dangling pointer when ipv6 fragment net-gro: Fix GRO flush when receiving a GSO packet. flow_dissector: document BPF flow dissector environment ...
2019-04-04acct_on(): don't mess with freeze protectionAl Viro
What happens there is that we are replacing file->path.mnt of a file we'd just opened with a clone and we need the write count contribution to be transferred from original mount to new one. That's it. We do *NOT* want any kind of freeze protection for the duration of switchover. IOW, we should just use __mnt_{want,drop}_write() for that switchover; no need to bother with mnt_{want,drop}_write() there. Tested-by: Amir Goldstein <amir73il@gmail.com> Reported-by: syzbot+2a73a6ea9507b7112141@syzkaller.appspotmail.com Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-04-04cgroup: remove extra cgroup_migrate_finish() callShakeel Butt
The callers of cgroup_migrate_prepare_dst() correctly call cgroup_migrate_finish() for success and failure cases both. No need to call it in cgroup_migrate_prepare_dst() in failure case. Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2019-04-04tracing/syscalls: Pass in hardcoded 6 into syscall_get_arguments()Steven Rostedt (Red Hat)
The only users that calls syscall_get_arguments() with a variable and not a hard coded '6' is ftrace_syscall_enter(). syscall_get_arguments() can be optimized by removing a variable input, and always grabbing 6 arguments regardless of what the system call actually uses. Change ftrace_syscall_enter() to pass the 6 args into a local stack array and copy the necessary arguments into the trace event as needed. This is needed to remove two parameters from syscall_get_arguments(). Link: http://lkml.kernel.org/r/20161107213233.627583542@goodmis.org Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-04-04bpf: increase verifier log limitAlexei Starovoitov
The existing 16Mbyte verifier log limit is not enough for log_level=2 even for small programs. Increase it to 1Gbyte. Note it's not a kernel memory limit. It's an amount of memory user space provides to store the verifier log. The kernel populates it 1k at a time. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-04bpf: increase complexity limit and maximum program sizeAlexei Starovoitov
Large verifier speed improvements allow to increase verifier complexity limit. Now regardless of the program composition and its size it takes little time for the verifier to hit insn_processed limit. On typical x86 machine non-debug kernel processes 1M instructions in 1/10 of a second. (before these speed improvements specially crafted programs could be hitting multi-second verification times) Full kasan kernel with debug takes ~1 second for the same 1M insns. Hence bump the BPF_COMPLEXITY_LIMIT_INSNS limit to 1M. Also increase the number of instructions per program from 4k to internal BPF_COMPLEXITY_LIMIT_INSNS limit. 4k limit was confusing to users, since small programs with hundreds of insns could be hitting BPF_COMPLEXITY_LIMIT_INSNS limit. Sometimes adding more insns and bpf_trace_printk debug statements would make the verifier accept the program while removing code would make the verifier reject it. Some user space application started to add #define MAX_FOO to their programs and do: MAX_FOO=100; again: compile with MAX_FOO; try to load; if (fails_to_load) { reduce MAX_FOO; goto again; } to be able to fit maximum amount of processing into single program. Other users artificially split their single program into a set of programs and use all 32 iterations of tail_calls to increase compute limits. And the most advanced folks used unlimited tc-bpf filter list to execute many bpf programs. Essentially the users managed to workaround 4k insn limit. This patch removes the limit for root programs from uapi. BPF_COMPLEXITY_LIMIT_INSNS is the kernel internal limit and success to load the program no longer depends on program size, but on 'smartness' of the verifier only. The verifier will continue to get smarter with every kernel release. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-04bpf: verbose jump offset overflow checkAlexei Starovoitov
Larger programs may trigger 16-bit jump offset overflow check during instruction patching. Make this error verbose otherwise users cannot decipher error code without printks in the verifier. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-04bpf: convert temp arrays to kvcallocAlexei Starovoitov
Temporary arrays used during program verification need to be vmalloc-ed to support large bpf programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-04bpf: improve verification speed by not remarking live_readAlexei Starovoitov
With large verifier speed improvement brought by the previous patch mark_reg_read() becomes the hottest function during verification. On a typical program it consumes 40% of cpu. mark_reg_read() walks parentage chain of registers to mark parents as LIVE_READ. Once the register is marked there is no need to remark it again in the future. Hence stop walking the chain once first LIVE_READ is seen. This optimization drops mark_reg_read() time from 40% of cpu to <1% and overall 2x improvement of verification speed. For some programs the longest_mark_read_walk counter improves from ~500 to ~5 Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Edward Cree <ecree@solarflare.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-04bpf: improve verification speed by droping statesAlexei Starovoitov
