Age | Commit message (Collapse) | Author |
|
Per filesystems/sysfs.rst, show() should only use sysfs_emit()
or sysfs_emit_at() when formatting the value to be returned to user space.
coccinelle complains that there are still a couple of functions that use
snprintf(). Convert them to sysfs_emit().
No functional change intended.
Signed-off-by: Li Zhijian <lizhijian@fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240116045151.3940401-40-lizhijian@fujitsu.com
|
|
struct cpuhp_cpu_state has an extraneous kernel-doc comment for @cpu.
There is no struct member by that name, so remove the comment to
prevent the kernel-doc warning:
kernel/cpu.c:85: warning: Excess struct member 'cpu' description in 'cpuhp_cpu_state'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240114030615.30441-1-rdunlap@infradead.org
|
|
For better readability and maintenance keep headers in alphabetical
order.
Signed-off-by: Bartosz Golaszewski <bartosz.golaszewski@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240122124243.44002-4-brgl@bgdev.pl
|
|
The irqnum field is unused. Remove it.
Signed-off-by: Bartosz Golaszewski <bartosz.golaszewski@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240122124243.44002-3-brgl@bgdev.pl
|
|
uprobes passes an unaligned page mapping address to
folio_add_new_anon_rmap(), which ends up triggering a VM_BUG_ON() we
recently extended in commit 372cbd4d5a066 ("mm: non-pmd-mappable, large
folios for folio_add_new_anon_rmap()").
Arguably, this is uprobes code doing something wrong; however, for the
time being it would have likely worked in rmap code because
__folio_set_anon() would set folio->index to the same value.
Looking at __replace_page(), we'd also pass slightly wrong values to
mmu_notifier_range_init(), page_vma_mapped_walk(), flush_cache_page(),
ptep_clear_flush() and set_pte_at_notify(). I suspect most of them are
fine, but let's just mark the introducing commit as the one needed fixing.
I don't think CC stable is warranted.
We'll add more sanity checks in rmap code separately, to make sure that we
always get properly aligned addresses.
Link: https://lkml.kernel.org/r/20240115100731.91007-1-david@redhat.com
Fixes: c517ee744b96 ("uprobes: __replace_page() should not use page_address_in_vma()")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Jiri Olsa <jolsa@kernel.org>
Closes: https://lkml.kernel.org/r/ZaMR2EWN-HvlCfUl@krava
Tested-by: Jiri Olsa <jolsa@kernel.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In bpf_struct_ops_map_alloc, it needs to check for NULL in the returned
pointer of bpf_get_btf_vmlinux() when CONFIG_DEBUG_INFO_BTF is not set.
ENOTSUPP is used to preserve the same behavior before the
struct_ops kmod support.
In the function check_struct_ops_btf_id(), instead of redoing the
bpf_get_btf_vmlinux() that has already been done in syscall.c, the fix
here is to check for prog->aux->attach_btf_id.
BPF_PROG_TYPE_STRUCT_OPS must require attach_btf_id and syscall.c
guarantees a valid attach_btf as long as attach_btf_id is set.
When attach_btf_id is not set, this patch returns -ENOTSUPP
because it is what the selftest in test_libbpf_probe_prog_types()
and libbpf_probes.c are expecting for feature probing purpose.
Changes from v1:
- Remove an unnecessary NULL check in check_struct_ops_btf_id()
Reported-by: syzbot+88f0aafe5f950d7489d7@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/bpf/00000000000040d68a060fc8db8c@google.com/
Reported-by: syzbot+1336f3d4b10bcda75b89@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/bpf/00000000000026353b060fc21c07@google.com/
Fixes: fcc2c1fb0651 ("bpf: pass attached BTF to the bpf_struct_ops subsystem")
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240126023113.1379504-1-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
Since we have set the WQ_NAME_LEN to 32, decrease the name of
events_freezable_power_efficient so that it does not trip the name length
warning when the workqueue is created.
Signed-off-by: Audra Mitchell <audra@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
Pull RCU fix from Neeraj Upadhyay:
"This fixes RCU grace period stalls, which are observed when an
outgoing CPU's quiescent state reporting results in wakeup of one of
the grace period kthreads, to complete the grace period.
If those kthreads have SCHED_FIFO policy, the wake up can indirectly
arm the RT bandwith timer to the local offline CPU.
Earlier migration of the hrtimers from the CPU introduced in commit
5c0930ccaad5 ("hrtimers: Push pending hrtimers away from outgoing CPU
earlier") results in this timer getting ignored.
If the RCU grace period kthreads are waiting for RT bandwidth to be
available, they may never be actually scheduled, resulting in RCU
stall warnings"
* tag 'urgent-rcu.2024.01.24a' of https://github.com/neeraju/linux:
rcu: Defer RCU kthreads wakeup when CPU is dying
|
|
Use the new KMEM_CACHE() macro instead of direct kmem_cache_create
to simplify the creation of SLAB caches.
