Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit
Pull audit updates from Paul Moore:
"Two small audit patches:
- Use the KMEM_CACHE() macro instead of kmem_cache_create()
The guidance appears to be to use the KMEM_CACHE() macro when
possible and there is no reason why we can't use the macro, so
let's use it.
- Remove an unnecessary assignment in audit_dupe_lsm_field()
A return value variable was assigned a value in its declaration,
but the declaration value is overwritten before the return value
variable is ever referenced; drop the assignment at declaration
time"
* tag 'audit-pr-20240312' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit:
audit: use KMEM_CACHE() instead of kmem_cache_create()
audit: remove unnecessary assignment in audit_dupe_lsm_field()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardening updates from Kees Cook:
"As is pretty normal for this tree, there are changes all over the
place, especially for small fixes, selftest improvements, and improved
macro usability.
Some header changes ended up landing via this tree as they depended on
the string header cleanups. Also, a notable set of changes is the work
for the reintroduction of the UBSAN signed integer overflow sanitizer
so that we can continue to make improvements on the compiler side to
make this sanitizer a more viable future security hardening option.
Summary:
- string.h and related header cleanups (Tanzir Hasan, Andy
Shevchenko)
- VMCI memcpy() usage and struct_size() cleanups (Vasiliy Kovalev,
Harshit Mogalapalli)
- selftests/powerpc: Fix load_unaligned_zeropad build failure
(Michael Ellerman)
- hardened Kconfig fragment updates (Marco Elver, Lukas Bulwahn)
- Handle tail call optimization better in LKDTM (Douglas Anderson)
- Use long form types in overflow.h (Andy Shevchenko)
- Add flags param to string_get_size() (Andy Shevchenko)
- Add Coccinelle script for potential struct_size() use (Jacob
Keller)
- Fix objtool corner case under KCFI (Josh Poimboeuf)
- Drop 13 year old backward compat CAP_SYS_ADMIN check (Jingzi Meng)
- Add str_plural() helper (Michal Wajdeczko, Kees Cook)
- Ignore relocations in .notes section
- Add comments to explain how __is_constexpr() works
- Fix m68k stack alignment expectations in stackinit Kunit test
- Convert string selftests to KUnit
- Add KUnit tests for fortified string functions
- Improve reporting during fortified string warnings
- Allow non-type arg to type_max() and type_min()
- Allow strscpy() to be called with only 2 arguments
- Add binary mode to leaking_addresses scanner
- Various small cleanups to leaking_addresses scanner
- Adding wrapping_*() arithmetic helper
- Annotate initial signed integer wrap-around in refcount_t
- Add explicit UBSAN section to MAINTAINERS
- Fix UBSAN self-test warnings
- Simplify UBSAN build via removal of CONFIG_UBSAN_SANITIZE_ALL
- Reintroduce UBSAN's signed overflow sanitizer"
* tag 'hardening-v6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (51 commits)
selftests/powerpc: Fix load_unaligned_zeropad build failure
string: Convert helpers selftest to KUnit
string: Convert selftest to KUnit
sh: Fix build with CONFIG_UBSAN=y
compiler.h: Explain how __is_constexpr() works
overflow: Allow non-type arg to type_max() and type_min()
VMCI: Fix possible memcpy() run-time warning in vmci_datagram_invoke_guest_handler()
lib/string_helpers: Add flags param to string_get_size()
x86, relocs: Ignore relocations in .notes section
objtool: Fix UNWIND_HINT_{SAVE,RESTORE} across basic blocks
overflow: Use POD in check_shl_overflow()
lib: stackinit: Adjust target string to 8 bytes for m68k
sparc: vdso: Disable UBSAN instrumentation
kernel.h: Move lib/cmdline.c prototypes to string.h
leaking_addresses: Provide mechanism to scan binary files
leaking_addresses: Ignore input device status lines
leaking_addresses: Use File::Temp for /tmp files
MAINTAINERS: Update LEAKING_ADDRESSES details
fortify: Improve buffer overflow reporting
fortify: Add KUnit tests for runtime overflows
...
|
|
The functions are only used in the file where they are defined. Remove
them from the header and make them static.
Also guard proc_soft_watchdog with a #define-guard as it is not used
otherwise.
Link: https://lkml.kernel.org/r/20240306-const-sysctl-prep-watchdog-v1-1-bd45da3a41cf@weissschuh.net
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When the trace_pipe_raw file is closed, there should be no new readers on
the file descriptor. This is mostly handled with the waking and wait_index
fields of the iterator. But there's still a slight race.
CPU 0 CPU 1
----- -----
wait_index++;
index = wait_index;
ring_buffer_wake_waiters();
wait_on_pipe()
ring_buffer_wait();
The ring_buffer_wait() will miss the wakeup from CPU 1. The problem is
that the ring_buffer_wait() needs the logic of:
prepare_to_wait();
if (!condition)
schedule();
Where the missing condition check is the iter->wait_index update.
Have the ring_buffer_wait() take a conditional callback function and a
data parameter that can be used within the wait_event_interruptible() of
the ring_buffer_wait() function.
In wait_on_pipe(), pass a condition function that will check if the
wait_index has been updated, if it has, it will return true to break out
of the wait_event_interruptible() loop.
Create a new field "closed" in the trace_iterator and set it in the
.flush() callback before calling ring_buffer_wake_waiters().
This will keep any new readers from waiting on a closed file descriptor.
Have the wait_on_pipe() condition callback also check the closed field.
