summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2023-12-20timers: Use already existing function for forwarding timer baseAnna-Maria Behnsen
There is an already existing function for forwarding the timer base. Forwarding the timer base is implemented directly in get_next_timer_interrupt() as well. Remove the code duplication and invoke __forward_timer_base() instead. Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20231201092654.34614-11-anna-maria@linutronix.de
2023-12-20timers: Split out forward timer base functionalityAnna-Maria Behnsen
Forwarding timer base is done when the next expiry value is calculated and when a new timer is enqueued. When the next expiry value is calculated the jiffies value is already available and does not need to be reread a second time. Splitting out the forward timer base functionality to make it executable via both contextes - those where jiffies are already known and those, where jiffies need to be read. No functional change. Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20231201092654.34614-10-anna-maria@linutronix.de
2023-12-20timers: Clarify check in forward_timer_base()Anna-Maria Behnsen
The current check whether a forward of the timer base is required can be simplified by using an already existing comparison function which is easier to read. The related comment is outdated and was not updated when the check changed in commit 36cd28a4cdd0 ("timers: Lower base clock forwarding threshold"). Use time_before_eq() for the check and replace the comment by copying the comment from the same check inside get_next_timer_interrupt(). Move the precious information of the outdated comment to the proper place in __run_timers(). No functional change. Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20231201092654.34614-9-anna-maria@linutronix.de
2023-12-20timers: Move store of next event into __next_timer_interrupt()Anna-Maria Behnsen
Both call sites of __next_timer_interrupt() store the return value directly in base->next_expiry. Move the store into __next_timer_interrupt() and to make its purpose more clear, rename the function to next_expiry_recalc(). No functional change. Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20231201092654.34614-8-anna-maria@linutronix.de
2023-12-20timers: Do not IPI for deferrable timersAnna-Maria Behnsen
Deferrable timers do not prevent CPU from going idle and are not taken into account on idle path. Sending an IPI to a remote CPU when a new first deferrable timer was enqueued will wake up the remote CPU but nothing will be done regarding the deferrable timers. Drop IPI completely when a new first deferrable timer was enqueued. Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20231201092654.34614-7-anna-maria@linutronix.de
2023-12-20tracing/timers: Add tracepoint for tracking timer base is_idle flagAnna-Maria Behnsen
When debugging timer code the timer tracepoints are very important. There is no tracepoint when the is_idle flag of the timer base changes. Instead of always adding manually trace_printk(), add tracepoints which can be easily enabled whenever required. Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20231201092654.34614-6-anna-maria@linutronix.de
2023-12-20tracing/timers: Enhance timer_start tracepointAnna-Maria Behnsen
For starting a timer, the timer is enqueued into a bucket of the timer wheel. The bucket expiry is the defacto expiry of the timer but it is not equal the timer expiry because of increasing granularity when bucket is in a higher level of the wheel. To be able to figure out in a trace whether a timer expired in time or not, the bucket expiry time is required as well. Add bucket expiry time to the timer_start tracepoint and thereby simplify the arguments. Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20231201092654.34614-5-anna-maria@linutronix.de
2023-12-20tick-sched: Warn when next tick seems to be in the pastAnna-Maria Behnsen
When the next tick is in the past, the delta between basemono and the next tick gets negativ. But the next tick should never be in the past. The negative effect of a wrong next tick might be a stop of the tick and timers might expire late. To prevent expensive debugging when changing underlying code, add a WARN_ON_ONCE into this code path. To prevent complete misbehaviour, also reset next_tick to basemono in this case. Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20231201092654.34614-4-anna-maria@linutronix.de
2023-12-20tick/sched: Cleanup confusing variablesAnna-Maria Behnsen
tick_nohz_stop_tick() contains the expires (u64 variable) and tick (ktime_t) variable. In the beginning the value of expires is written to tick. Afterwards none of the variables is changed. They are only used for checks. Drop the not required variable tick and use always expires instead. Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20231201092654.34614-3-anna-maria@linutronix.de
2023-12-20tick-sched: Fix function names in commentsAnna-Maria Behnsen
When referencing functions in comments, it might be helpful to use full function names (including the prefix) to be able to find it when grepping. Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20231201092654.34614-2-anna-maria@linutronix.de
2023-12-20ring-buffer: Read and write to ring buffers with custom sub buffer sizeTzvetomir Stoyanov (VMware)
As the size of the ring sub buffer page can be changed dynamically, the logic that reads and writes to the buffer should be fixed to take that into account. Some internal ring buffer APIs are changed: ring_buffer_alloc_read_page() ring_buffer_free_read_page() ring_buffer_read_page() A new API is introduced: ring_buffer_read_page_data() Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-6-tz.stoyanov@gmail.com Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.875145995@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> [ Fixed kerneldoc on data_page parameter in ring_buffer_free_read_page() ] Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-20ring-buffer: Set new size of the ring buffer sub pageTzvetomir Stoyanov (VMware)