Signed-off-by: Kunwu Chan <chentao@kylinos.cn>
[PM: subject line tweaks]
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
The ret variable is assigned when it does not need to be defined, as it
has already been assigned before use.
Signed-off-by: Li zeming <zeming@nfschina.com>
[PM: rewrite subject line]
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
Commit 71fee48f ("tick-sched: Fix idle and iowait sleeptime accounting vs
CPU hotplug") preserved total idle sleep time and iowait sleeptime across
CPU hotplug events.
Similar reasoning applies to the number of idle calls and idle sleeps to
get the proper average of sleep time per idle invocation.
Preserve those fields too.
Fixes: 71fee48f ("tick-sched: Fix idle and iowait sleeptime accounting vs CPU hotplug")
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240122233534.3094238-1-tim.c.chen@linux.intel.com
|
|
There have been reports of the watchdog marking clocksources unstable on
machines with 8 NUMA nodes:
clocksource: timekeeping watchdog on CPU373:
Marking clocksource 'tsc' as unstable because the skew is too large:
clocksource: 'hpet' wd_nsec: 14523447520
clocksource: 'tsc' cs_nsec: 14524115132
The measured clocksource skew - the absolute difference between cs_nsec
and wd_nsec - was 668 microseconds:
cs_nsec - wd_nsec = 14524115132 - 14523447520 = 667612
The kernel used 200 microseconds for the uncertainty_margin of both the
clocksource and watchdog, resulting in a threshold of 400 microseconds (the
md variable). Both the cs_nsec and the wd_nsec value indicate that the
readout interval was circa 14.5 seconds. The observed behaviour is that
watchdog checks failed for large readout intervals on 8 NUMA node
machines. This indicates that the size of the skew was directly proportinal
to the length of the readout interval on those machines. The measured
clocksource skew, 668 microseconds, was evaluated against a threshold (the
md variable) that is suited for readout intervals of roughly
WATCHDOG_INTERVAL, i.e. HZ >> 1, which is 0.5 second.
The intention of 2e27e793e280 ("clocksource: Reduce clocksource-skew
threshold") was to tighten the threshold for evaluating skew and set the
lower bound for the uncertainty_margin of clocksources to twice
WATCHDOG_MAX_SKEW. Later in c37e85c135ce ("clocksource: Loosen clocksource
watchdog constraints"), the WATCHDOG_MAX_SKEW constant was increased to
125 microseconds to fit the limit of NTP, which is able to use a
clocksource that suffers from up to 500 microseconds of skew per second.
Both the TSC and the HPET use default uncertainty_margin. When the
readout interval gets stretched the default uncertainty_margin is no
longer a suitable lower bound for evaluating skew - it imposes a limit
that is far stricter than the skew with which NTP can deal.
The root causes of the skew being directly proportinal to the length of
the readout interval are:
* the inaccuracy of the shift/mult pairs of clocksources and the watchdog
* the conversion to nanoseconds is imprecise for large readout intervals
Prevent this by skipping the current watchdog check if the readout
interval exceeds 2 * WATCHDOG_INTERVAL. Considering the maximum readout
interval of 2 * WATCHDOG_INTERVAL, the current default uncertainty margin
(of the TSC and HPET) corresponds to a limit on clocksource skew of 250
ppm (microseconds of skew per second). To keep the limit imposed by NTP
(500 microseconds of skew per second) for all possible readout intervals,
the margins would have to be scaled so that the threshold value is
proportional to the length of the actual readout interval.
As for why the readout interval may get stretched: Since the watchdog is
executed in softirq context the expiration of the watchdog timer can get
severely delayed on account of a ksoftirqd thread not getting to run in a
timely manner. Surely, a system with such belated softirq execution is not
working well and the scheduling issue should be looked into but the
clocksource watchdog should be able to deal with it accordingly.
Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold")
Suggested-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Jiri Wiesner <jwiesner@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Feng Tang <feng.tang@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240122172350.GA740@incl
|
|
Besides already supported special "any" value and hex bit mask, support
string-based parsing of delegation masks based on exact enumerator
names. Utilize BTF information of `enum bpf_cmd`, `enum bpf_map_type`,
`enum bpf_prog_type`, and `enum bpf_attach_type` types to find supported
symbolic names (ignoring __MAX_xxx guard values and stripping repetitive
prefixes like BPF_ for cmd and attach types, BPF_MAP_TYPE_ for maps, and
BPF_PROG_TYPE_ for prog types). The case doesn't matter, but it is
normalized to lower case in mount option output. So "PROG_LOAD",
"prog_load", and "MAP_create" are all valid values to specify for
delegate_cmds options, "array" is among supported for map types, etc.
Besides supporting string values, we also support multiple values
specified at the same time, using colon (':') separator.
There are corresponding changes on bpf_show_options side to use known
values to print them in human-readable format, falling back to hex mask
printing, if there are any unrecognized bits. This shouldn't be
necessary when enum BTF information is present, but in general we should
always be able to fall back to this even if kernel was built without BTF.