Change the wait_index field of the trace_iterator to atomic_t. There's no
reason it needs to be 'long' and making it atomic and using
atomic_read_acquire() and atomic_fetch_inc_release() will provide the
necessary memory barriers.
Add a "woken" flag to tracing_buffers_splice_read() to exit the loop after
one more try to fetch data. That is, if it waited for data and something
woke it up, it should try to collect any new data and then exit back to
user space.
Link: https://lore.kernel.org/linux-trace-kernel/CAHk-=wgsNgewHFxZAJiAQznwPMqEtQmi1waeS2O1v6L4c_Um5A@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240312121703.557950713@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0790 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Convert ring_buffer_wait() over to wait_event_interruptible(). The default
condition is to execute the wait loop inside __wait_event() just once.
This does not change the ring_buffer_wait() prototype yet, but
restructures the code so that it can take a "cond" and "data" parameter
and will call wait_event_interruptible() with a helper function as the
condition.
The helper function (rb_wait_cond) takes the cond function and data
parameters. It will first check if the buffer hit the watermark defined by
the "full" parameter and then call the passed in condition parameter. If
either are true, it returns true.
If rb_wait_cond() does not return true, it will set the appropriate
"waiters_pending" flag and returns false.
Link: https://lore.kernel.org/linux-trace-kernel/CAHk-=wgsNgewHFxZAJiAQznwPMqEtQmi1waeS2O1v6L4c_Um5A@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240312121703.399598519@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0790 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The check for knowing if the poll should wait or not is basically the
exact same logic as rb_watermark_hit(). The only difference is that
rb_watermark_hit() also handles the !full case. But for the full case, the
logic is the same. Just call that instead of duplicating the code in
ring_buffer_poll_wait().
Link: https://lore.kernel.org/linux-trace-kernel/20240312131952.802267543@goodmis.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
If a reader of the ring buffer is doing a poll, and waiting for the ring
buffer to hit a specific watermark, there could be a case where it gets
into an infinite ping-pong loop.
The poll code has:
rbwork->full_waiters_pending = true;
if (!cpu_buffer->shortest_full ||
cpu_buffer->shortest_full > full)
cpu_buffer->shortest_full = full;
The writer will see full_waiters_pending and check if the ring buffer is
filled over the percentage of the shortest_full value. If it is, it calls
an irq_work to wake up all the waiters.
But the code could get into a circular loop:
CPU 0 CPU 1
----- -----
[ Poll ]
[ shortest_full = 0 ]
rbwork->full_waiters_pending = true;
if (rbwork->full_waiters_pending &&
[ buffer percent ] > shortest_full) {
rbwork->wakeup_full = true;
[ queue_irqwork ]
cpu_buffer->shortest_full = full;
[ IRQ work ]
if (rbwork->wakeup_full) {
cpu_buffer->shortest_full = 0;
wakeup poll waiters;
[woken]
if ([ buffer percent ] > full)
break;
rbwork->full_waiters_pending = true;
if (rbwork->full_waiters_pending &&
[ buffer percent ] > shortest_full) {
rbwork->wakeup_full = true;
[ queue_irqwork ]
cpu_buffer->shortest_full = full;
[ IRQ work ]
if (rbwork->wakeup_full) {
cpu_buffer->shortest_full = 0;
wakeup poll waiters;
[woken]
[ Wash, rinse, repeat! ]
In the poll, the shortest_full needs to be set before the
full_pending_waiters, as once that is set, the writer will compare the
current shortest_full (which is incorrect) to decide to call the irq_work,
which will reset the shortest_full (expecting the readers to update it).
Also move the setting of full_waiters_pending after the check if the ring
buffer has the required percentage filled. There's no reason to tell the
writer to wake up waiters if there are no waiters.
Link: https://lore.kernel.org/linux-trace-kernel/20240312131952.630922155@goodmis.org
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 42fb0a1e84ff5 ("tracing/ring-buffer: Have polling block on watermark")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The rb_watermark_hit() checks if the amount of data in the ring buffer is
above the percentage level passed in by the "full" variable. If it is, it
returns true.
But it also sets the "shortest_full" field of the cpu_buffer that informs
writers that it needs to call the irq_work if the amount of data on the
ring buffer is above the requested amount.
The rb_watermark_hit() always sets the shortest_full even if the amount in
the ring buffer is what it wants. As it is not going to wait, because it
has what it wants, there's no reason to set shortest_full.
Link: https://lore.kernel.org/linux-trace-kernel/20240312115641.6aa8ba08@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 42fb0a1e84ff5 ("tracing/ring-buffer: Have polling block on watermark")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
When a probe is registered at the trace_sys_enter() tracepoint, and that
probe changes the system call number, the old system call still gets
executed. This worked correctly until commit b6ec41346103 ("core/entry:
Report syscall correctly for trace and audit"), which removed the
re-evaluation of the syscall number after the trace point.
Restore the original semantics by re-evaluating the system call number
after trace_sys_enter().
The performance impact of this re-evaluation is minimal because it only
takes place when a trace point is active, and compared to the actual trace
point overhead the read from a cache hot variable is negligible.
Fixes: b6ec41346103 ("core/entry: Report syscall correctly for trace and audit")
Signed-off-by: André Rösti <an.roesti@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240311211704.7262-1-an.roesti@gmail.com
|
|
The 'idle_balance()' function hasn't existed for years, and there's no
load_balance_newidle() either - both are sched_balance_newidle() today.
Reported-by: Honglei Wang <jameshongleiwang@126.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/ZfAwNufbiyt/5biu@gmail.com
|
|
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.