Branch instructions, branch targets and calls in a bpf program are the places where the verifier remembers states that led to successful verification of the program. These states are used to prune brute force program analysis. For unprivileged programs there is a limit of 64 states per such 'branching' instructions (maximum length is tracked by max_states_per_insn counter introduced in the previous patch). Simply reducing this threshold to 32 or lower increases insn_processed metric to the point that small valid programs get rejected. For root programs there is no limit and cilium programs can have max_states_per_insn to be 100 or higher. Walking 100+ states multiplied by number of 'branching' insns during verification consumes significant amount of cpu time. Turned out simple LRU-like mechanism can be used to remove states that unlikely will be helpful in future search pruning. This patch introduces hit_cnt and miss_cnt counters: hit_cnt - this many times this state successfully pruned the search miss_cnt - this many times this state was not equivalent to other states (and that other states were added to state list) The heuristic introduced in this patch is: if (sl->miss_cnt > sl->hit_cnt * 3 + 3) /* drop this state from future considerations */ Higher numbers increase max_states_per_insn (allow more states to be considered for pruning) and slow verification speed, but do not meaningfully reduce insn_processed metric. Lower numbers drop too many states and insn_processed increases too much. Many different formulas were considered. This one is simple and works well enough in practice. (the analysis was done on selftests/progs/* and on cilium programs) The end result is this heuristic improves verification speed by 10 times. Large synthetic programs that used to take a second more now take 1/10 of a second. In cases where max_states_per_insn used to be 100 or more, now it's ~10. There is a slight increase in insn_processed for cilium progs: before after bpf_lb-DLB_L3.o 1831 1838 bpf_lb-DLB_L4.o 3029 3218 bpf_lb-DUNKNOWN.o 1064 1064 bpf_lxc-DDROP_ALL.o 26309 26935 bpf_lxc-DUNKNOWN.o 33517 34439 bpf_netdev.o 9713 9721 bpf_overlay.o 6184 6184 bpf_lcx_jit.o 37335 39389 And 2-3 times improvement in the verification speed. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-04bpf: add verifier stats and log_level bit 2Alexei Starovoitov
In order to understand the verifier bottlenecks add various stats and extend log_level: log_level 1 and 2 are kept as-is: bit 0 - level=1 - print every insn and verifier state at branch points bit 1 - level=2 - print every insn and verifier state at every insn bit 2 - level=4 - print verifier error and stats at the end of verification When verifier rejects the program the libbpf is trying to load the program twice. Once with log_level=0 (no messages, only error code is reported to user space) and second time with log_level=1 to tell the user why the verifier rejected it. With introduction of bit 2 - level=4 the libbpf can choose to always use that level and load programs once, since the verification speed is not affected and in case of error the verbose message will be available. Note that the verifier stats are not part of uapi just like all other verbose messages. They're expected to change in the future. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-03locking/rwsem: Optimize down_read_trylock()Waiman Long
Modify __down_read_trylock() to optimize for an unlocked rwsem and make it generate slightly better code. Before this patch, down_read_trylock: 0x0000000000000000 <+0>: callq 0x5 <down_read_trylock+5> 0x0000000000000005 <+5>: jmp 0x18 <down_read_trylock+24> 0x0000000000000007 <+7>: lea 0x1(%rdx),%rcx 0x000000000000000b <+11>: mov %rdx,%rax 0x000000000000000e <+14>: lock cmpxchg %rcx,(%rdi) 0x0000000000000013 <+19>: cmp %rax,%rdx 0x0000000000000016 <+22>: je 0x23 <down_read_trylock+35> 0x0000000000000018 <+24>: mov (%rdi),%rdx 0x000000000000001b <+27>: test %rdx,%rdx 0x000000000000001e <+30>: jns 0x7 <down_read_trylock+7> 0x0000000000000020 <+32>: xor %eax,%eax 0x0000000000000022 <+34>: retq 0x0000000000000023 <+35>: mov %gs:0x0,%rax 0x000000000000002c <+44>: or $0x3,%rax 0x0000000000000030 <+48>: mov %rax,0x20(%rdi) 0x0000000000000034 <+52>: mov $0x1,%eax 0x0000000000000039 <+57>: retq After patch, down_read_trylock: 0x0000000000000000 <+0>: callq 0x5 <down_read_trylock+5> 0x0000000000000005 <+5>: xor %eax,%eax 0x0000000000000007 <+7>: lea 0x1(%rax),%rdx 0x000000000000000b <+11>: lock cmpxchg %rdx,(%rdi) 0x0000000000000010 <+16>: jne 0x29 <down_read_trylock+41> 0x0000000000000012 <+18>: mov %gs:0x0,%rax 0x000000000000001b <+27>: or $0x3,%rax 0x000000000000001f <+31>: mov %rax,0x20(%rdi) 0x0000000000000023 <+35>: mov $0x1,%eax 0x0000000000000028 <+40>: retq 0x0000000000000029 <+41>: test %rax,%rax 0x000000000000002c <+44>: jns 0x7 <down_read_trylock+7> 0x000000000000002e <+46>: xor %eax,%eax 0x0000000000000030 <+48>: retq By using a rwsem microbenchmark, the down_read_trylock() rate (with a load of 10 to lengthen the lock critical section) on a x86-64 system before and after the patch were: Before Patch After Patch # of Threads rlock rlock ------------ ----- ----- 1 14,496 14,716 2 8,644 8,453 4 6,799 6,983 8 5,664 7,190 On a ARM64 system, the performance results were: Before Patch After Patch # of Threads rlock rlock ------------ ----- ----- 1 23,676 24,488 2 7,697 9,502 4 4,945 3,440 8 2,641 1,603 For the uncontended case (1 thread), the new down_read_trylock() is a little bit faster. For the contended cases, the new down_read_trylock() perform pretty well in x86-64, but performance degrades at high contention level on ARM64. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-c6x-dev@linux-c6x.org Cc: linux-m68k@lists.linux-m68k.org Cc: linux-riscv@lists.infradead.org Cc: linux-um@lists.infradead.org Cc: linux-xtensa@linux-xtensa.org Cc: linuxppc-dev@lists.ozlabs.org Cc: nios2-dev@lists.rocketboards.org Cc: openrisc@lists.librecores.org Cc: uclinux-h8-devel@lists.sourceforge.jp Link: https://lkml.kernel.org/r/20190322143008.21313-4-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03locking/rwsem: Remove rwsem-spinlock.c & use rwsem-xadd.c for all archsWaiman Long