As mentioned, emitted symbolic names are normalized to be all lower case.
Example below shows various ways to specify delegate_cmds options
through mount command and how mount options are printed back:
12/14 14:39:07.604
vmuser@archvm:~/local/linux/tools/testing/selftests/bpf
$ mount | rg token
$ sudo mkdir -p /sys/fs/bpf/token
$ sudo mount -t bpf bpffs /sys/fs/bpf/token \
-o delegate_cmds=prog_load:MAP_CREATE \
-o delegate_progs=kprobe \
-o delegate_attachs=xdp
$ mount | grep token
bpffs on /sys/fs/bpf/token type bpf (rw,relatime,delegate_cmds=map_create:prog_load,delegate_progs=kprobe,delegate_attachs=xdp)
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-20-andrii@kernel.org
|
|
It's quite confusing in practice when it's possible to successfully
create a BPF token from BPF FS that didn't have any of delegate_xxx
mount options set up. While it's not wrong, it's actually more
meaningful to reject BPF_TOKEN_CREATE with specific error code (-ENOENT)
to let user-space know that no token delegation is setup up.
So, instead of creating empty BPF token that will be always ignored
because it doesn't have any of the allow_xxx bits set, reject it with
-ENOENT. If we ever need empty BPF token to be possible, we can support
that with extra flag passed into BPF_TOKEN_CREATE.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Christian Brauner <brauner@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-19-andrii@kernel.org
|
|
Wire up bpf_token_create and bpf_token_free LSM hooks, which allow to
allocate LSM security blob (we add `void *security` field to struct
bpf_token for that), but also control who can instantiate BPF token.
This follows existing pattern for BPF map and BPF prog.
Also add security_bpf_token_allow_cmd() and security_bpf_token_capable()
LSM hooks that allow LSM implementation to control and negate (if
necessary) BPF token's delegation of a specific bpf_cmd and capability,
respectively.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Paul Moore <paul@paul-moore.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-12-andrii@kernel.org
|
|
Similarly to bpf_prog_alloc LSM hook, rename and extend bpf_map_alloc
hook into bpf_map_create, taking not just struct bpf_map, but also
bpf_attr and bpf_token, to give a fuller context to LSMs.
Unlike bpf_prog_alloc, there is no need to move the hook around, as it
currently is firing right before allocating BPF map ID and FD, which
seems to be a sweet spot.
But like bpf_prog_alloc/bpf_prog_free combo, make sure that bpf_map_free
LSM hook is called even if bpf_map_create hook returned error, as if few
LSMs are combined together it could be that one LSM successfully
allocated security blob for its needs, while subsequent LSM rejected BPF
map creation. The former LSM would still need to free up LSM blob, so we
need to ensure security_bpf_map_free() is called regardless of the
outcome.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Paul Moore <paul@paul-moore.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-11-andrii@kernel.org
|
|
Based on upstream discussion ([0]), rework existing
bpf_prog_alloc_security LSM hook. Rename it to bpf_prog_load and instead
of passing bpf_prog_aux, pass proper bpf_prog pointer for a full BPF
program struct. Also, we pass bpf_attr union with all the user-provided
arguments for BPF_PROG_LOAD command. This will give LSMs as much
information as we can basically provide.
The hook is also BPF token-aware now, and optional bpf_token struct is
passed as a third argument. bpf_prog_load LSM hook is called after
a bunch of sanity checks were performed, bpf_prog and bpf_prog_aux were
allocated and filled out, but right before performing full-fledged BPF
verification step.
bpf_prog_free LSM hook is now accepting struct bpf_prog argument, for
consistency. SELinux code is adjusted to all new names, types, and
signatures.
Note, given that bpf_prog_load (previously bpf_prog_alloc) hook can be
used by some LSMs to allocate extra security blob, but also by other
LSMs to reject BPF program loading, we need to make sure that
bpf_prog_free LSM hook is called after bpf_prog_load/bpf_prog_alloc one
*even* if the hook itself returned error. If we don't do that, we run
the risk of leaking memory. This seems to be possible today when
combining SELinux and BPF LSM, as one example, depending on their
relative ordering.
Also, for BPF LSM setup, add bpf_prog_load and bpf_prog_free to
sleepable LSM hooks list, as they are both executed in sleepable
context. Also drop bpf_prog_load hook from untrusted, as there is no
issue with refcount or anything else anymore, that originally forced us
to add it to untrusted list in c0c852dd1876 ("bpf: Do not mark certain LSM
hook arguments as trusted"). We now trigger this hook much later and it
should not be an issue anymore.