Also use 'dst' instead of 'idlest', because it's not really
true that we return the 'idlest' group or CPU, we sort by
idle-exit latency and only return the idlest CPUs from the
lowest-latency set of CPUs.
The true 'idlest' CPUs often remain idle for a long time
and are never returned as long as the system is under-loaded.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-14-mingo@kernel.org
|
|
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.
Also use 'dst' instead of 'idlest', because it's not really
true that we return the 'idlest' group or CPU, we sort by
idle-exit latency and only return the idlest CPUs from the
lowest-latency set of CPUs.
The true 'idlest' CPUs often remain idle for a long time
and are never returned as long as the system is under-loaded.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-13-mingo@kernel.org
|
|
sched_balance_find_dst_group_cpu()
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.
Also use 'dst' instead of 'idlest': while historically correct,
today it's not really true anymore that we return the 'idlest'
group or CPU, we sort by idle-exit latency and only return the
idlest CPUs from the lowest-latency set of CPUs.
The true 'idlest' CPUs often remain idle for a long time
and are never returned as long as the system is under-loaded.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-12-mingo@kernel.org
|
|
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-11-mingo@kernel.org
|
|
sched_balance_update_blocked_averages()
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-10-mingo@kernel.org
|
|
Make two naming changes:
1)
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.
2)
Similar to find_busiest_queue(), the find_busiest_group() naming
has become a bit of a misnomer: the 'busiest' qualifier to this
function was historically correct but in the current code
in quite a few cases we will not pick the 'busiest' group - but the best
(possible) group we can balance from based on a complex set of
constraints.
So name it a bit more neutrally, similar to the 'src/dst' nomenclature
we are already using when moving tasks between runqueues, and also
use the sched_balance_ prefix: sched_balance_find_src_group().
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-9-mingo@kernel.org
|
|
The find_busiest_queue() naming has two small quirks:
- Scheduler functions that deal with runqueues usually have a rq_ prefix
or _rq postfix, but this function has neither.
- Plus the 'busiest' qualifier to this function was historically
correct, but has become somewhat of a misnomer: in quite a few
cases we will not pick the busiest runqueue - but the best
(possible) runqueue we can balance tasks from. So name it a
bit more neutrally, similar to the 'src/dst' nomenclature
we are already using when moving tasks between runqueues.
To fix both quirks, and to standardize scheduler load-balancing
function names on the sched_balance_() prefix, rename the
function to sched_balance_find_src_rq().
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-7-mingo@kernel.org
|
|
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.
Also load_balance() has become somewhat of a misnomer: historically
it was the first and primary load-balancing function that was called,
but with the introduction of sched domains, it's become a lower
layer function that balances runqueues.
Rename it to sched_balance_rq() accordingly.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-6-mingo@kernel.org
|
|
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-5-mingo@kernel.org
|
|
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-4-mingo@kernel.org
|
|
- Standardize on prefixing scheduler-internal functions defined
in <linux/sched.h> with sched_*() prefix. scheduler_tick() was
the only function using the scheduler_ prefix. Harmonize it.
- The other reason to rename it is the NOHZ scheduler tick
handling functions are already named sched_tick_*().
Make the 'git grep sched_tick' more meaningful.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-3-mingo@kernel.org
|
|
run_rebalance_domains() is a misnomer, as it doesn't only
run rebalance_domains(), but since the introduction of the
NOHZ code it also runs nohz_idle_balance().
Rename it to sched_balance_softirq(), reflecting its more
generic purpose and that it's a softirq handler.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-2-mingo@kernel.org
|
|
sd_lb_stats'
- Align for readability
- Capitalize consistently
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-11-mingo@kernel.org
|
|
'struct sd_lb_stats'
Make them easier to read.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-10-mingo@kernel.org
|
|
The first sentence of the comment explaining run_rebalance_domains()
is historic and not true anymore:
* run_rebalance_domains is triggered when needed from the scheduler tick.
... contradicted/modified by the second sentence:
* Also triggered for NOHZ idle balancing (with NOHZ_BALANCE_KICK set).
Avoid that kind of confusion straight away and explain from what
places sched_balance_softirq() is triggered.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-9-mingo@kernel.org
|
|
Fix two typos:
- There's no such thing as 'nohz_balancing_kick', the
flag is named 'BALANCE' and is capitalized: NOHZ_BALANCE_KICK.
- Likewise there's no such thing as a 'pending nohz_balance_kick'
either, the NOHZ_BALANCE_KICK flag is all upper-case.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-8-mingo@kernel.org
|
|
marker lines
So the scheduler has two such comment blocks, with '=' used as a double underline:
/*
* VRUNTIME
* ========
*
'========' also happens to be a Git conflict marker, throwing off a simple
search in an editor for this pattern.
Change them to '-------' type of underline instead - it looks just as good.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-7-mingo@kernel.org
|
|
We changed the order of definitions within 'enum cpu_idle_type',
which changed the order of [CPU_MAX_IDLE_TYPES] columns in
show_schedstat().
Suggested-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: "Gautham R. Shenoy" <gautham.shenoy@amd.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-5-mingo@kernel.org
|
|
The cpu_idle_type enum has the confusingly inverted property
that 'not idle' is 1, and 'idle' is '0'.
This resulted in a number of unnecessary complications in the code.
Reverse the order, remove the CPU_NOT_IDLE type, and convert
all code to a natural boolean form.
It's much more readable:
- enum cpu_idle_type idle = this_rq->idle_balance ?