There are two approaches when changing the size of the ring buffer sub page: 1. Destroying all pages and allocating new pages with the new size. 2. Allocating new pages, copying the content of the old pages before destroying them. The first approach is easier, it is selected in the proposed implementation. Changing the ring buffer sub page size is supposed to not happen frequently. Usually, that size should be set only once, when the buffer is not in use yet and is supposed to be empty. Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-5-tz.stoyanov@gmail.com Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.588995543@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-20ring-buffer: Add interface for configuring trace sub buffer sizeTzvetomir Stoyanov (VMware)
The trace ring buffer sub page size can be configured, per trace instance. A new ftrace file "buffer_subbuf_order" is added to get and set the size of the ring buffer sub page for current trace instance. The size must be an order of system page size, that's why the new interface works with system page order, instead of absolute page size: 0 means the ring buffer sub page is equal to 1 system page and so forth: 0 - 1 system page 1 - 2 system pages 2 - 4 system pages ... The ring buffer sub page size is limited between 1 and 128 system pages. The default value is 1 system page. New ring buffer APIs are introduced: ring_buffer_subbuf_order_set() ring_buffer_subbuf_order_get() ring_buffer_subbuf_size_get() Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-4-tz.stoyanov@gmail.com Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.298324722@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-20ring-buffer: Page size per ring bufferTzvetomir Stoyanov (VMware)
Currently the size of one sub buffer page is global for all buffers and it is hard coded to one system page. In order to introduce configurable ring buffer sub page size, the internal logic should be refactored to work with sub page size per ring buffer. Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-3-tz.stoyanov@gmail.com Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.009147038@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-20ring-buffer: Have ring_buffer_print_page_header() be able to access ↵Tzvetomir Stoyanov (VMware)
ring_buffer_iter In order to introduce sub-buffer size per ring buffer, some internal refactoring is needed. As ring_buffer_print_page_header() will depend on the trace_buffer structure, it is moved after the structure definition. Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-2-tz.stoyanov@gmail.com Link: https://lore.kernel.org/linux-trace-kernel/20231219185627.723857541@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-19bpf: add support for passing dynptr pointer to global subprogAndrii Nakryiko
Add ability to pass a pointer to dynptr into global functions. This allows to have global subprogs that accept and work with generic dynptrs that are created by caller. Dynptr argument is detected based on the name of a struct type, if it's "bpf_dynptr", it's assumed to be a proper dynptr pointer. Both actual struct and forward struct declaration types are supported. This is conceptually exactly the same semantics as bpf_user_ringbuf_drain()'s use of dynptr to pass a variable-sized pointer to ringbuf record. So we heavily rely on CONST_PTR_TO_DYNPTR bits of already existing logic in the verifier. During global subprog validation, we mark such CONST_PTR_TO_DYNPTR as having LOCAL type, as that's the most unassuming type of dynptr and it doesn't have any special helpers that can try to free or acquire extra references (unlike skb, xdp, or ringbuf dynptr). So that seems like a safe "choice" to make from correctness standpoint. It's still possible to pass any type of dynptr to such subprog, though, because generic dynptr helpers, like getting data/slice pointers, read/write memory copying routines, dynptr adjustment and getter routines all work correctly with any type of dynptr. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231215011334.2307144-8-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-19bpf: support 'arg:xxx' btf_decl_tag-based hints for global subprog argsAndrii Nakryiko
Add support for annotating global BPF subprog arguments to provide more information about expected semantics of the argument. Currently, verifier relies purely on argument's BTF type information, and supports three general use cases: scalar, pointer-to-context, and pointer-to-fixed-size-memory. Scalar and pointer-to-fixed-mem work well in practice and are quite natural to use. But pointer-to-context is a bit problematic, as typical BPF users don't realize that they need to use a special type name to signal to verifier that argument is not just some pointer, but actually a PTR_TO_CTX. Further, even if users do know which type to use, it is limiting in situations where the same BPF program logic is used across few different program types. Common case is kprobes, tracepoints, and perf_event programs having a helper to send some data over BPF perf buffer. bpf_perf_event_output() requires `ctx` argument, and so it's quite cumbersome to share such global subprog across few BPF programs of different types, necessitating extra static subprog that is context type-agnostic. Long story short, there is a need to go beyond types and allow users to add hints to global subprog arguments to define expectations. This patch adds such support for two initial special tags: - pointer to context; - non-null qualifier for generic pointer arguments. All of the above came up in practice already and seem generally useful additions. Non-null qualifier is an often requested feature, which currently has to be worked around by having unnecessary NULL checks inside subprogs even if we know that arguments are never NULL. Pointer to context was discussed earlier. As for implementation, we utilize btf_decl_tag attribute and set up an "arg:xxx" convention to specify argument hint. As such: - btf_decl_tag("arg:ctx") is a PTR_TO_CTX hint; - btf_decl_tag("arg:nonnull") marks pointer argument as not allowed to be NULL, making NULL check inside global subprog unnecessary. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231215011334.2307144-7-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-19bpf: reuse subprog argument parsing logic for subprog call checksAndrii Nakryiko
Remove duplicated BTF parsing logic when it comes to subprog call check. Instead, use (potentially cached) results of btf_prepare_func_args() to abstract away expectations of each subprog argument in generic terms (e.g., "this is pointer to context", or "this is a pointer to memory of size X"), and then use those simple high-level argument type expectations to validate actual register states to check if they match expectations. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231215011334.2307144-6-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-19bpf: move subprog call logic back to verifier.cAndrii Nakryiko