[0] https://lore.kernel.org/bpf/9fe88aef7deabbe87d3fc38c4aea3c69.paul@paul-moore.com/
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Paul Moore <paul@paul-moore.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-10-andrii@kernel.org
|
|
Remove remaining direct queries to perfmon_capable() and bpf_capable()
in BPF verifier logic and instead use BPF token (if available) to make
decisions about privileges.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-9-andrii@kernel.org
|
|
Instead of performing unconditional system-wide bpf_capable() and
perfmon_capable() calls inside bpf_base_func_proto() function (and other
similar ones) to determine eligibility of a given BPF helper for a given
program, use previously recorded BPF token during BPF_PROG_LOAD command
handling to inform the decision.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-8-andrii@kernel.org
|
|
Add basic support of BPF token to BPF_PROG_LOAD. BPF_F_TOKEN_FD flag
should be set in prog_flags field when providing prog_token_fd.
Wire through a set of allowed BPF program types and attach types,
derived from BPF FS at BPF token creation time. Then make sure we
perform bpf_token_capable() checks everywhere where it's relevant.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-7-andrii@kernel.org
|
|
Accept BPF token FD in BPF_BTF_LOAD command to allow BTF data loading
through delegated BPF token. BPF_F_TOKEN_FD flag has to be specified
when passing BPF token FD. Given BPF_BTF_LOAD command didn't have flags
field before, we also add btf_flags field.
BTF loading is a pretty straightforward operation, so as long as BPF
token is created with allow_cmds granting BPF_BTF_LOAD command, kernel
proceeds to parsing BTF data and creating BTF object.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-6-andrii@kernel.org
|
|
Allow providing token_fd for BPF_MAP_CREATE command to allow controlled
BPF map creation from unprivileged process through delegated BPF token.
New BPF_F_TOKEN_FD flag is added to specify together with BPF token FD
for BPF_MAP_CREATE command.
Wire through a set of allowed BPF map types to BPF token, derived from
BPF FS at BPF token creation time. This, in combination with allowed_cmds
allows to create a narrowly-focused BPF token (controlled by privileged
agent) with a restrictive set of BPF maps that application can attempt
to create.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-5-andrii@kernel.org
|
|
Add new kind of BPF kernel object, BPF token. BPF token is meant to
allow delegating privileged BPF functionality, like loading a BPF
program or creating a BPF map, from privileged process to a *trusted*
unprivileged process, all while having a good amount of control over which
privileged operations could be performed using provided BPF token.
This is achieved through mounting BPF FS instance with extra delegation
mount options, which determine what operations are delegatable, and also
constraining it to the owning user namespace (as mentioned in the
previous patch).
BPF token itself is just a derivative from BPF FS and can be created
through a new bpf() syscall command, BPF_TOKEN_CREATE, which accepts BPF
FS FD, which can be attained through open() API by opening BPF FS mount
point. Currently, BPF token "inherits" delegated command, map types,
prog type, and attach type bit sets from BPF FS as is. In the future,
having an BPF token as a separate object with its own FD, we can allow
to further restrict BPF token's allowable set of things either at the
creation time or after the fact, allowing the process to guard itself
further from unintentionally trying to load undesired kind of BPF
programs. But for now we keep things simple and just copy bit sets as is.
When BPF token is created from BPF FS mount, we take reference to the
BPF super block's owning user namespace, and then use that namespace for
checking all the {CAP_BPF, CAP_PERFMON, CAP_NET_ADMIN, CAP_SYS_ADMIN}
capabilities that are normally only checked against init userns (using
capable()), but now we check them using ns_capable() instead (if BPF
token is provided). See bpf_token_capable() for details.
Such setup means that BPF token in itself is not sufficient to grant BPF
functionality. User namespaced process has to *also* have necessary
combination of capabilities inside that user namespace. So while
previously CAP_BPF was useless when granted within user namespace, now
it gains a meaning and allows container managers and sys admins to have
a flexible control over which processes can and need to use BPF
functionality within the user namespace (i.e., container in practice).
And BPF FS delegation mount options and derived BPF tokens serve as
a per-container "flag" to grant overall ability to use bpf() (plus further
restrict on which parts of bpf() syscalls are treated as namespaced).
Note also, BPF_TOKEN_CREATE command itself requires ns_capable(CAP_BPF)
within the BPF FS owning user namespace, rounding up the ns_capable()
story of BPF token. Also creating BPF token in init user namespace is
currently not supported, given BPF token doesn't have any effect in init
user namespace anyways.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Christian Brauner <brauner@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-4-andrii@kernel.org
|
|
Add few new mount options to BPF FS that allow to specify that a given
BPF FS instance allows creation of BPF token (added in the next patch),
and what sort of operations are allowed under BPF token. As such, we get
4 new mount options, each is a bit mask
- `delegate_cmds` allow to specify which bpf() syscall commands are
allowed with BPF token derived from this BPF FS instance;
- if BPF_MAP_CREATE command is allowed, `delegate_maps` specifies
a set of allowable BPF map types that could be created with BPF token;
- if BPF_PROG_LOAD command is allowed, `delegate_progs` specifies
a set of allowable BPF program types that could be loaded with BPF token;
- if BPF_PROG_LOAD command is allowed, `delegate_attachs` specifies
a set of allowable BPF program attach types that could be loaded with
BPF token; delegate_progs and delegate_attachs are meant to be used
together, as full BPF program type is, in general, determined
through both program type and program attach type.