- CPU_IDLE : CPU_NOT_IDLE;
-
+ enum cpu_idle_type idle = this_rq->idle_balance;
--------------------------------
- if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
+ if (!env->idle || !busiest->sum_nr_running)
--------------------------------
And gets rid of the double negation in these usages:
- if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
+ if (env->idle && env->src_rq->nr_running <= 1)
Furthermore, this makes code much more obvious where there's
differentiation between CPU_IDLE and CPU_NEWLY_IDLE.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: "Gautham R. Shenoy" <gautham.shenoy@amd.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-4-mingo@kernel.org
|
|
iterating [CPU_MAX_IDLE_TYPES] arrays in show_schedstat()
show_schedstat() output breaks and doesn't print all entries
if the ordering of the definitions in 'enum cpu_idle_type' is changed,
because show_schedstat() assumes that 'CPU_IDLE' is 0.
Fix it before we change the definition order & values.
[ mingo: Added changelog. ]
Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-3-mingo@kernel.org
|
|
'atomic_t sched_balance_running' flag
The 'balancing' spinlock added in:
08c183f31bdb ("[PATCH] sched: add option to serialize load balancing")
... is taken when the SD_SERIALIZE flag is set in a domain, but in reality it
is a glorified global atomic flag serializing the load-balancing of
those domains.
It doesn't have any explicit locking semantics per se: we just
spin_trylock() it.
Turn it into a ... global atomic flag. This makes it more
clear what is going on here, and reduces overhead and code
size a bit:
# kernel/sched/fair.o: [x86-64 defconfig]
text data bss dec hex filename
60730 2721 104 63555 f843 fair.o.before
60718 2721 104 63543 f837 fair.o.after
Also document the flag a bit.
No change in functionality intended.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Cc: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-2-mingo@kernel.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core x86 updates from Ingo Molnar:
- The biggest change is the rework of the percpu code, to support the
'Named Address Spaces' GCC feature, by Uros Bizjak:
- This allows C code to access GS and FS segment relative memory
via variables declared with such attributes, which allows the
compiler to better optimize those accesses than the previous
inline assembly code.
- The series also includes a number of micro-optimizations for
various percpu access methods, plus a number of cleanups of %gs
accesses in assembly code.
- These changes have been exposed to linux-next testing for the
last ~5 months, with no known regressions in this area.
- Fix/clean up __switch_to()'s broken but accidentally working handling
of FPU switching - which also generates better code
- Propagate more RIP-relative addressing in assembly code, to generate
slightly better code
- Rework the CPU mitigations Kconfig space to be less idiosyncratic, to
make it easier for distros to follow & maintain these options
- Rework the x86 idle code to cure RCU violations and to clean up the
logic
- Clean up the vDSO Makefile logic
- Misc cleanups and fixes
* tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
x86/idle: Select idle routine only once
x86/idle: Let prefer_mwait_c1_over_halt() return bool
x86/idle: Cleanup idle_setup()
x86/idle: Clean up idle selection
x86/idle: Sanitize X86_BUG_AMD_E400 handling
sched/idle: Conditionally handle tick broadcast in default_idle_call()
x86: Increase brk randomness entropy for 64-bit systems
x86/vdso: Move vDSO to mmap region
x86/vdso/kbuild: Group non-standard build attributes and primary object file rules together
x86/vdso: Fix rethunk patching for vdso-image-{32,64}.o
x86/retpoline: Ensure default return thunk isn't used at runtime
x86/vdso: Use CONFIG_COMPAT_32 to specify vdso32
x86/vdso: Use $(addprefix ) instead of $(foreach )
x86/vdso: Simplify obj-y addition
x86/vdso: Consolidate targets and clean-files
x86/bugs: Rename CONFIG_RETHUNK => CONFIG_MITIGATION_RETHUNK
x86/bugs: Rename CONFIG_CPU_SRSO => CONFIG_MITIGATION_SRSO
x86/bugs: Rename CONFIG_CPU_IBRS_ENTRY => CONFIG_MITIGATION_IBRS_ENTRY
x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY => CONFIG_MITIGATION_UNRET_ENTRY
x86/bugs: Rename CONFIG_SLS => CONFIG_MITIGATION_SLS
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Fix inconsistency in misfit task load-balancing
- Fix CPU isolation bugs in the task-wakeup logic
- Rework and unify the sched_use_asym_prio() and sched_asym_prefer()
logic
- Clean up and simplify ->avg_* accesses
- Misc cleanups and fixes
* tag 'sched-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/topology: Rename SD_SHARE_PKG_RESOURCES to SD_SHARE_LLC
sched/fair: Check the SD_ASYM_PACKING flag in sched_use_asym_prio()
sched/fair: Rework sched_use_asym_prio() and sched_asym_prefer()
sched/fair: Remove unused parameter from sched_asym()
sched/topology: Remove duplicate descriptions from TOPOLOGY_SD_FLAGS
sched/fair: Simplify the update_sd_pick_busiest() logic
sched/fair: Do strict inequality check for busiest misfit task group
sched/fair: Remove unnecessary goto in update_sd_lb_stats()
sched/fair: Take the scheduling domain into account in select_idle_core()
sched/fair: Take the scheduling domain into account in select_idle_smt()
sched/fair: Add READ_ONCE() and use existing helper function to access ->avg_irq
sched/fair: Use existing helper functions to access ->avg_rt and ->avg_dl
sched/core: Simplify code by removing duplicate #ifdefs
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
- Micro-optimize local_xchg() and the rtmutex code on x86
- Fix percpu-rwsem contention tracepoints
- Simplify debugging Kconfig dependencies
- Update/clarify the documentation of atomic primitives
- Misc cleanups
* tag 'locking-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/rtmutex: Use try_cmpxchg_relaxed() in mark_rt_mutex_waiters()
locking/x86: Implement local_xchg() using CMPXCHG without the LOCK prefix
locking/percpu-rwsem: Trigger contention tracepoints only if contended
locking/rwsem: Make DEBUG_RWSEMS and PREEMPT_RT mutually exclusive
locking/rwsem: Clarify that RWSEM_READER_OWNED is just a hint
locking/mutex: Simplify <linux/mutex.h>
locking/qspinlock: Fix 'wait_early' set but not used warning
locking/atomic: scripts: Clarify ordering of conditional atomics
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Alexei Starovoitov says:
====================
pull-request: bpf-next 2024-03-11
We've added 59 non-merge commits during the last 9 day(s) which contain
a total of 88 files changed, 4181 insertions(+), 590 deletions(-).