Currently, we have two different implementation of rwsem: 1) CONFIG_RWSEM_GENERIC_SPINLOCK (rwsem-spinlock.c) 2) CONFIG_RWSEM_XCHGADD_ALGORITHM (rwsem-xadd.c) As we are going to use a single generic implementation for rwsem-xadd.c and no architecture-specific code will be needed, there is no point in keeping two different implementations of rwsem. In most cases, the performance of rwsem-spinlock.c will be worse. It also doesn't get all the performance tuning and optimizations that had been implemented in rwsem-xadd.c over the years. For simplication, we are going to remove rwsem-spinlock.c and make all architectures use a single implementation of rwsem - rwsem-xadd.c. All references to RWSEM_GENERIC_SPINLOCK and RWSEM_XCHGADD_ALGORITHM in the code are removed. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-c6x-dev@linux-c6x.org Cc: linux-m68k@lists.linux-m68k.org Cc: linux-riscv@lists.infradead.org Cc: linux-um@lists.infradead.org Cc: linux-xtensa@linux-xtensa.org Cc: linuxppc-dev@lists.ozlabs.org Cc: nios2-dev@lists.rocketboards.org Cc: openrisc@lists.librecores.org Cc: uclinux-h8-devel@lists.sourceforge.jp Link: https://lkml.kernel.org/r/20190322143008.21313-3-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03locking/rwsem: Remove arch specific rwsem filesWaiman Long
As the generic rwsem-xadd code is using the appropriate acquire and release versions of the atomic operations, the arch specific rwsem.h files will not be that much faster than the generic code as long as the atomic functions are properly implemented. So we can remove those arch specific rwsem.h and stop building asm/rwsem.h to reduce maintenance effort. Currently, only x86, alpha and ia64 have implemented architecture specific fast paths. I don't have access to alpha and ia64 systems for testing, but they are legacy systems that are not likely to be updated to the latest kernel anyway. By using a rwsem microbenchmark, the total locking rates on a 4-socket 56-core 112-thread x86-64 system before and after the patch were as follows (mixed means equal # of read and write locks): Before Patch After Patch # of Threads wlock rlock mixed wlock rlock mixed ------------ ----- ----- ----- ----- ----- ----- 1 29,201 30,143 29,458 28,615 30,172 29,201 2 6,807 13,299 1,171 7,725 15,025 1,804 4 6,504 12,755 1,520 7,127 14,286 1,345 8 6,762 13,412 764 6,826 13,652 726 16 6,693 15,408 662 6,599 15,938 626 32 6,145 15,286 496 5,549 15,487 511 64 5,812 15,495 60 5,858 15,572 60 There were some run-to-run variations for the multi-thread tests. For x86-64, using the generic C code fast path seems to be a little bit faster than the assembly version with low lock contention. Looking at the assembly version of the fast paths, there are assembly to/from C code wrappers that save and restore all the callee-clobbered registers (7 registers on x86-64). The assembly generated from the generic C code doesn't need to do that. That may explain the slight performance gain here. The generic asm rwsem.h can also be merged into kernel/locking/rwsem.h with no code change as no other code other than those under kernel/locking needs to access the internal rwsem macros and functions. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-c6x-dev@linux-c6x.org Cc: linux-m68k@lists.linux-m68k.org Cc: linux-riscv@lists.infradead.org Cc: linux-um@lists.infradead.org Cc: linux-xtensa@linux-xtensa.org Cc: linuxppc-dev@lists.ozlabs.org Cc: nios2-dev@lists.rocketboards.org Cc: openrisc@lists.librecores.org Cc: uclinux-h8-devel@lists.sourceforge.jp Link: https://lkml.kernel.org/r/20190322143008.21313-2-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03sched/fair: Make sync_entity_load_avg() and remove_entity_load_avg() staticYueHaibing
Fix these sparse warnigs: kernel/sched/fair.c:3570:6: warning: symbol 'sync_entity_load_avg' was not declared. Should it be static? kernel/sched/fair.c:3583:6: warning: symbol 'remove_entity_load_avg' was not declared. Should it be static? Signed-off-by: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190320133839.21392-1-yuehaibing@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03sched/core: Annotate perf_domain pointer with __rcuJoel Fernandes (Google)
This fixes the following sparse errors in sched/fair.c: fair.c:6506:14: error: incompatible types in comparison expression fair.c:8642:21: error: incompatible types in comparison expression Using __rcu will also help sparse catch any future bugs. Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> [ From an RCU perspective. ] Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Cc: kernel-hardening@lists.openwall.com Cc: kernel-team@android.com Link: https://lkml.kernel.org/r/20190321003426.160260-5-joel@joelfernandes.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03sched_domain: Annotate RCU pointers properlyJoel Fernandes (Google)