Currently, these mount options accept the following forms of values:
- a special value "any", that enables all possible values of a given
bit set;
- numeric value (decimal or hexadecimal, determined by kernel
automatically) that specifies a bit mask value directly;
- all the values for a given mount option are combined, if specified
multiple times. E.g., `mount -t bpf nodev /path/to/mount -o
delegate_maps=0x1 -o delegate_maps=0x2` will result in a combined 0x3
mask.
Ideally, more convenient (for humans) symbolic form derived from
corresponding UAPI enums would be accepted (e.g., `-o
delegate_progs=kprobe|tracepoint`) and I intend to implement this, but
it requires a bunch of UAPI header churn, so I postponed it until this
feature lands upstream or at least there is a definite consensus that
this feature is acceptable and is going to make it, just to minimize
amount of wasted effort and not increase amount of non-essential code to
be reviewed.
Attentive reader will notice that BPF FS is now marked as
FS_USERNS_MOUNT, which theoretically makes it mountable inside non-init
user namespace as long as the process has sufficient *namespaced*
capabilities within that user namespace. But in reality we still
restrict BPF FS to be mountable only by processes with CAP_SYS_ADMIN *in
init userns* (extra check in bpf_fill_super()). FS_USERNS_MOUNT is added
to allow creating BPF FS context object (i.e., fsopen("bpf")) from
inside unprivileged process inside non-init userns, to capture that
userns as the owning userns. It will still be required to pass this
context object back to privileged process to instantiate and mount it.
This manipulation is important, because capturing non-init userns as the
owning userns of BPF FS instance (super block) allows to use that userns
to constraint BPF token to that userns later on (see next patch). So
creating BPF FS with delegation inside unprivileged userns will restrict
derived BPF token objects to only "work" inside that intended userns,
making it scoped to a intended "container". Also, setting these
delegation options requires capable(CAP_SYS_ADMIN), so unprivileged
process cannot set this up without involvement of a privileged process.
There is a set of selftests at the end of the patch set that simulates
this sequence of steps and validates that everything works as intended.
But careful review is requested to make sure there are no missed gaps in
the implementation and testing.
This somewhat subtle set of aspects is the result of previous
discussions ([0]) about various user namespace implications and
interactions with BPF token functionality and is necessary to contain
BPF token inside intended user namespace.
[0] https://lore.kernel.org/bpf/20230704-hochverdient-lehne-eeb9eeef785e@brauner/
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Christian Brauner <brauner@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-3-andrii@kernel.org
|
|
Within BPF syscall handling code CAP_NET_ADMIN checks stand out a bit
compared to CAP_BPF and CAP_PERFMON checks. For the latter, CAP_BPF or
CAP_PERFMON are checked first, but if they are not set, CAP_SYS_ADMIN
takes over and grants whatever part of BPF syscall is required.
Similar kind of checks that involve CAP_NET_ADMIN are not so consistent.
One out of four uses does follow CAP_BPF/CAP_PERFMON model: during
BPF_PROG_LOAD, if the type of BPF program is "network-related" either
CAP_NET_ADMIN or CAP_SYS_ADMIN is required to proceed.
But in three other cases CAP_NET_ADMIN is required even if CAP_SYS_ADMIN
is set:
- when creating DEVMAP/XDKMAP/CPU_MAP maps;
- when attaching CGROUP_SKB programs;
- when handling BPF_PROG_QUERY command.
This patch is changing the latter three cases to follow BPF_PROG_LOAD
model, that is allowing to proceed under either CAP_NET_ADMIN or
CAP_SYS_ADMIN.
This also makes it cleaner in subsequent BPF token patches to switch
wholesomely to a generic bpf_token_capable(int cap) check, that always
falls back to CAP_SYS_ADMIN if requested capability is missing.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-2-andrii@kernel.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull execve fixes from Kees Cook:
- Fix error handling in begin_new_exec() (Bernd Edlinger)
- MAINTAINERS: specifically mention ELF (Alexey Dobriyan)
- Various cleanups related to earlier open() (Askar Safin, Kees Cook)
* tag 'execve-v6.8-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
exec: Distinguish in_execve from in_exec
exec: Fix error handling in begin_new_exec()
exec: Add do_close_execat() helper
exec: remove useless comment
ELF, MAINTAINERS: specifically mention ELF
|
|
Just to help distinguish the fs->in_exec flag from the current->in_execve
flag, add comments in check_unsafe_exec() and copy_fs() for more
context. Also note that in_execve is only used by TOMOYO now.