The main changes are:
1) Enforce VM_IOREMAP flag and range in ioremap_page_range and introduce
VM_SPARSE kind and vm_area_[un]map_pages to be used in bpf_arena,
from Alexei.
2) Introduce bpf_arena which is sparse shared memory region between bpf
program and user space where structures inside the arena can have
pointers to other areas of the arena, and pointers work seamlessly for
both user-space programs and bpf programs, from Alexei and Andrii.
3) Introduce may_goto instruction that is a contract between the verifier
and the program. The verifier allows the program to loop assuming it's
behaving well, but reserves the right to terminate it, from Alexei.
4) Use IETF format for field definitions in the BPF standard
document, from Dave.
5) Extend struct_ops libbpf APIs to allow specify version suffixes for
stuct_ops map types, share the same BPF program between several map
definitions, and other improvements, from Eduard.
6) Enable struct_ops support for more than one page in trampolines,
from Kui-Feng.
7) Support kCFI + BPF on riscv64, from Puranjay.
8) Use bpf_prog_pack for arm64 bpf trampoline, from Puranjay.
9) Fix roundup_pow_of_two undefined behavior on 32-bit archs, from Toke.
====================
Link: https://lore.kernel.org/r/20240312003646.8692-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
prog->aux->sleepable is checked very frequently as part of (some) BPF
program run hot paths. So this extra aux indirection seems wasteful and
on busy systems might cause unnecessary memory cache misses.
Let's move sleepable flag into prog itself to eliminate unnecessary
pointer dereference.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Message-ID: <20240309004739.2961431-1-andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
On some architectures like ARM64, PMD_SIZE can be really large in some
configurations. Like with CONFIG_ARM64_64K_PAGES=y the PMD_SIZE is
512MB.
Use 2MB * num_possible_nodes() as the size for allocations done through
the prog pack allocator. On most architectures, PMD_SIZE will be equal
to 2MB in case of 4KB pages and will be greater than 2MB for bigger page
sizes.
Fixes: ea2babac63d4 ("bpf: Simplify bpf_prog_pack_[size|mask]")
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Closes: https://lore.kernel.org/all/7e216c88-77ee-47b8-becc-a0f780868d3c@sirena.org.uk/
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202403092219.dhgcuz2G-lkp@intel.com/
Suggested-by: Song Liu <song@kernel.org>
Signed-off-by: Puranjay Mohan <puranjay12@gmail.com>
Message-ID: <20240311122722.86232-1-puranjay12@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 APIC updates from Thomas Gleixner:
"Rework of APIC enumeration and topology evaluation.
The current implementation has a couple of shortcomings:
- It fails to handle hybrid systems correctly.
- The APIC registration code which handles CPU number assignents is
in the middle of the APIC code and detached from the topology
evaluation.
- The various mechanisms which enumerate APICs, ACPI, MPPARSE and
guest specific ones, tweak global variables as they see fit or in
case of XENPV just hack around the generic mechanisms completely.
- The CPUID topology evaluation code is sprinkled all over the vendor
code and reevaluates global variables on every hotplug operation.
- There is no way to analyze topology on the boot CPU before bringing
up the APs. This causes problems for infrastructure like PERF which
needs to size certain aspects upfront or could be simplified if
that would be possible.
- The APIC admission and CPU number association logic is
incomprehensible and overly complex and needs to be kept around
after boot instead of completing this right after the APIC
enumeration.
This update addresses these shortcomings with the following changes:
- Rework the CPUID evaluation code so it is common for all vendors
and provides information about the APIC ID segments in a uniform
way independent of the number of segments (Thread, Core, Module,
..., Die, Package) so that this information can be computed instead
of rewriting global variables of dubious value over and over.
- A few cleanups and simplifcations of the APIC, IO/APIC and related
interfaces to prepare for the topology evaluation changes.
- Seperation of the parser stages so the early evaluation which tries
to find the APIC address can be seperately overridden from the late
evaluation which enumerates and registers the local APIC as further
preparation for sanitizing the topology evaluation.
- A new registration and admission logic which
- encapsulates the inner workings so that parsers and guest logic
cannot longer fiddle in it
- uses the APIC ID segments to build topology bitmaps at
registration time
- provides a sane admission logic
- allows to detect the crash kernel case, where CPU0 does not run
on the real BSP, automatically. This is required to prevent
sending INIT/SIPI sequences to the real BSP which would reset
the whole machine. This was so far handled by a tedious command
line parameter, which does not even work in nested crash
scenarios.