The scheduler uses RCU API in various places to access sched_domain pointers. These cause sparse errors as below. Many new errors show up because of an annotation check I added to rcu_assign_pointer(). Let us annotate the pointers correctly which also will help sparse catch any potential future bugs. This fixes the following sparse errors: rt.c:1681:9: error: incompatible types in comparison expression deadline.c:1904:9: error: incompatible types in comparison expression core.c:519:9: error: incompatible types in comparison expression core.c:1634:17: error: incompatible types in comparison expression fair.c:6193:14: error: incompatible types in comparison expression fair.c:9883:22: error: incompatible types in comparison expression fair.c:9897:9: error: incompatible types in comparison expression sched.h:1287:9: error: incompatible types in comparison expression topology.c:612:9: error: incompatible types in comparison expression topology.c:615:9: error: incompatible types in comparison expression sched.h:1300:9: error: incompatible types in comparison expression topology.c:618:9: error: incompatible types in comparison expression sched.h:1287:9: error: incompatible types in comparison expression topology.c:621:9: error: incompatible types in comparison expression sched.h:1300:9: error: incompatible types in comparison expression topology.c:624:9: error: incompatible types in comparison expression topology.c:671:9: error: incompatible types in comparison expression stats.c:45:17: error: incompatible types in comparison expression fair.c:5998:15: error: incompatible types in comparison expression fair.c:5989:15: error: incompatible types in comparison expression fair.c:5998:15: error: incompatible types in comparison expression fair.c:5989:15: error: incompatible types in comparison expression fair.c:6120:19: error: incompatible types in comparison expression fair.c:6506:14: error: incompatible types in comparison expression fair.c:6515:14: error: incompatible types in comparison expression fair.c:6623:9: error: incompatible types in comparison expression fair.c:5970:17: error: incompatible types in comparison expression fair.c:8642:21: error: incompatible types in comparison expression fair.c:9253:9: error: incompatible types in comparison expression fair.c:9331:9: error: incompatible types in comparison expression fair.c:9519:15: error: incompatible types in comparison expression fair.c:9533:14: error: incompatible types in comparison expression fair.c:9542:14: error: incompatible types in comparison expression fair.c:9567:14: error: incompatible types in comparison expression fair.c:9597:14: error: incompatible types in comparison expression fair.c:9421:16: error: incompatible types in comparison expression fair.c:9421:16: error: incompatible types in comparison expression Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> [ From an RCU perspective. ] Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Cc: kernel-hardening@lists.openwall.com Cc: kernel-team@android.com Link: https://lkml.kernel.org/r/20190321003426.160260-3-joel@joelfernandes.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03sched/cpufreq: Annotate cpufreq_update_util_data pointer with __rcuJoel Fernandes (Google)
Recently I added an RCU annotation check to rcu_assign_pointer(). All pointers assigned to RCU protected data are to be annotated with __rcu inorder to be able to use rcu_assign_pointer() similar to checks in other RCU APIs. This resulted in a sparse error: kernel//sched/cpufreq.c:41:9: sparse: error: incompatible types in comparison expression (different address spaces) Fix this by annotating cpufreq_update_util_data pointer with __rcu. This will also help sparse catch any future RCU misuage bugs. Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> [ From an RCU perspective. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Cc: kernel-hardening@lists.openwall.com Cc: kernel-team@android.com Link: https://lkml.kernel.org/r/20190321003426.160260-2-joel@joelfernandes.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03locking/static_key: Fix false positive warnings on concurrent dec/incPeter Zijlstra
Even though the atomic_dec_and_mutex_lock() in __static_key_slow_dec_cpuslocked() can never see a negative value in key->enabled the subsequent sanity check is re-reading key->enabled, which may have been set to -1 in the meantime by static_key_slow_inc_cpuslocked(). CPU A CPU B __static_key_slow_dec_cpuslocked(): static_key_slow_inc_cpuslocked(): # enabled = 1 atomic_dec_and_mutex_lock() # enabled = 0 atomic_read() == 0 atomic_set(-1) # enabled = -1 val = atomic_read() # Oops - val == -1! The test case is TCP's clean_acked_data_enable() / clean_acked_data_disable() as tickled by KTLS (net/ktls). Suggested-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reported-by: Jakub Kicinski <jakub.kicinski@netronome.com> Tested-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: ard.biesheuvel@linaro.org Cc: oss-drivers@netronome.com Cc: pbonzini@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03x86/uaccess, kcov: Disable stack protectorPeter Zijlstra
New tooling noticed this mishap: kernel/kcov.o: warning: objtool: write_comp_data()+0x138: call to __stack_chk_fail() with UACCESS enabled kernel/kcov.o: warning: objtool: __sanitizer_cov_trace_pc()+0xd9: call to __stack_chk_fail() with UACCESS enabled All the other instrumentation (KASAN,UBSAN) also have stack protector disabled. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03x86/uaccess, ftrace: Fix ftrace_likely_update() vs. SMAPPeter Zijlstra
For CONFIG_TRACE_BRANCH_PROFILING=y the likely/unlikely things get overloaded and generate callouts to this code, and thus also when AC=1. Make it safe. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03ia64/tlb: Eradicate tlb_migrate_finish() callbackPeter Zijlstra
Only ia64-sn2 uses this as an optimization, and there it is of questionable correctness due to the mm_users==1 test. Remove it entirely. No change in behavior intended. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03perf/core: Make perf_swevent_init_cpu() staticValdis Kletnieks
'make W=1' causes GCC to complain: kernel/events/core.c:11877:6: warning: no previous prototype for 'perf_swevent_init_cpu' [-Wmissing-prototypes] It's not referenced anywhere else, make it static. Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/28974.1552377997@turing-police Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03sched/fair: Do not re-read ->h_load_next during hierarchical load calculationMel Gorman