Cc: Kentaro Takeda <takedakn@nttdata.co.jp>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-mm@kvack.org
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
When the CPU goes idle for the last time during the CPU down hotplug
process, RCU reports a final quiescent state for the current CPU. If
this quiescent state propagates up to the top, some tasks may then be
woken up to complete the grace period: the main grace period kthread
and/or the expedited main workqueue (or kworker).
If those kthreads have a SCHED_FIFO policy, the wake up can indirectly
arm the RT bandwith timer to the local offline CPU. Since this happens
after hrtimers have been migrated at CPUHP_AP_HRTIMERS_DYING stage, the
timer gets ignored. Therefore if the RCU kthreads are waiting for RT
bandwidth to be available, they may never be actually scheduled.
This triggers TREE03 rcutorture hangs:
rcu: INFO: rcu_preempt self-detected stall on CPU
rcu: 4-...!: (1 GPs behind) idle=9874/1/0x4000000000000000 softirq=0/0 fqs=20 rcuc=21071 jiffies(starved)
rcu: (t=21035 jiffies g=938281 q=40787 ncpus=6)
rcu: rcu_preempt kthread starved for 20964 jiffies! g938281 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x0 ->cpu=0
rcu: Unless rcu_preempt kthread gets sufficient CPU time, OOM is now expected behavior.
rcu: RCU grace-period kthread stack dump:
task:rcu_preempt state:R running task stack:14896 pid:14 tgid:14 ppid:2 flags:0x00004000
Call Trace:
<TASK>
__schedule+0x2eb/0xa80
schedule+0x1f/0x90
schedule_timeout+0x163/0x270
? __pfx_process_timeout+0x10/0x10
rcu_gp_fqs_loop+0x37c/0x5b0
? __pfx_rcu_gp_kthread+0x10/0x10
rcu_gp_kthread+0x17c/0x200
kthread+0xde/0x110
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2b/0x40
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The situation can't be solved with just unpinning the timer. The hrtimer
infrastructure and the nohz heuristics involved in finding the best
remote target for an unpinned timer would then also need to handle
enqueues from an offline CPU in the most horrendous way.
So fix this on the RCU side instead and defer the wake up to an online
CPU if it's too late for the local one.
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Fixes: 5c0930ccaad5 ("hrtimers: Push pending hrtimers away from outgoing CPU earlier")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Neeraj Upadhyay (AMD) <neeraj.iitr10@gmail.com>
|
|
alloc_desc() and early_irq_init() contain duplicated code to initialize
interrupt descriptors.
Replace that with a helper function.
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Dawei Li <dawei.li@shingroup.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240122085716.2999875-6-dawei.li@shingroup.cn
|
|
For a CONFIG_SPARSE_IRQ=n kernel, early_irq_init() is supposed to
initialize all interrupt descriptors.
It does except for irq_desc::resend_node, which ia only initialized for the
first descriptor.
Use the indexed decriptor and not the base pointer to address that.
Fixes: bc06a9e08742 ("genirq: Use hlist for managing resend handlers")
Signed-off-by: Dawei Li <dawei.li@shingroup.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240122085716.2999875-5-dawei.li@shingroup.cn
|
|
The module requires the use of btf_ctx_access() to invoke
bpf_tracing_btf_ctx_access() from a module. This function is valuable for
implementing validation functions that ensure proper access to ctx.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-14-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
Replace the static list of struct_ops types with per-btf struct_ops_tab to
enable dynamic registration.
Both bpf_dummy_ops and bpf_tcp_ca now utilize the registration function
instead of being listed in bpf_struct_ops_types.h.
Cc: netdev@vger.kernel.org
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-12-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
A value_type should consist of three components: refcnt, state, and data.
refcnt and state has been move to struct bpf_struct_ops_common_value to
make it easier to check the value type.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-11-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
To ensure that a module remains accessible whenever a struct_ops object of
a struct_ops type provided by the module is still in use.
struct bpf_struct_ops_map doesn't hold a refcnt to btf anymore since a
module will hold a refcnt to it's btf already. But, struct_ops programs are
different. They hold their associated btf, not the module since they need
only btf to assure their types (signatures).
However, verifier holds the refcnt of the associated module of a struct_ops
type temporarily when verify a struct_ops prog. Verifier needs the help
from the verifier operators (struct bpf_verifier_ops) provided by the owner
module to verify data access of a prog, provide information, and generate
code.
This patch also add a count of links (links_cnt) to bpf_struct_ops_map. It
avoids bpf_struct_ops_map_put_progs() from accessing btf after calling
module_put() in bpf_struct_ops_map_free().
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-10-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
Pass the fd of a btf from the userspace to the bpf() syscall, and then
convert the fd into a btf. The btf is generated from the module that
defines the target BPF struct_ops type.
In order to inform the kernel about the module that defines the target
struct_ops type, the userspace program needs to provide a btf fd for the
respective module's btf. This btf contains essential information on the
types defined within the module, including the target struct_ops type.
A btf fd must be provided to the kernel for struct_ops maps and for the bpf
programs attached to those maps.