- Associates CPU number after the enumeration completed and
prevents the late registration of APICs, which was somehow
tolerated before.
- Converting all parsers and guest enumeration mechanisms over to the
new interfaces.
This allows to get rid of all global variable tweaking from the
parsers and enumeration mechanisms and sanitizes the XEN[PV]
handling so it can use CPUID evaluation for the first time.
- Mopping up existing sins by taking the information from the APIC ID
segment bitmaps.
This evaluates hybrid systems correctly on the boot CPU and allows
for cleanups and fixes in the related drivers, e.g. PERF.
The series has been extensively tested and the minimal late fallout
due to a broken ACPI/MADT table has been addressed by tightening the
admission logic further"
* tag 'x86-apic-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (76 commits)
x86/topology: Ignore non-present APIC IDs in a present package
x86/apic: Build the x86 topology enumeration functions on UP APIC builds too
smp: Provide 'setup_max_cpus' definition on UP too
smp: Avoid 'setup_max_cpus' namespace collision/shadowing
x86/bugs: Use fixed addressing for VERW operand
x86/cpu/topology: Get rid of cpuinfo::x86_max_cores
x86/cpu/topology: Provide __num_[cores|threads]_per_package
x86/cpu/topology: Rename topology_max_die_per_package()
x86/cpu/topology: Rename smp_num_siblings
x86/cpu/topology: Retrieve cores per package from topology bitmaps
x86/cpu/topology: Use topology logical mapping mechanism
x86/cpu/topology: Provide logical pkg/die mapping
x86/cpu/topology: Simplify cpu_mark_primary_thread()
x86/cpu/topology: Mop up primary thread mask handling
x86/cpu/topology: Use topology bitmaps for sizing
x86/cpu/topology: Let XEN/PV use topology from CPUID/MADT
x86/xen/smp_pv: Count number of vCPUs early
x86/cpu/topology: Assign hotpluggable CPUIDs during init
x86/cpu/topology: Reject unknown APIC IDs on ACPI hotplug
x86/topology: Add a mechanism to track topology via APIC IDs
...
|
|
In global bpf functions recognize btf_decl_tag("arg:arena") as PTR_TO_ARENA.
Note, when the verifier sees:
__weak void foo(struct bar *p)
it recognizes 'p' as PTR_TO_MEM and 'struct bar' has to be a struct with scalars.
Hence the only way to use arena pointers in global functions is to tag them with "arg:arena".
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-7-alexei.starovoitov@gmail.com
|
|
rY = addr_space_cast(rX, 0, 1) tells the verifier that rY->type = PTR_TO_ARENA.
Any further operations on PTR_TO_ARENA register have to be in 32-bit domain.
The verifier will mark load/store through PTR_TO_ARENA with PROBE_MEM32.
JIT will generate them as kern_vm_start + 32bit_addr memory accesses.
rY = addr_space_cast(rX, 1, 0) tells the verifier that rY->type = unknown scalar.
If arena->map_flags has BPF_F_NO_USER_CONV set then convert cast_user to mov32 as well.
Otherwise JIT will convert it to:
rY = (u32)rX;
if (rY)
rY |= arena->user_vm_start & ~(u64)~0U;
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240308010812.89848-6-alexei.starovoitov@gmail.com
|
|
LLVM generates bpf_addr_space_cast instruction while translating
pointers between native (zero) address space and
__attribute__((address_space(N))).
The addr_space=1 is reserved as bpf_arena address space.
rY = addr_space_cast(rX, 0, 1) is processed by the verifier and
converted to normal 32-bit move: wX = wY
rY = addr_space_cast(rX, 1, 0) has to be converted by JIT:
aux_reg = upper_32_bits of arena->user_vm_start
aux_reg <<= 32
wX = wY // clear upper 32 bits of dst register
if (wX) // if not zero add upper bits of user_vm_start
wX |= aux_reg
JIT can do it more efficiently:
mov dst_reg32, src_reg32 // 32-bit move
shl dst_reg, 32
or dst_reg, user_vm_start
rol dst_reg, 32
xor r11, r11
test dst_reg32, dst_reg32 // check if lower 32-bit are zero
cmove r11, dst_reg // if so, set dst_reg to zero
// Intel swapped src/dst register encoding in CMOVcc
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-5-alexei.starovoitov@gmail.com
|
|
LLVM generates rX = addr_space_cast(rY, dst_addr_space, src_addr_space)
instruction when pointers in non-zero address space are used by the bpf
program. Recognize this insn in uapi and in bpf disassembler.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-3-alexei.starovoitov@gmail.com
|
|
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"A large set of updates and features for timers and timekeeping:
- The hierarchical timer pull model
When timer wheel timers are armed they are placed into the timer
wheel of a CPU which is likely to be busy at the time of expiry.
This is done to avoid wakeups on potentially idle CPUs.
This is wrong in several aspects:
1) The heuristics to select the target CPU are wrong by
definition as the chance to get the prediction right is
close to zero.
2) Due to #1 it is possible that timers are accumulated on
a single target CPU
3) The required computation in the enqueue path is just overhead
for dubious value especially under the consideration that the
vast majority of timer wheel timers are either canceled or
rearmed before they expire.
The timer pull model avoids the above by removing the target
computation on enqueue and queueing timers always on the CPU on
which they get armed.
This is achieved by having separate wheels for CPU pinned timers
and global timers which do not care about where they expire.
As long as a CPU is busy it handles both the pinned and the global
timers which are queued on the CPU local timer wheels.