Subprog call logic in btf_check_subprog_call() currently has both a lot of BTF parsing logic (which is, presumably, what justified putting it into btf.c), but also a bunch of register state checks, some of each utilize deep verifier logic helpers, necessarily exported from verifier.c: check_ptr_off_reg(), check_func_arg_reg_off(), and check_mem_reg(). Going forward, btf_check_subprog_call() will have a minimum of BTF-related logic, but will get more internal verifier logic related to register state manipulation. So move it into verifier.c to minimize amount of verifier-specific logic exposed to btf.c. We do this move before refactoring btf_check_func_arg_match() to preserve as much history post-refactoring as possible. No functional changes. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231215011334.2307144-5-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-19bpf: prepare btf_prepare_func_args() for handling static subprogsAndrii Nakryiko
Generalize btf_prepare_func_args() to support both global and static subprogs. We are going to utilize this property in the next patch, reusing btf_prepare_func_args() for subprog call logic instead of reparsing BTF information in a completely separate implementation. btf_prepare_func_args() now detects whether subprog is global or static makes slight logic adjustments for static func cases, like not failing fatally (-EFAULT) for conditions that are allowable for static subprogs. Somewhat subtle (but major!) difference is the handling of pointer arguments. Both global and static functions need to handle special context arguments (which are pointers to predefined type names), but static subprogs give up on any other pointers, falling back to marking subprog as "unreliable", disabling the use of BTF type information altogether. For global functions, though, we are assuming that such pointers to unrecognized types are just pointers to fixed-sized memory region (or error out if size cannot be established, like for `void *` pointers). This patch accommodates these small differences and sets up a stage for refactoring in the next patch, eliminating a separate BTF-based parsing logic in btf_check_func_arg_match(). Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231215011334.2307144-4-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-19bpf: reuse btf_prepare_func_args() check for main program BTF validationAndrii Nakryiko
Instead of btf_check_subprog_arg_match(), use btf_prepare_func_args() logic to validate "trustworthiness" of main BPF program's BTF information, if it is present. We ignored results of original BTF check anyway, often times producing confusing and ominously-sounding "reg type unsupported for arg#0 function" message, which has no apparent effect on program correctness and verification process. All the -EFAULT returning sanity checks are already performed in check_btf_info_early(), so there is zero reason to have this duplication of logic between btf_check_subprog_call() and btf_check_subprog_arg_match(). Dropping btf_check_subprog_arg_match() simplifies btf_check_func_arg_match() further removing `bool processing_call` flag. One subtle bit that was done by btf_check_subprog_arg_match() was potentially marking main program's BTF as unreliable. We do this explicitly now with a dedicated simple check, preserving the original behavior, but now based on well factored btf_prepare_func_args() logic. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231215011334.2307144-3-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-19bpf: abstract away global subprog arg preparation logic from reg state setupAndrii Nakryiko
btf_prepare_func_args() is used to understand expectations and restrictions on global subprog arguments. But current implementation is hard to extend, as it intermixes BTF-based func prototype parsing and interpretation logic with setting up register state at subprog entry. Worse still, those registers are not completely set up inside btf_prepare_func_args(), requiring some more logic later in do_check_common(). Like calling mark_reg_unknown() and similar initialization operations. This intermixing of BTF interpretation and register state setup is problematic. First, it causes duplication of BTF parsing logic for global subprog verification (to set up initial state of global subprog) and global subprog call sites analysis (when we need to check that whatever is being passed into global subprog matches expectations), performed in btf_check_subprog_call(). Given we want to extend global func argument with tags later, this duplication is problematic. So refactor btf_prepare_func_args() to do only BTF-based func proto and args parsing, returning high-level argument "expectations" only, with no regard to specifics of register state. I.e., if it's a context argument, instead of setting register state to PTR_TO_CTX, we return ARG_PTR_TO_CTX enum for that argument as "an argument specification" for further processing inside do_check_common(). Similarly for SCALAR arguments, PTR_TO_MEM, etc. This allows to reuse btf_prepare_func_args() in following patches at global subprog call site analysis time. It also keeps register setup code consistently in one place, do_check_common(). Besides all this, we cache this argument specs information inside env->subprog_info, eliminating the need to redo these potentially expensive BTF traversals, especially if BPF program's BTF is big and/or there are lots of global subprog calls. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231215011334.2307144-2-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-19bpf: make the verifier tracks the "not equal" for regsMenglong Dong