A NULL pointer dereference bug was reported on a distribution kernel but the same issue should be present on mainline kernel. It occured on s390 but should not be arch-specific. A partial oops looks like: Unable to handle kernel pointer dereference in virtual kernel address space ... Call Trace: ... try_to_wake_up+0xfc/0x450 vhost_poll_wakeup+0x3a/0x50 [vhost] __wake_up_common+0xbc/0x178 __wake_up_common_lock+0x9e/0x160 __wake_up_sync_key+0x4e/0x60 sock_def_readable+0x5e/0x98 The bug hits any time between 1 hour to 3 days. The dereference occurs in update_cfs_rq_h_load when accumulating h_load. The problem is that cfq_rq->h_load_next is not protected by any locking and can be updated by parallel calls to task_h_load. Depending on the compiler, code may be generated that re-reads cfq_rq->h_load_next after the check for NULL and then oops when reading se->avg.load_avg. The dissassembly showed that it was possible to reread h_load_next after the check for NULL. While this does not appear to be an issue for later compilers, it's still an accident if the correct code is generated. Full locking in this path would have high overhead so this patch uses READ_ONCE to read h_load_next only once and check for NULL before dereferencing. It was confirmed that there were no further oops after 10 days of testing. As Peter pointed out, it is also necessary to use WRITE_ONCE() to avoid any potential problems with store tearing. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: <stable@vger.kernel.org> Fixes: 685207963be9 ("sched: Move h_load calculation to task_h_load()") Link: https://lkml.kernel.org/r/20190319123610.nsivgf3mjbjjesxb@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-02tracing: Use tracing error_log with probe eventsMasami Hiramatsu
Use tracing error_log with probe events for logging error more precisely. This also makes all parse error returns -EINVAL (except for -ENOMEM), because user can see better error message in error_log file now. Link: http://lkml.kernel.org/r/6a4d90e141d138040ea61f4776b991597077451e.1554072478.git.tom.zanussi@linux.intel.com Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-04-02tracing: Use tracing error_log with trace event filtersTom Zanussi
Use tracing_log_err() from the new tracing error_log mechanism to send filter parse errors to tracing/error_log. With this change, users will be able to see filter errors by looking at tracing/error_log. The same errors will also be available in the filter file, as expected. Link: http://lkml.kernel.org/r/1d942c419941539a11d78a6810fc5740a99b2974.1554072478.git.tom.zanussi@linux.intel.com Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-04-02tracing: Use tracing error_log with hist triggersTom Zanussi
Replace hist_err() and hist_err_event() with tracing_log_err() from the new tracing error_log mechanism. Also add a couple related helper functions and remove most of the old hist_err()-related code. With this change, users no longer read the hist files for hist trigger error information, but instead look at tracing/error_log for the same information. Link: http://lkml.kernel.org/r/c98f77a97c9715d18b623eeb5741057b330d5ac0.1554072478.git.tom.zanussi@linux.intel.com Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-04-02tracing: Save the last hist command's associated event nameTom Zanussi
In preparation for making use of the new trace error log, save the subsystem and event name associated with the last hist command - it will be passed as the location param in the event_log_err() calls. Link: http://lkml.kernel.org/r/eb0fd1362be8f39facb86c83eecf441b7a5876f8.1554072478.git.tom.zanussi@linux.intel.com Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-04-02tracing: Add tracing error logTom Zanussi
Introduce a new ftrace file, tracing/error_log, for ftrace commands to log errors. This is useful for allowing more complex commands such as hist trigger and kprobe_event commands to point out specifically where something may have gone wrong without forcing them to resort to more ad hoc methods such as tacking error messages onto existing output files. To log a tracing error, call the event_log_err() function, passing it a location string describing where it came from e.g. kprobe_events or system:event, the command that caused the error, an array of static error strings describing errors and an index within that array which describes the specific error, along with the position to place the error caret. Reading the log displays the last (currently) 8 errors logged in the following format: [timestamp] <loc>: error: <static error text> Command: <command that caused the error> ^ Memory for the error log isn't allocated unless there has been a trace event error, and the error log can be cleared and have its memory freed by writing the empty string in truncation mode to it: # echo > tracing/error_log. Link: http://lkml.kernel.org/r/0c2c82571fd38c5f3a88ca823627edff250e9416.1554072478.git.tom.zanussi@linux.intel.com Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Suggested-by: Masami Hiramatsu <mhiramat@kernel.org> Improvements-suggested-by: Steve Rostedt <rostedt@goodmis.org> Acked-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-04-02tracing: Kernel access to Ftrace instancesDivya Indi
Ftrace provides the feature “instances” that provides the capability to create multiple Ftrace ring buffers. However, currently these buffers are created/accessed via userspace only. The kernel APIs providing these features are not exported, hence cannot be used by other kernel components. This patch aims to extend this infrastructure to provide the flexibility to create/log/remove/ enable-disable existing trace events to these buffers from within the kernel. Link: http://lkml.kernel.org/r/1553106531-3281-2-git-send-email-divya.indi@oracle.com Signed-off-by: Divya Indi <divya.indi@oracle.com> Reviewed-by: Joe Jin <joe.jin@oracle.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-04-02ring-buffer: Fix ring buffer size in rb_write_something()YueHaibing