When a CPU goes idle it evaluates its own timer wheels:
- If the first expiring timer is a pinned timer, then the global
timers can be ignored as the CPU will wake up before they
expire.
- If the first expiring timer is a global timer, then the expiry
time is propagated into the timer pull hierarchy and the CPU
makes sure to wake up for the first pinned timer.
The timer pull hierarchy organizes CPUs in groups of eight at the
lowest level and at the next levels groups of eight groups up to
the point where no further aggregation of groups is required, i.e.
the number of levels is log8(NR_CPUS). The magic number of eight
has been established by experimention, but can be adjusted if
needed.
In each group one busy CPU acts as the migrator. It's only one CPU
to avoid lock contention on remote timer wheels.
The migrator CPU checks in its own timer wheel handling whether
there are other CPUs in the group which have gone idle and have
global timers to expire. If there are global timers to expire, the
migrator locks the remote CPU timer wheel and handles the expiry.
Depending on the group level in the hierarchy this handling can
require to walk the hierarchy downwards to the CPU level.
Special care is taken when the last CPU goes idle. At this point
the CPU is the systemwide migrator at the top of the hierarchy and
it therefore cannot delegate to the hierarchy. It needs to arm its
own timer device to expire either at the first expiring timer in
the hierarchy or at the first CPU local timer, which ever expires
first.
This completely removes the overhead from the enqueue path, which
is e.g. for networking a true hotpath and trades it for a slightly
more complex idle path.
This has been in development for a couple of years and the final
series has been extensively tested by various teams from silicon
vendors and ran through extensive CI.
There have been slight performance improvements observed on network
centric workloads and an Intel team confirmed that this allows them
to power down a die completely on a mult-die socket for the first
time in a mostly idle scenario.
There is only one outstanding ~1.5% regression on a specific
overloaded netperf test which is currently investigated, but the
rest is either positive or neutral performance wise and positive on
the power management side.
- Fixes for the timekeeping interpolation code for cross-timestamps:
cross-timestamps are used for PTP to get snapshots from hardware
timers and interpolated them back to clock MONOTONIC. The changes
address a few corner cases in the interpolation code which got the
math and logic wrong.
- Simplifcation of the clocksource watchdog retry logic to
automatically adjust to handle larger systems correctly instead of
having more incomprehensible command line parameters.
- Treewide consolidation of the VDSO data structures.
- The usual small improvements and cleanups all over the place"
* tag 'timers-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits)
timer/migration: Fix quick check reporting late expiry
tick/sched: Fix build failure for CONFIG_NO_HZ_COMMON=n
vdso/datapage: Quick fix - use asm/page-def.h for ARM64
timers: Assert no next dyntick timer look-up while CPU is offline
tick: Assume timekeeping is correctly handed over upon last offline idle call
tick: Shut down low-res tick from dying CPU
tick: Split nohz and highres features from nohz_mode
tick: Move individual bit features to debuggable mask accesses
tick: Move got_idle_tick away from common flags
tick: Assume the tick can't be stopped in NOHZ_MODE_INACTIVE mode
tick: Move broadcast cancellation up to CPUHP_AP_TICK_DYING
tick: Move tick cancellation up to CPUHP_AP_TICK_DYING
tick: Start centralizing tick related CPU hotplug operations
tick/sched: Don't clear ts::next_tick again in can_stop_idle_tick()
tick/sched: Rename tick_nohz_stop_sched_tick() to tick_nohz_full_stop_tick()
tick: Use IS_ENABLED() whenever possible
tick/sched: Remove useless oneshot ifdeffery
tick/nohz: Remove duplicate between lowres and highres handlers
tick/nohz: Remove duplicate between tick_nohz_switch_to_nohz() and tick_setup_sched_timer()
hrtimer: Select housekeeping CPU during migration
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull clocksource updates from Thomas Gleixner:
"Updates for timekeeping and PTP core.
The cross-timestamp mechanism which allows to correlate hardware
clocks uses clocksource pointers for describing the correlation.
That's suboptimal as drivers need to obtain the pointer, which
requires needless exports and exposing internals. This can all be
completely avoided by assigning clocksource IDs and using them for
describing the correlated clock source.
So this adds clocksource IDs to all clocksources in the tree which can
be exposed to this mechanism and removes the pointer and now needless
exports.
A related improvement for the core and the correlation handling has
not made it this time, but is expected to get ready for the next
round"
* tag 'timers-ptp-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kvmclock: Unexport kvmclock clocksource
treewide: Remove system_counterval_t.cs, which is never read
timekeeping: Evaluate system_counterval_t.cs_id instead of .cs
ptp/kvm, arm_arch_timer: Set system_counterval_t.cs_id to constant
x86/kvm, ptp/kvm: Add clocksource ID, set system_counterval_t.cs_id
x86/tsc: Add clocksource ID, set system_counterval_t.cs_id
timekeeping: Add clocksource ID to struct system_counterval_t
x86/tsc: Correct kernel-doc notation
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull cpu core updates from Thomas Gleixner:
"A small boring set of cleanups for the SMP and CPU hotplug code"
* tag 'smp-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
cpu: Remove stray semicolon
smp: Make __smp_processor_id() 0-argument macro
cpu: Mark cpu_possible_mask as __ro_after_init
kernel/cpu: Convert snprintf() to sysfs_emit()
cpu/hotplug: Delete an extraneous kernel-doc description
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull MSI updates from Thomas Gleixner:
"Updates for the MSI interrupt subsystem and initial RISC-V MSI
support.