We can derive some new information for BPF_JNE in regs_refine_cond_op(). Take following code for example: /* The type of "a" is u32 */ if (a > 0 && a < 100) { /* the range of the register for a is [0, 99], not [1, 99], * and will cause the following error: * * invalid zero-sized read * * as a can be 0. */ bpf_skb_store_bytes(skb, xx, xx, a, 0); } In the code above, "a > 0" will be compiled to "jmp xxx if a == 0". In the TRUE branch, the dst_reg will be marked as known to 0. However, in the fallthrough(FALSE) branch, the dst_reg will not be handled, which makes the [min, max] for a is [0, 99], not [1, 99]. For BPF_JNE, we can reduce the range of the dst reg if the src reg is a const and is exactly the edge of the dst reg. Signed-off-by: Menglong Dong <menglong8.dong@gmail.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com> Link: https://lore.kernel.org/r/20231219134800.1550388-2-menglong8.dong@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-19module: Remove redundant TASK_UNINTERRUPTIBLEKevin Hao
TASK_KILLABLE already includes TASK_UNINTERRUPTIBLE, so there is no need to add a separate TASK_UNINTERRUPTIBLE. Signed-off-by: Kevin Hao <haokexin@gmail.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-12-19Merge tag 'trace-v6.7-rc6' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing fix from Steven Rostedt: "While working on the ring buffer, I found one more bug with the timestamp code, and the fix for this removed the need for the final 64-bit cmpxchg! The ring buffer events hold a "delta" from the previous event. If it is determined that the delta can not be calculated, it falls back to adding an absolute timestamp value. The way to know if the delta can be used is via two stored timestamps in the per-cpu buffer meta data: before_stamp and write_stamp The before_stamp is written by every event before it tries to allocate its space on the ring buffer. The write_stamp is written after it allocates its space and knows that nothing came in after it read the previous before_stamp and write_stamp and the two matched. A previous fix dd9394257078 ("ring-buffer: Do not try to put back write_stamp") removed putting back the write_stamp to match the before_stamp so that the next event could use the delta, but races were found where the two would match, but not be for of the previous event. It was determined to allow the event reservation to not have a valid write_stamp when it is finished, and this fixed a lot of races. The last use of the 64-bit timestamp cmpxchg depended on the write_stamp being valid after an interruption. But this is no longer the case, as if an event is interrupted by a softirq that writes an event, and that event gets interrupted by a hardirq or NMI and that writes an event, then the softirq could finish its reservation without a valid write_stamp. In the slow path of the event reservation, a delta can still be used if the write_stamp is valid. Instead of using a cmpxchg against the write stamp, the before_stamp needs to be read again to validate the write_stamp. The cmpxchg is not needed. This updates the slowpath to validate the write_stamp by comparing it to the before_stamp and removes all rb_time_cmpxchg() as there are no more users of that function. The removal of the 32-bit updates of rb_time_t will be done in the next merge window" * tag 'trace-v6.7-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: ring-buffer: Fix slowpath of interrupted event
2023-12-19PM: hibernate: Use kmap_local_page() in copy_data_page()Chen Haonan
kmap_atomic() has been deprecated in favor of kmap_local_page(). kmap_atomic() disables page-faults and preemption (the latter only for !PREEMPT_RT kernels).The code between the mapping and un-mapping in this patch does not depend on the above-mentioned side effects.So simply replaced kmap_atomic() with kmap_local_page(). Signed-off-by: Chen Haonan <chen.haonan2@zte.com.cn> [ rjw: Subject edits ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2023-12-19Revert BPF token-related functionalityAndrii Nakryiko
This patch includes the following revert (one conflicting BPF FS patch and three token patch sets, represented by merge commits): - revert 0f5d5454c723 "Merge branch 'bpf-fs-mount-options-parsing-follow-ups'"; - revert 750e785796bb "bpf: Support uid and gid when mounting bpffs"; - revert 733763285acf "Merge branch 'bpf-token-support-in-libbpf-s-bpf-object'"; - revert c35919dcce28 "Merge branch 'bpf-token-and-bpf-fs-based-delegation'". Link: https://lore.kernel.org/bpf/CAHk-=wg7JuFYwGy=GOMbRCtOL+jwSQsdUaBsRWkDVYbxipbM5A@mail.gmail.com Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
2023-12-19ring-buffer: Check if absolute timestamp goes backwardsSteven Rostedt (Google)
The check_buffer() which checks the timestamps of the ring buffer sub-buffer page, when enabled, only checks if the adding of deltas of the events from the last absolute timestamp or the timestamp of the sub-buffer page adds up to the current event. What it does not check is if the absolute timestamp causes the time of the events to go backwards, as that can cause issues elsewhere. Test for the timestamp going backwards too. This also fixes a slight issue where if the warning triggers at boot up (because of the resetting of the tsc), it will disable all further checks, even those that are after boot Have it continue checking if the warning was ignored during boot up. Link: https://lore.kernel.org/linux-trace-kernel/20231219074732.18b092d4@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-19ring-buffer: Add interrupt information to dump of data sub-bufferSteven Rostedt (Google)
When the ring buffer timestamp verifier triggers, it dumps the content of the sub-buffer. But currently it only dumps the timestamps and the offset of the data as well as the deltas. It would be even more informative if the event data also showed the interrupt context level it was in. That is, if each event showed that the event was written in normal, softirq, irq or NMI context. Then a better idea about how the events may have been interrupted from each other. As the payload of the ring buffer is really a black box of the ring buffer, just assume that if the payload is larger than a trace entry, that it is a trace entry. As trace entries have the interrupt context information saved in a flags field, look at that location and report the output of the flags. If the payload is not a trace entry, there's no way to really know, and the information will be garbage. But that's OK, because this is for debugging only (this output is not used in production as the buffer check that calls it causes a huge overhead to the tracing). This information, when available, is crucial for debugging timestamp issues. If it's garbage, it will also be pretty obvious that its garbage too. As this output usually happens in kselftests of the tracing code, the user will know what the payload is at the time. Link: https://lore.kernel.org/linux-trace-kernel/20231219074542.6f304601@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Suggested-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-19ring-buffer: Remove 32bit timestamp logicSteven Rostedt (Google)