'cnt' should be used to calculate ring buffer size rather than data->cnt Link: http://lkml.kernel.org/r/1537704693-184237-1-git-send-email-yuehaibing@huawei.com Signed-off-by: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-04-02cpu/hotplug: Create SMT sysfs interface for all archesJosh Poimboeuf
Make the /sys/devices/system/cpu/smt/* files available on all arches, so user space has a consistent way to detect whether SMT is enabled. The 'control' file now shows 'notimplemented' for architectures which don't yet have CONFIG_HOTPLUG_SMT. [ tglx: Make notimplemented a real state ] Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Waiman Long <longman@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Kosina <jikos@kernel.org> Link: https://lkml.kernel.org/r/469c2b98055f2c41e75748e06447d592a64080c9.1553635520.git.jpoimboe@redhat.com
2019-04-02PM / sleep: Measure the time of filesystems syncingHarry Pan
Measure the filesystems sync time during system sleep more precisely. Among other things, this allows the pr_cont() to be dropped from ksys_sync_helper() and makes automatic system suspend and hibernation profiling somewhat more straightforward. Signed-off-by: Harry Pan <harry.pan@intel.com> [ rjw: Changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-04-02PM / sleep: Refactor filesystems sync to reduce duplicationHarry Pan
Create a common helper to sync filesystems for system suspend and hibernation. Signed-off-by: Harry Pan <harry.pan@intel.com> Acked-by: Pavel Machek <pavel@ucw.cz> [ rjw: Changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-04-01signal: don't silently convert SI_USER signals to non-current pidfdJann Horn
The current sys_pidfd_send_signal() silently turns signals with explicit SI_USER context that are sent to non-current tasks into signals with kernel-generated siginfo. This is unlike do_rt_sigqueueinfo(), which returns -EPERM in this case. If a user actually wants to send a signal with kernel-provided siginfo, they can do that with pidfd_send_signal(pidfd, sig, NULL, 0); so allowing this case is unnecessary. Instead of silently replacing the siginfo, just bail out with an error; this is consistent with other interfaces and avoids special-casing behavior based on security checks. Fixes: 3eb39f47934f ("signal: add pidfd_send_signal() syscall") Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Christian Brauner <christian@brauner.io>
2019-03-31Merge branch 'smp-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull CPU hotplug fixes from Thomas Gleixner: "Two SMT/hotplug related fixes: - Prevent crash when HOTPLUG_CPU is disabled and the CPU bringup aborts. This is triggered with the 'nosmt' command line option, but can happen by any abort condition. As the real unplug code is not compiled in, prevent the fail by keeping the CPU in zombie state. - Enforce HOTPLUG_CPU for SMP on x86 to avoid the above situation completely. With 'nosmt' being a popular option it's required to unplug the half brought up sibling CPUs (due to the MCE wreckage) completely" * 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/smp: Enforce CONFIG_HOTPLUG_CPU when SMP=y cpu/hotplug: Prevent crash when CPU bringup fails on CONFIG_HOTPLUG_CPU=n
2019-03-31Merge branch 'core-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core fixes from Thomas Gleixner: "A small set of core updates: - Make the watchdog respect the selected CPU mask again. That was broken by the rework of the watchdog thread management and caused inconsistent state and NMI watchdog being unstoppable. - Ensure that the objtool build can find the libelf location. - Remove dead kcore stub code" * 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: watchdog: Respect watchdog cpumask on CPU hotplug objtool: Query pkg-config for libelf location proc/kcore: Remove unused kclist_add_remap()
2019-03-29Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpfDavid S. Miller
Daniel Borkmann says: ==================== pull-request: bpf 2019-03-29 The following pull-request contains BPF updates for your *net* tree. The main changes are: 1) Bug fix in BTF deduplication that was mishandling an equivalence comparison, from Andrii. 2) libbpf Makefile fixes to properly link against libelf for the shared object and to actually export AF_XDP's xsk.h header, from Björn. 3) Fix use after free in bpf inode eviction, from Daniel. 4) Fix a bug in skb creation out of cpumap redirect, from Jesper. 5) Remove an unnecessary and triggerable WARN_ONCE() in max number of call stack frames checking in verifier, from Paul. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
2019-03-29xdp: fix cpumap redirect SKB creation bugJesper Dangaard Brouer