In the case of the bpf programs, the attach_btf_obj_fd parameter is passed
as part of the bpf_attr and is converted into a btf. This btf is then
stored in the prog->aux->attach_btf field. Here, it just let the verifier
access attach_btf directly.
In the case of struct_ops maps, a btf fd is passed as value_type_btf_obj_fd
of bpf_attr. The bpf_struct_ops_map_alloc() function converts the fd to a
btf and stores it as st_map->btf. A flag BPF_F_VTYPE_BTF_OBJ_FD is added
for map_flags to indicate that the value of value_type_btf_obj_fd is set.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-9-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
This is a preparation for searching for struct_ops types from a specified
module. BTF is always btf_vmlinux now. This patch passes a pointer of BTF
to bpf_struct_ops_find_value() and bpf_struct_ops_find(). Once the new
registration API of struct_ops types is used, other BTFs besides
btf_vmlinux can also be passed to them.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-8-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
Include btf object id (btf_obj_id) in bpf_map_info so that tools (ex:
bpftools struct_ops dump) know the correct btf from the kernel to look up
type information of struct_ops types.
Since struct_ops types can be defined and registered in a module. The
type information of a struct_ops type are defined in the btf of the
module defining it. The userspace tools need to know which btf is for
the module defining a struct_ops type.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-7-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
Once new struct_ops can be registered from modules, btf_vmlinux is no
longer the only btf that struct_ops_map would face. st_map should remember
what btf it should use to get type information.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-6-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
Maintain a registry of registered struct_ops types in the per-btf (module)
struct_ops_tab. This registry allows for easy lookup of struct_ops types
that are registered by a specific module.
It is a preparation work for supporting kernel module struct_ops in a
latter patch. Each struct_ops will be registered under its own kernel
module btf and will be stored in the newly added btf->struct_ops_tab. The
bpf verifier and bpf syscall (e.g. prog and map cmd) can find the
struct_ops and its btf type/size/id... information from
btf->struct_ops_tab.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-5-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
Move some of members of bpf_struct_ops to bpf_struct_ops_desc. type_id is
unavailabe in bpf_struct_ops anymore. Modules should get it from the btf
received by kmod's init function.
Cc: netdev@vger.kernel.org
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-4-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
Get ready to remove bpf_struct_ops_init() in the future. By using
BTF_ID_LIST, it is possible to gather type information while building
instead of runtime.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-3-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
Move the majority of the code to bpf_struct_ops_init_one(), which can then
be utilized for the initialization of newly registered dynamically
allocated struct_ops types in the following patches.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-2-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
Storing cookies in kprobe_multi bpf_link_info data. The cookies
field is optional and if provided it needs to be an array of
__u64 with kprobe_multi.count length.
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/r/20240119110505.400573-3-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
At the moment we don't store cookie for perf_event probes,
while we do that for the rest of the probes.
Adding cookie fields to struct bpf_link_info perf event
probe records:
perf_event.uprobe
perf_event.kprobe
perf_event.tracepoint
perf_event.perf_event
And the code to store that in bpf_link_info struct.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20240119110505.400573-2-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Current checking rules are structured to disallow alu on particular ptr
types explicitly, so default cases are allowed implicitly. This may lead
to newly added ptr types being allowed unexpectedly. So restruture it to
allow alu explicitly. The tradeoff is mainly a bit more cases added in
the switch. The following table from Eduard summarizes the rules:
| Pointer type | Arithmetics allowed |
|---------------------+---------------------|
| PTR_TO_CTX | yes |
| CONST_PTR_TO_MAP | conditionally |
| PTR_TO_MAP_VALUE | yes |
| PTR_TO_MAP_KEY | yes |
| PTR_TO_STACK | yes |
| PTR_TO_PACKET_META | yes |
| PTR_TO_PACKET | yes |
| PTR_TO_PACKET_END | no |
| PTR_TO_FLOW_KEYS | conditionally |
| PTR_TO_SOCKET | no |
| PTR_TO_SOCK_COMMON | no |
| PTR_TO_TCP_SOCK | no |
| PTR_TO_TP_BUFFER | yes |
| PTR_TO_XDP_SOCK | no |
| PTR_TO_BTF_ID | yes |
| PTR_TO_MEM | yes |
| PTR_TO_BUF | yes |
| PTR_TO_FUNC | yes |
| CONST_PTR_TO_DYNPTR | yes |
The refactored rules are equivalent to the original one. Note that
PTR_TO_FUNC and CONST_PTR_TO_DYNPTR are not reject here because: (1)
check_mem_access() rejects load/store on those ptrs, and those ptrs
with offset passing to calls are rejected check_func_arg_reg_off();
(2) someone may rely on the verifier not rejecting programs earily.
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240117094012.36798-1-sunhao.th@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
With patch set [1], precision backtracing supports register spill/fill
to/from the stack. The patch [2] allows initial imprecise register spill
with content 0. This is a common case for cpuv3 and lower for
initializing the stack variables with pattern
r1 = 0
*(u64 *)(r10 - 8) = r1
and the [2] has demonstrated good verification improvement.