The core changes have been adopted from previous work which converted
ARM[64] to the new per device MSI domain model, which was merged to
support multiple MSI domain per device. The ARM[64] changes are being
worked on too, but have not been ready yet. The core and platform-MSI
changes have been split out to not hold up RISC-V and to avoid that
RISC-V builds on the scheduled for removal interfaces.
The core support provides new interfaces to handle wire to MSI bridges
in a straight forward way and introduces new platform-MSI interfaces
which are built on top of the per device MSI domain model.
Once ARM[64] is converted over the old platform-MSI interfaces and the
related ugliness in the MSI core code will be removed.
The actual MSI parts for RISC-V were finalized late and have been
post-poned for the next merge window.
Drivers:
- Add a new driver for the Andes hart-level interrupt controller
- Rework the SiFive PLIC driver to prepare for MSI suport
- Expand the RISC-V INTC driver to support the new RISC-V AIA
controller which provides the basis for MSI on RISC-V
- A few fixup for the fallout of the core changes"
* tag 'irq-msi-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
irqchip/riscv-intc: Fix low-level interrupt handler setup for AIA
x86/apic/msi: Use DOMAIN_BUS_GENERIC_MSI for HPET/IO-APIC domain search
genirq/matrix: Dynamic bitmap allocation
irqchip/riscv-intc: Add support for RISC-V AIA
irqchip/sifive-plic: Improve locking safety by using irqsave/irqrestore
irqchip/sifive-plic: Parse number of interrupts and contexts early in plic_probe()
irqchip/sifive-plic: Cleanup PLIC contexts upon irqdomain creation failure
irqchip/sifive-plic: Use riscv_get_intc_hwnode() to get parent fwnode
irqchip/sifive-plic: Use devm_xyz() for managed allocation
irqchip/sifive-plic: Use dev_xyz() in-place of pr_xyz()
irqchip/sifive-plic: Convert PLIC driver into a platform driver
irqchip/riscv-intc: Introduce Andes hart-level interrupt controller
irqchip/riscv-intc: Allow large non-standard interrupt number
genirq/irqdomain: Don't call ops->select for DOMAIN_BUS_ANY tokens
irqchip/imx-intmux: Handle pure domain searches correctly
genirq/msi: Provide MSI_FLAG_PARENT_PM_DEV
genirq/irqdomain: Reroute device MSI create_mapping
genirq/msi: Provide allocation/free functions for "wired" MSI interrupts
genirq/msi: Optionally use dev->fwnode for device domain
genirq/msi: Provide DOMAIN_BUS_WIRED_TO_MSI
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq updates from Thomas Gleixner:
"Core:
- Make affinity changes take effect immediately for interrupt
threads. This reduces the impact on isolated CPUs as it pulls over
the thread right away instead of doing it after the next hardware
interrupt arrived.
- Cleanup and improvements for the interrupt chip simulator
- Deduplication of the interrupt descriptor initialization code so
the sparse and non-sparse mode share more code.
Drivers:
- A set of conversions to platform_drivers::remove_new() which gets
rid of the pointless return value.
- A new driver for the Starfive JH8100 SoC
- Support for Amlogic-T7 SoCs
- Improvement for the interrupt handling and EOI management for the
loongson interrupt controller.
- The usual fixes and improvements all over the place"
* tag 'irq-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
irqchip/ts4800: Convert to platform_driver::remove_new() callback
irqchip/stm32-exti: Convert to platform_driver::remove_new() callback
irqchip/renesas-rza1: Convert to platform_driver::remove_new() callback
irqchip/renesas-irqc: Convert to platform_driver::remove_new() callback
irqchip/renesas-intc-irqpin: Convert to platform_driver::remove_new() callback
irqchip/pruss-intc: Convert to platform_driver::remove_new() callback
irqchip/mvebu-pic: Convert to platform_driver::remove_new() callback
irqchip/madera: Convert to platform_driver::remove_new() callback
irqchip/ls-scfg-msi: Convert to platform_driver::remove_new() callback
irqchip/keystone: Convert to platform_driver::remove_new() callback
irqchip/imx-irqsteer: Convert to platform_driver::remove_new() callback
irqchip/imx-intmux: Convert to platform_driver::remove_new() callback
irqchip/imgpdc: Convert to platform_driver::remove_new() callback
irqchip: Add StarFive external interrupt controller
dt-bindings: interrupt-controller: Add starfive,jh8100-intc
arm64: dts: Add gpio_intc node for Amlogic-T7 SoCs
irqchip/meson-gpio: Add support for Amlogic-T7 SoCs
dt-bindings: interrupt-controller: Add support for Amlogic-T7 SoCs
irqchip/vic: Fix a kernel-doc warning
genirq: Wake interrupt threads immediately when changing affinity
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
"A quiet cycle. One trivial doc update patch. Two patches to drop the
now defunct memory_spread_slab feature from cgroup1 cpuset"
* tag 'cgroup-for-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup/cpuset: Mark memory_spread_slab as obsolete
cgroup/cpuset: Remove cpuset_do_slab_mem_spread()
docs: cgroup-v1: add missing code-block tags
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue BH conversions from Tejun Heo:
"This contains two patches that convert tasklet users to BH workqueues:
backtracetest and usb hcd.
DM conversions are being routed through the respective subsystem tree.
Hopefully, the next cycle will see a lot more conversions"
* tag 'wq-for-6.9-bh-conversions' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
usb: core: hcd: Convert from tasklet to BH workqueue
backtracetest: Convert from tasklet to BH workqueue
|