Each event has a 27 bit timestamp delta that is used to hold the delta from the last event. If the time between events is greater than 2^27, then a timestamp is added that holds a 59 bit absolute timestamp. Until a389d86f7fd09 ("ring-buffer: Have nested events still record running time stamp"), if an interrupt interrupted an event in progress, all the events delta would be zero to not deal with the races that need to be handled. The commit a389d86f7fd09 changed that to handle the races giving all events, even those that preempt other events, still have an accurate timestamp. To handle those races requires performing 64-bit cmpxchg on the timestamps. But doing 64-bit cmpxchg on 32-bit architectures is considered very slow. To try to deal with this the timestamp logic was broken into two and then three 32-bit cmpxchgs, with the thought that two (or three) 32-bit cmpxchgs are still faster than a single 64-bit cmpxchg on 32-bit architectures. Part of the problem with this is that I didn't have any 32-bit architectures to test on. After hitting several subtle bugs in this code, an effort was made to try and see if three 32-bit cmpxchgs are indeed faster than a single 64-bit. After a few people brushed off the dust of their old 32-bit machines, tests were done, and even though 32-bit cmpxchg was faster than a single 64-bit, it was in the order of 50% at best, not 300%. After some more refactoring of the code, all 4 64-bit cmpxchg were removed: https://lore.kernel.org/linux-trace-kernel/20231211114420.36dde01b@gandalf.local.home https://lore.kernel.org/linux-trace-kernel/20231214222921.193037a7@gandalf.local.home https://lore.kernel.org/linux-trace-kernel/20231215081810.1f4f38fe@rorschach.local.home https://lore.kernel.org/linux-trace-kernel/20231218230712.3a76b081@gandalf.local.home/ With all the 64-bit cmpxchg removed, the complex 32-bit workaround can also be removed. The 32-bit and 64-bit logic is now exactly the same. Link: https://lore.kernel.org/all/20231213214632.15047c40@gandalf.local.home/ Link: https://lore.kernel.org/linux-trace-kernel/20231219074303.28f9abda@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18tracing: Increase size of trace_marker_raw to max ring buffer entrySteven Rostedt (Google)
There's no reason to give an arbitrary limit to the size of a raw trace marker. Just let it be as big as the size that is allowed by the ring buffer itself. And there's also no reason to artificially break up the write to TRACE_BUF_SIZE, as that's not even used. Link: https://lore.kernel.org/linux-trace-kernel/20231213104218.2efc70c1@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18tracing: Have trace_marker break up by lines by size of trace_seqSteven Rostedt (Google)
If a trace_marker write is bigger than what trace_seq can hold, then it will print "LINE TOO BIG" message and not what was written. Instead, check if the write is bigger than the trace_seq and break it up by that size. Ideally, we could make the trace_seq dynamic that could hold this. But that's for another time. Link: https://lore.kernel.org/linux-trace-kernel/20231212190422.1eaf224f@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18trace_seq: Increase the buffer size to almost two pagesSteven Rostedt (Google)
Now that trace_marker can hold more than 1KB string, and can write as much as the ring buffer can hold, the trace_seq is not big enough to hold writes: ~# a="1234567890" ~# cnt=4080 ~# s="" ~# while [ $cnt -gt 10 ]; do ~# s="${s}${a}" ~# cnt=$((cnt-10)) ~# done ~# echo $s > trace_marker ~# cat trace # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <...>-860 [002] ..... 105.543465: tracing_mark_write[LINE TOO BIG] <...>-860 [002] ..... 105.543496: tracing_mark_write: 789012345678901234567890 By increasing the trace_seq buffer to almost two pages, it can now print out the first line. This also subtracts the rest of the trace_seq fields from the buffer, so that the entire trace_seq is now PAGE_SIZE aligned. Link: https://lore.kernel.org/linux-trace-kernel/20231209175220.19867af4@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18tracing: Allow for max buffer data size trace_marker writesSteven Rostedt (Google)
Allow a trace write to be as big as the ring buffer tracing data will allow. Currently, it only allows writes of 1KB in size, but there's no reason that it cannot allow what the ring buffer can hold. Link: https://lore.kernel.org/linux-trace-kernel/20231212131901.5f501e72@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18ring-buffer: Add offset of events in dump on mismatchSteven Rostedt (Google)
On bugs that have the ring buffer timestamp get out of sync, the config CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS, that checks for it and if it is detected it causes a dump of the bad sub buffer. It shows each event and their timestamp as well as the delta in the event. But it's also good to see the offset into the subbuffer for that event to know if how close to the end it is. Also print where the last event actually ended compared to where it was expected to end. Link: https://lore.kernel.org/linux-trace-kernel/20231211131623.59eaebd2@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18tracing: Allow creating instances with specified system eventsSteven Rostedt (Google)
A trace instance may only need to enable specific events. As the eventfs directory of an instance currently creates all events which adds overhead, allow internal instances to be created with just the events in systems that they care about. This currently only deals with systems and not individual events, but this should bring down the overhead of creating instances for specific use cases quite bit. The trace_array_get_by_name() now has another parameter "systems". This parameter is a const string pointer of a comma/space separated list of event systems that should be created by the trace_array. (Note if the trace_array already exists, this parameter is ignored). The list of systems is saved and if a module is loaded, its events will not be added unless the system for those events also match the systems string. Link: https://lore.kernel.org/linux-trace-kernel/20231213093701.03fddec0@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Sean Paul <seanpaul@chromium.org> Cc: Arun Easi <aeasi@marvell.com> Cc: Daniel Wagner <dwagner@suse.de> Tested-by: Dmytro Maluka <dmaluka@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18ring-buffer: Fix slowpath of interrupted eventSteven Rostedt (Google)