For cpuv4, the initialization could be
*(u64 *)(r10 - 8) = 0
The current verifier marks the r10-8 contents with STACK_ZERO.
Similar to [2], let us permit the above insn to behave like
imprecise register spill which can reduce number of verified states.
The change is in function check_stack_write_fixed_off().
Before this patch, spilled zero will be marked as STACK_ZERO
which can provide precise values. In check_stack_write_var_off(),
STACK_ZERO will be maintained if writing a const zero
so later it can provide precise values if needed.
The above handling of '*(u64 *)(r10 - 8) = 0' as a spill
will have issues in check_stack_write_var_off() as the spill
will be converted to STACK_MISC and the precise value 0
is lost. To fix this issue, if the spill slots with const
zero and the BPF_ST write also with const zero, the spill slots
are preserved, which can later provide precise values
if needed. Without the change in check_stack_write_var_off(),
the test_verifier subtest 'BPF_ST_MEM stack imm zero, variable offset'
will fail.
I checked cpuv3 and cpuv4 with and without this patch with veristat.
There is no state change for cpuv3 since '*(u64 *)(r10 - 8) = 0'
is only generated with cpuv4.
For cpuv4:
$ ../veristat -C old.cpuv4.csv new.cpuv4.csv -e file,prog,insns,states -f 'insns_diff!=0'
File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
------------------------------------------ ------------------- --------- --------- --------------- ---------- ---------- -------------
local_storage_bench.bpf.linked3.o get_local 228 168 -60 (-26.32%) 17 14 -3 (-17.65%)
pyperf600_bpf_loop.bpf.linked3.o on_event 6066 4889 -1177 (-19.40%) 403 321 -82 (-20.35%)
test_cls_redirect.bpf.linked3.o cls_redirect 35483 35387 -96 (-0.27%) 2179 2177 -2 (-0.09%)
test_l4lb_noinline.bpf.linked3.o balancer_ingress 4494 4522 +28 (+0.62%) 217 219 +2 (+0.92%)
test_l4lb_noinline_dynptr.bpf.linked3.o balancer_ingress 1432 1455 +23 (+1.61%) 92 94 +2 (+2.17%)
test_xdp_noinline.bpf.linked3.o balancer_ingress_v6 3462 3458 -4 (-0.12%) 216 216 +0 (+0.00%)
verifier_iterating_callbacks.bpf.linked3.o widening 52 41 -11 (-21.15%) 4 3 -1 (-25.00%)
xdp_synproxy_kern.bpf.linked3.o syncookie_tc 12412 11719 -693 (-5.58%) 345 330 -15 (-4.35%)
xdp_synproxy_kern.bpf.linked3.o syncookie_xdp 12478 11794 -684 (-5.48%) 346 331 -15 (-4.34%)
test_l4lb_noinline and test_l4lb_noinline_dynptr has minor regression, but
pyperf600_bpf_loop and local_storage_bench gets pretty good improvement.
[1] https://lore.kernel.org/all/20231205184248.1502704-1-andrii@kernel.org/
[2] https://lore.kernel.org/all/20231205184248.1502704-9-andrii@kernel.org/
Cc: Kuniyuki Iwashima <kuniyu@amazon.com>
Cc: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Tested-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240110051348.2737007-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Currently, when a scalar bounded register is spilled to the stack, its
ID is preserved, but only if was already assigned, i.e. if this register
was MOVed before.
Assign an ID on spill if none is set, so that equal scalars could be
tracked if a register is spilled to the stack and filled into another
register.
One test is adjusted to reflect the change in register IDs.
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240108205209.838365-9-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Put calculation of the register value width into a dedicated function.
This function will also be used in a following commit.
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Link: https://lore.kernel.org/r/20240108205209.838365-8-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Extract the common code that generates a register ID for src_reg before
MOV if needed into a new function. This function will also be used in
a following commit.
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240108205209.838365-7-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Current infinite loops detection mechanism is speculative:
- first, states_maybe_looping() check is done which simply does memcmp
for R1-R10 in current frame;
- second, states_equal(..., exact=false) is called. With exact=false
states_equal() would compare scalars for equality only if in old
state scalar has precision mark.
Such logic might be problematic if compiler makes some unlucky stack
spill/fill decisions. An artificial example of a false positive looks
as follows:
r0 = ... unknown scalar ...
r0 &= 0xff;
*(u64 *)(r10 - 8) = r0;
r0 = 0;
loop:
r0 = *(u64 *)(r10 - 8);
if r0 > 10 goto exit_;
r0 += 1;
*(u64 *)(r10 - 8) = r0;
r0 = 0;
goto loop;
This commit updates call to states_equal to use exact=true, forcing
all scalar comparisons to be exact.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240108205209.838365-3-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|