We want to avoid leaking pointer info from xdp_frame (that is placed in top of frame) like commit 6dfb970d3dbd ("xdp: avoid leaking info stored in frame data on page reuse"), and followup commit 97e19cce05e5 ("bpf: reserve xdp_frame size in xdp headroom") that reserve this headroom. These changes also affected how cpumap constructed SKBs, as xdpf->headroom size changed, the skb data starting point were in-effect shifted with 32 bytes (sizeof xdp_frame). This was still okay, as the cpumap frame_size calculation also included xdpf->headroom which were reduced by same amount. A bug was introduced in commit 77ea5f4cbe20 ("bpf/cpumap: make sure frame_size for build_skb is aligned if headroom isn't"), where the xdpf->headroom became part of the SKB_DATA_ALIGN rounding up. This round-up to find the frame_size is in principle still correct as it does not exceed the 2048 bytes frame_size (which is max for ixgbe and i40e), but the 32 bytes offset of pkt_data_start puts this over the 2048 bytes limit. This cause skb_shared_info to spill into next frame. It is a little hard to trigger, as the SKB need to use above 15 skb_shinfo->frags[] as far as I calculate. This does happen in practise for TCP streams when skb_try_coalesce() kicks in. KASAN can be used to detect these wrong memory accesses, I've seen: BUG: KASAN: use-after-free in skb_try_coalesce+0x3cb/0x760 BUG: KASAN: wild-memory-access in skb_release_data+0xe2/0x250 Driver veth also construct a SKB from xdp_frame in this way, but is not affected, as it doesn't reserve/deduct the room (used by xdp_frame) from the SKB headroom. Instead is clears the pointers via xdp_scrub_frame(), and allows SKB to use this area. The fix in this patch is to do like veth and instead allow SKB to (re)use the area occupied by xdp_frame, by clearing via xdp_scrub_frame(). (This does kill the idea of the SKB being able to access (mem) info from this area, but I guess it was a bad idea anyhow, and it was already killed by the veth changes.) Fixes: 77ea5f4cbe20 ("bpf/cpumap: make sure frame_size for build_skb is aligned if headroom isn't") Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-29bpf: Support variable offset stack access from helpersAndrey Ignatov
Currently there is a difference in how verifier checks memory access for helper arguments for PTR_TO_MAP_VALUE and PTR_TO_STACK with regard to variable part of offset. check_map_access, that is used for PTR_TO_MAP_VALUE, can handle variable offsets just fine, so that BPF program can call a helper like this: some_helper(map_value_ptr + off, size); , where offset is unknown at load time, but is checked by program to be in a safe rage (off >= 0 && off + size < map_value_size). But it's not the case for check_stack_boundary, that is used for PTR_TO_STACK, and same code with pointer to stack is rejected by verifier: some_helper(stack_value_ptr + off, size); For example: 0: (7a) *(u64 *)(r10 -16) = 0 1: (7a) *(u64 *)(r10 -8) = 0 2: (61) r2 = *(u32 *)(r1 +0) 3: (57) r2 &= 4 4: (17) r2 -= 16 5: (0f) r2 += r10 6: (18) r1 = 0xffff888111343a80 8: (85) call bpf_map_lookup_elem#1 invalid variable stack read R2 var_off=(0xfffffffffffffff0; 0x4) Add support for variable offset access to check_stack_boundary so that if offset is checked by program to be in a safe range it's accepted by verifier. Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-29ptrace: take into account saved_sigmask in PTRACE{GET,SET}SIGMASKAndrei Vagin
There are a few system calls (pselect, ppoll, etc) which replace a task sigmask while they are running in a kernel-space When a task calls one of these syscalls, the kernel saves a current sigmask in task->saved_sigmask and sets a syscall sigmask. On syscall-exit-stop, ptrace traps a task before restoring the saved_sigmask, so PTRACE_GETSIGMASK returns the syscall sigmask and PTRACE_SETSIGMASK does nothing, because its sigmask is replaced by saved_sigmask, when the task returns to user-space. This patch fixes this problem. PTRACE_GETSIGMASK returns saved_sigmask if it's set. PTRACE_SETSIGMASK drops the TIF_RESTORE_SIGMASK flag. Link: http://lkml.kernel.org/r/20181120060616.6043-1-avagin@gmail.com Fixes: 29000caecbe8 ("ptrace: add ability to get/set signal-blocked mask") Signed-off-by: Andrei Vagin <avagin@gmail.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29tick/broadcast: Fix warning about undefined tick_broadcast_oneshot_offline()Borislav Petkov
Randconfig builds with CONFIG_TICK_ONESHOT=y CONFIG_HOTPLUG_CPU=n trigger kernel/time/tick-broadcast.c:39:13: warning: ‘tick_broadcast_oneshot_offline’ \ declared ‘static’ but never defined [-Wunused-function] due to that function's definition missing. Move the CONFIG_HOTPLUG_CPU ifdeffery around its declaration too. Fixes: 1b72d4323798 ("tick: Remove outgoing CPU from broadcast masks") Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Mukesh Ojha <mojha@codeaurora.org> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: x86@kernel.org Link: https://lkml.kernel.org/r/20190329110508.6621-1-bp@alien8.de
2019-03-28kallsyms: store type information in its own arrayEugene Loh
When a module is loaded, its symbols' Elf_Sym information is stored in a symtab. Further, type information is also captured. Since Elf_Sym has no type field, historically the st_info field has been hijacked for storing type: st_info was overwritten. commit 5439c985c5a83a8419f762115afdf560ab72a452 ("module: Overwrite st_size instead of st_info") changes that practice, as its one-liner indicates. Unfortunately, this change overwrites symbol size, information that a tool like DTrace expects to find. Allocate a typetab array to store type information so that no Elf_Sym field needs to be overwritten. Fixes: 5439c985c5a8 ("module: Overwrite st_size instead of st_info") Signed-off-by: Eugene Loh <eugene.loh@oracle.com> Reviewed-by: Nick Alcock <nick.alcock@oracle.com> [jeyu: renamed typeoff -> typeoffs ] Signed-off-by: Jessica Yu <jeyu@kernel.org>
2019-03-28timekeeping: Force upper bound for setting CLOCK_REALTIMEThomas Gleixner