To synchronize the timestamps with the ring buffer reservation, there are two timestamps that are saved in the buffer meta data. 1. before_stamp 2. write_stamp When the two are equal, the write_stamp is considered valid, as in, it may be used to calculate the delta of the next event as the write_stamp is the timestamp of the previous reserved event on the buffer. This is done by the following: /*A*/ w = current position on the ring buffer before = before_stamp after = write_stamp ts = read current timestamp if (before != after) { write_stamp is not valid, force adding an absolute timestamp. } /*B*/ before_stamp = ts /*C*/ write = local_add_return(event length, position on ring buffer) if (w == write - event length) { /* Nothing interrupted between A and C */ /*E*/ write_stamp = ts; delta = ts - after /* * If nothing interrupted again, * before_stamp == write_stamp and write_stamp * can be used to calculate the delta for * events that come in after this one. */ } else { /* * The slow path! * Was interrupted between A and C. */ This is the place that there's a bug. We currently have: after = write_stamp ts = read current timestamp /*F*/ if (write == current position on the ring buffer && after < ts && cmpxchg(write_stamp, after, ts)) { delta = ts - after; } else { delta = 0; } The assumption is that if the current position on the ring buffer hasn't moved between C and F, then it also was not interrupted, and that the last event written has a timestamp that matches the write_stamp. That is the write_stamp is valid. But this may not be the case: If a task context event was interrupted by softirq between B and C. And the softirq wrote an event that got interrupted by a hard irq between C and E. and the hard irq wrote an event (does not need to be interrupted) We have: /*B*/ before_stamp = ts of normal context ---> interrupted by softirq /*B*/ before_stamp = ts of softirq context ---> interrupted by hardirq /*B*/ before_stamp = ts of hard irq context /*E*/ write_stamp = ts of hard irq context /* matches and write_stamp valid */ <---- /*E*/ write_stamp = ts of softirq context /* No longer matches before_stamp, write_stamp is not valid! */ <--- w != write - length, go to slow path // Right now the order of events in the ring buffer is: // // |-- softirq event --|-- hard irq event --|-- normal context event --| // after = write_stamp (this is the ts of softirq) ts = read current timestamp if (write == current position on the ring buffer [true] && after < ts [true] && cmpxchg(write_stamp, after, ts) [true]) { delta = ts - after [Wrong!] The delta is to be between the hard irq event and the normal context event, but the above logic made the delta between the softirq event and the normal context event, where the hard irq event is between the two. This will shift all the remaining event timestamps on the sub-buffer incorrectly. The write_stamp is only valid if it matches the before_stamp. The cmpxchg does nothing to help this. Instead, the following logic can be done to fix this: before = before_stamp ts = read current timestamp before_stamp = ts after = write_stamp if (write == current position on the ring buffer && after == before && after < ts) { delta = ts - after } else { delta = 0; } The above will only use the write_stamp if it still matches before_stamp and was tested to not have changed since C. As a bonus, with this logic we do not need any 64-bit cmpxchg() at all! This means the 32-bit rb_time_t workaround can finally be removed. But that's for a later time. Link: https://lore.kernel.org/linux-trace-kernel/20231218175229.58ec3daf@gandalf.local.home/ Link: https://lore.kernel.org/linux-trace-kernel/20231218230712.3a76b081@gandalf.local.home Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Fixes: dd93942570789 ("ring-buffer: Do not try to put back write_stamp") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18Merge tag 'for-netdev' of ↵Jakub Kicinski
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next Alexei Starovoitov says: ==================== pull-request: bpf-next 2023-12-18 This PR is larger than usual and contains changes in various parts of the kernel. The main changes are: 1) Fix kCFI bugs in BPF, from Peter Zijlstra. End result: all forms of indirect calls from BPF into kernel and from kernel into BPF work with CFI enabled. This allows BPF to work with CONFIG_FINEIBT=y. 2) Introduce BPF token object, from Andrii Nakryiko. It adds an ability to delegate a subset of BPF features from privileged daemon (e.g., systemd) through special mount options for userns-bound BPF FS to a trusted unprivileged application. The design accommodates suggestions from Christian Brauner and Paul Moore. Example: $ sudo mkdir -p /sys/fs/bpf/token $ sudo mount -t bpf bpffs /sys/fs/bpf/token \ -o delegate_cmds=prog_load:MAP_CREATE \ -o delegate_progs=kprobe \ -o delegate_attachs=xdp 3) Various verifier improvements and fixes, from Andrii Nakryiko, Andrei Matei. - Complete precision tracking support for register spills - Fix verification of possibly-zero-sized stack accesses - Fix access to uninit stack slots - Track aligned STACK_ZERO cases as imprecise spilled registers. It improves the verifier "instructions processed" metric from single digit to 50-60% for some programs. - Fix verifier retval logic 4) Support for VLAN tag in XDP hints, from Larysa Zaremba. 5) Allocate BPF trampoline via bpf_prog_pack mechanism, from Song Liu. End result: better memory utilization and lower I$ miss for calls to BPF via BPF trampoline. 6) Fix race between BPF prog accessing inner map and parallel delete, from Hou Tao. 7) Add bpf_xdp_get_xfrm_state() kfunc, from Daniel Xu. It allows BPF interact with IPSEC infra. The intent is to support software RSS (via XDP) for the upcoming ipsec pcpu work. Experiments on AWS demonstrate single tunnel pcpu ipsec reaching line rate on 100G ENA nics. 8) Expand bpf_cgrp_storage to support cgroup1 non-attach, from Yafang Shao. 9) BPF file verification via fsverity, from Song Liu. It allows BPF progs get fsverity digest. * tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (164 commits) bpf: Ensure precise is reset to false in __mark_reg_const_zero() selftests/bpf: Add more uprobe multi fail tests bpf: Fail uprobe multi link with negative offset selftests/bpf: Test the release of map btf s390/bpf: Fix indirect trampoline generation selftests/bpf: Temporarily disable dummy_struct_ops test on s390 x86/cfi,bpf: Fix bpf_exception_cb() signature bpf: Fix dtor CFI cfi: Add CFI_NOSEAL() x86/cfi,bpf: Fix bpf_struct_ops CFI x86/cfi,bpf: Fix bpf_callback_t CFI x86/cfi,bpf: Fix BPF JIT call cfi: Flip headers selftests/bpf: Add test for abnormal cnt during multi-kprobe attachment selftests/bpf: Don't use libbpf_get_error() in kprobe_multi_test selftests/bpf: Add test for abnormal cnt during multi-uprobe attachment bpf: Limit the number of kprobes when attaching program to multiple kprobes bpf: Limit the number of uprobes when attaching program to multiple uprobes bpf: xdp: Register generic_kfunc_set with XDP programs selftests/bpf: utilize string values for delegate_xxx mount options ... ==================== Link: https://lore.kernel.org/r/20231219000520.34178-1-alexei.starovoitov@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-18bpf: Ensure precise is reset to false in __mark_reg_const_zero()Andrii Nakryiko
It is safe to always start with imprecise SCALAR_VALUE register. Previously __mark_reg_const_zero() relied on caller to reset precise mark, but it's very error prone and we already missed it in a few places. So instead make __mark_reg_const_zero() reset precision always, as it's a safe default for SCALAR_VALUE. Explanation is basically the same as for why we are resetting (or rather not setting) precision in current state. If necessary, precision propagation will set it to precise correctly. As such, also remove a big comment about forward precision propagation in mark_reg_stack_read() and avoid unnecessarily setting precision to true after reading from STACK_ZERO stack. Again, precision propagation will correctly handle this, if that SCALAR_VALUE register will ever be needed to be precise. Reported-by: Maxim Mikityanskiy <maxtram95@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yonghong.song@linux.dev> Acked-by: Maxim Mikityanskiy <maxtram95@gmail.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20231218173601.53047-1-andrii@kernel.org
2023-12-18kunit: add KUNIT_INIT_TABLE to init linker sectionRae Moar
Add KUNIT_INIT_TABLE to the INIT_DATA linker section. Alter the KUnit macros to create init tests: kunit_test_init_section_suites Update lib/kunit/executor.c to run both the suites in KUNIT_TABLE and KUNIT_INIT_TABLE. Reviewed-by: David Gow <davidgow@google.com> Signed-off-by: Rae Moar <rmoar@google.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2023-12-18bpf: Fail uprobe multi link with negative offsetJiri Olsa
Currently the __uprobe_register will return 0 (success) when called with negative offset. The reason is that the call to register_for_each_vma and then build_map_info won't return error for negative offset. They just won't do anything - no matching vma is found so there's no registered breakpoint for the uprobe. I don't think we can change the behaviour of __uprobe_register and fail for negative uprobe offset, because apps might depend on that already. But I think we can still make the change and check for it on bpf multi link syscall level. Also moving the __get_user call and check for the offsets to the top of loop, to fail early without extra __get_user calls for ref_ctr_offset and cookie arrays. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Song Liu <song@kernel.org> Link: https://lore.kernel.org/bpf/20231217215538.3361991-2-jolsa@kernel.org
2023-12-17Merge tag 'perf_urgent_for_v6.7_rc6' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf fix from Borislav Petkov: - Avoid iterating over newly created group leader event's siblings because there are none, and thus prevent a lockdep splat * tag 'perf_urgent_for_v6.7_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf: Fix perf_event_validate_size() lockdep splat
2023-12-17Merge tag 'cxl-fixes-6.7-rc6' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl Pull CXL (Compute Express Link) fixes from Dan Williams: "A collection of CXL fixes. The touch outside of drivers/cxl/ is for a helper that allocates physical address space. Device hotplug tests showed that the driver failed to utilize (skipped over) valid capacity when allocating a new memory region. Outside of that, new tests uncovered a small crop of lockdep reports. There is also some miscellaneous error path and leak fixups that are not urgent, but useful to cleanup now. - Fix alloc_free_mem_region()'s scan for address space, prevent false negative out-of-space events - Fix sleeping lock acquisition from CXL trace event (atomic context) - Fix put_device() like for the new CXL PMU driver - Fix wrong pointer freed on error path - Fixup several lockdep reports (missing lock hold) from new assertion in cxl_num_decoders_committed() and new tests" * tag 'cxl-fixes-6.7-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl: cxl/pmu: Ensure put_device on pmu devices cxl/cdat: Free correct buffer on checksum error cxl/hdm: Fix dpa translation locking kernel/resource: Increment by align value in get_free_mem_region() cxl: Add cxl_num_decoders_committed() usage to cxl_test cxl/memdev: Hold region_rwsem during inject and clear poison ops cxl/core: Always hold region_rwsem while reading poison lists cxl/hdm: Fix a benign lockdep splat
2023-12-17trace/kprobe: Display the actual notrace function when rejecting a probeNaveen N Rao