Several people reported testing failures after setting CLOCK_REALTIME close to the limits of the kernel internal representation in nanoseconds, i.e. year 2262. The failures are exposed in subsequent operations, i.e. when arming timers or when the advancing CLOCK_MONOTONIC makes the calculation of CLOCK_REALTIME overflow into negative space. Now people start to paper over the underlying problem by clamping calculations to the valid range, but that's just wrong because such workarounds will prevent detection of real issues as well. It is reasonable to force an upper bound for the various methods of setting CLOCK_REALTIME. Year 2262 is the absolute upper bound. Assume a maximum uptime of 30 years which is plenty enough even for esoteric embedded systems. That results in an upper bound of year 2232 for setting the time. Once that limit is reached in reality this limit is only a small part of the problem space. But until then this stops people from trying to paper over the problem at the wrong places. Reported-by: Xiongfeng Wang <wangxiongfeng2@huawei.com> Reported-by: Hongbo Yao <yaohongbo@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Stephen Boyd <sboyd@kernel.org> Cc: Miroslav Lichvar <mlichvar@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1903231125480.2157@nanos.tec.linutronix.de
2019-03-28cpu/hotplug: Prevent crash when CPU bringup fails on CONFIG_HOTPLUG_CPU=nThomas Gleixner
Tianyu reported a crash in a CPU hotplug teardown callback when booting a kernel which has CONFIG_HOTPLUG_CPU disabled with the 'nosmt' boot parameter. It turns out that the SMP=y CONFIG_HOTPLUG_CPU=n case has been broken forever in case that a bringup callback fails. Unfortunately this issue was not recognized when the CPU hotplug code was reworked, so the shortcoming just stayed in place. When a bringup callback fails, the CPU hotplug code rolls back the operation and takes the CPU offline. The 'nosmt' command line argument uses a bringup failure to abort the bringup of SMT sibling CPUs. This partial bringup is required due to the MCE misdesign on Intel CPUs. With CONFIG_HOTPLUG_CPU=y the rollback works perfectly fine, but CONFIG_HOTPLUG_CPU=n lacks essential mechanisms to exercise the low level teardown of a CPU including the synchronizations in various facilities like RCU, NOHZ and others. As a consequence the teardown callbacks which must be executed on the outgoing CPU within stop machine with interrupts disabled are executed on the control CPU in interrupt enabled and preemptible context causing the kernel to crash and burn. The pre state machine code has a different failure mode which is more subtle and resulting in a less obvious use after free crash because the control side frees resources which are still in use by the undead CPU. But this is not a x86 only problem. Any architecture which supports the SMP=y HOTPLUG_CPU=n combination suffers from the same issue. It's just less likely to be triggered because in 99.99999% of the cases all bringup callbacks succeed. The easy solution of making HOTPLUG_CPU mandatory for SMP is not working on all architectures as the following architectures have either no hotplug support at all or not all subarchitectures support it: alpha, arc, hexagon, openrisc, riscv, sparc (32bit), mips (partial). Crashing the kernel in such a situation is not an acceptable state either. Implement a minimal rollback variant by limiting the teardown to the point where all regular teardown callbacks have been invoked and leave the CPU in the 'dead' idle state. This has the following consequences: - the CPU is brought down to the point where the stop_machine takedown would happen. - the CPU stays there forever and is idle - The CPU is cleared in the CPU active mask, but not in the CPU online mask which is a legit state. - Interrupts are not forced away from the CPU - All facilities which only look at online mask would still see it, but that is the case during normal hotplug/unplug operations as well. It's just a (way) longer time frame. This will expose issues, which haven't been exposed before or only seldom, because now the normally transient state of being non active but online is a permanent state. In testing this exposed already an issue vs. work queues where the vmstat code schedules work on the almost dead CPU which ends up in an unbound workqueue and triggers 'preemtible context' warnings. This is not a problem of this change, it merily exposes an already existing issue. Still this is better than crashing fully without a chance to debug it. This is mainly thought as workaround for those architectures which do not support HOTPLUG_CPU. All others should enforce HOTPLUG_CPU for SMP. Fixes: 2e1a3483ce74 ("cpu/hotplug: Split out the state walk into functions") Reported-by: Tianyu Lan <Tianyu.Lan@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Tianyu Lan <Tianyu.Lan@microsoft.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Konrad Wilk <konrad.wilk@oracle.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Mukesh Ojha <mojha@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Rik van Riel <riel@surriel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Micheal Kelley <michael.h.kelley@microsoft.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: K. Y. Srinivasan <kys@microsoft.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190326163811.503390616@linutronix.de
2019-03-28watchdog: Respect watchdog cpumask on CPU hotplugThomas Gleixner
The rework of the watchdog core to use cpu_stop_work broke the watchdog cpumask on CPU hotplug. The watchdog_enable/disable() functions are now called unconditionally from the hotplug callback, i.e. even on CPUs which are not in the watchdog cpumask. As a consequence the watchdog can become unstoppable. Only invoke them when the plugged CPU is in the watchdog cpumask. Fixes: 9cf57731b63e ("watchdog/softlockup: Replace "watchdog/%u" threads with cpu_stop_work") Reported-by: Maxime Coquelin <maxime.coquelin@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Maxime Coquelin <maxime.coquelin@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Don Zickus <dzickus@redhat.com> Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1903262245490.1789@nanos.tec.linutronix.de