Trying to probe update_sd_lb_stats() using perf results in the below message in the kernel log: trace_kprobe: Could not probe notrace function _text This is because 'perf probe' specifies the kprobe location as an offset from '_text': $ sudo perf probe -D update_sd_lb_stats p:probe/update_sd_lb_stats _text+1830728 However, the error message is misleading and doesn't help convey the actual notrace function that is being probed. Fix this by looking up the actual function name that is being probed. With this fix, we now get the below message in the kernel log: trace_kprobe: Could not probe notrace function update_sd_lb_stats.constprop.0 Link: https://lore.kernel.org/all/20231214051702.1687300-1-naveen@kernel.org/ Signed-off-by: Naveen N Rao <naveen@kernel.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2023-12-16Merge tag 'trace-v6.7-rc5' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing fixes from Steven Rostedt: - Fix eventfs to check creating new files for events with names greater than NAME_MAX. The eventfs lookup needs to check the return result of simple_lookup(). - Fix the ring buffer to check the proper max data size. Events must be able to fit on the ring buffer sub-buffer, if it cannot, then it fails to be written and the logic to add the event is avoided. The code to check if an event can fit failed to add the possible absolute timestamp which may make the event not be able to fit. This causes the ring buffer to go into an infinite loop trying to find a sub-buffer that would fit the event. Luckily, there's a check that will bail out if it looped over a 1000 times and it also warns. The real fix is not to add the absolute timestamp to an event that is starting at the beginning of a sub-buffer because it uses the sub-buffer timestamp. By avoiding the timestamp at the start of the sub-buffer allows events that pass the first check to always find a sub-buffer that it can fit on. - Have large events that do not fit on a trace_seq to print "LINE TOO BIG" like it does for the trace_pipe instead of what it does now which is to silently drop the output. - Fix a memory leak of forgetting to free the spare page that is saved by a trace instance. - Update the size of the snapshot buffer when the main buffer is updated if the snapshot buffer is allocated. - Fix ring buffer timestamp logic by removing all the places that tried to put the before_stamp back to the write stamp so that the next event doesn't add an absolute timestamp. But each of these updates added a race where by making the two timestamp equal, it was validating the write_stamp so that it can be incorrectly used for calculating the delta of an event. - There's a temp buffer used for printing the event that was using the event data size for allocation when it needed to use the size of the entire event (meta-data and payload data) - For hardening, use "%.*s" for printing the trace_marker output, to limit the amount that is printed by the size of the event. This was discovered by development that added a bug that truncated the '\0' and caused a crash. - Fix a use-after-free bug in the use of the histogram files when an instance is being removed. - Remove a useless update in the rb_try_to_discard of the write_stamp. The before_stamp was already changed to force the next event to add an absolute timestamp that the write_stamp is not used. But the write_stamp is modified again using an unneeded 64-bit cmpxchg. - Fix several races in the 32-bit implementation of the rb_time_cmpxchg() that does a 64-bit cmpxchg. - While looking at fixing the 64-bit cmpxchg, I noticed that because the ring buffer uses normal cmpxchg, and this can be done in NMI context, there's some architectures that do not have a working cmpxchg in NMI context. For these architectures, fail recording events that happen in NMI context. * tag 'trace-v6.7-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: ring-buffer: Do not record in NMI if the arch does not support cmpxchg in NMI ring-buffer: Have rb_time_cmpxchg() set the msb counter too ring-buffer: Fix 32-bit rb_time_read() race with rb_time_cmpxchg() ring-buffer: Fix a race in rb_time_cmpxchg() for 32 bit archs ring-buffer: Remove useless update to write_stamp in rb_try_to_discard() ring-buffer: Do not try to put back write_stamp tracing: Fix uaf issue when open the hist or hist_debug file tracing: Add size check when printing trace_marker output ring-buffer: Have saved event hold the entire event ring-buffer: Do not update before stamp when switching sub-buffers tracing: Update snapshot buffer on resize if it is allocated ring-buffer: Fix memory leak of free page eventfs: Fix events beyond NAME_MAX blocking tasks tracing: Have large events show up as '[LINE TOO BIG]' instead of nothing ring-buffer: Fix writing to the buffer with max_data_size
2023-12-15x86/cfi,bpf: Fix bpf_exception_cb() signatureAlexei Starovoitov
As per the earlier patches, BPF sub-programs have bpf_callback_t signature and CFI expects callers to have matching signature. This is violated by bpf_prog_aux::bpf_exception_cb(). [peterz: Changelog] Reported-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/CAADnVQ+Z7UcXXBBhMubhcMM=R-dExk-uHtfOLtoLxQ1XxEpqEA@mail.gmail.com Link: https://lore.kernel.org/r/20231215092707.910319166@infradead.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-15bpf: Fix dtor CFIPeter Zijlstra
Ensure the various dtor functions match their prototype and retain their CFI signatures, since they don't have their address taken, they are prone to not getting CFI, making them impossible to call indirectly. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20231215092707.799451071@infradead.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-15x86/cfi,bpf: Fix bpf_struct_ops CFIPeter Zijlstra
BPF struct_ops uses __arch_prepare_bpf_trampoline() to write trampolines for indirect function calls. These tramplines much have matching CFI. In order to obtain the correct CFI hash for the various methods, add a matching structure that contains stub functions, the compiler will generate correct CFI which we can pilfer for the trampolines. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20231215092707.566977112@infradead.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-15x86/cfi,bpf: Fix BPF JIT callPeter Zijlstra
The current BPF call convention is __nocfi, except when it calls !JIT things, then it calls regular C functions. It so happens that with FineIBT the __nocfi and C calling conventions are incompatible. Specifically __nocfi will call at func+0, while FineIBT will have endbr-poison there, which is not a valid indirect target. Causing #CP. Notably this only triggers on IBT enabled hardware, which is probably why this hasn't been reported (also, most people will have JIT on anyway). Implement proper CFI prologues for the BPF JIT codegen and drop __nocfi for x86. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20231215092707.345270396@infradead.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-15cred: get rid of CONFIG_DEBUG_CREDENTIALSJens Axboe
This code is rarely (never?) enabled by distros, and it hasn't caught anything in decades. Let's kill off this legacy debug code. Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>