summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2021-07-21workqueue: fix UAF in pwq_unbound_release_workfn()Yang Yingliang
I got a UAF report when doing fuzz test: [ 152.880091][ T8030] ================================================================== [ 152.881240][ T8030] BUG: KASAN: use-after-free in pwq_unbound_release_workfn+0x50/0x190 [ 152.882442][ T8030] Read of size 4 at addr ffff88810d31bd00 by task kworker/3:2/8030 [ 152.883578][ T8030] [ 152.883932][ T8030] CPU: 3 PID: 8030 Comm: kworker/3:2 Not tainted 5.13.0+ #249 [ 152.885014][ T8030] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 [ 152.886442][ T8030] Workqueue: events pwq_unbound_release_workfn [ 152.887358][ T8030] Call Trace: [ 152.887837][ T8030] dump_stack_lvl+0x75/0x9b [ 152.888525][ T8030] ? pwq_unbound_release_workfn+0x50/0x190 [ 152.889371][ T8030] print_address_description.constprop.10+0x48/0x70 [ 152.890326][ T8030] ? pwq_unbound_release_workfn+0x50/0x190 [ 152.891163][ T8030] ? pwq_unbound_release_workfn+0x50/0x190 [ 152.891999][ T8030] kasan_report.cold.15+0x82/0xdb [ 152.892740][ T8030] ? pwq_unbound_release_workfn+0x50/0x190 [ 152.893594][ T8030] __asan_load4+0x69/0x90 [ 152.894243][ T8030] pwq_unbound_release_workfn+0x50/0x190 [ 152.895057][ T8030] process_one_work+0x47b/0x890 [ 152.895778][ T8030] worker_thread+0x5c/0x790 [ 152.896439][ T8030] ? process_one_work+0x890/0x890 [ 152.897163][ T8030] kthread+0x223/0x250 [ 152.897747][ T8030] ? set_kthread_struct+0xb0/0xb0 [ 152.898471][ T8030] ret_from_fork+0x1f/0x30 [ 152.899114][ T8030] [ 152.899446][ T8030] Allocated by task 8884: [ 152.900084][ T8030] kasan_save_stack+0x21/0x50 [ 152.900769][ T8030] __kasan_kmalloc+0x88/0xb0 [ 152.901416][ T8030] __kmalloc+0x29c/0x460 [ 152.902014][ T8030] alloc_workqueue+0x111/0x8e0 [ 152.902690][ T8030] __btrfs_alloc_workqueue+0x11e/0x2a0 [ 152.903459][ T8030] btrfs_alloc_workqueue+0x6d/0x1d0 [ 152.904198][ T8030] scrub_workers_get+0x1e8/0x490 [ 152.904929][ T8030] btrfs_scrub_dev+0x1b9/0x9c0 [ 152.905599][ T8030] btrfs_ioctl+0x122c/0x4e50 [ 152.906247][ T8030] __x64_sys_ioctl+0x137/0x190 [ 152.906916][ T8030] do_syscall_64+0x34/0xb0 [ 152.907535][ T8030] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 152.908365][ T8030] [ 152.908688][ T8030] Freed by task 8884: [ 152.909243][ T8030] kasan_save_stack+0x21/0x50 [ 152.909893][ T8030] kasan_set_track+0x20/0x30 [ 152.910541][ T8030] kasan_set_free_info+0x24/0x40 [ 152.911265][ T8030] __kasan_slab_free+0xf7/0x140 [ 152.911964][ T8030] kfree+0x9e/0x3d0 [ 152.912501][ T8030] alloc_workqueue+0x7d7/0x8e0 [ 152.913182][ T8030] __btrfs_alloc_workqueue+0x11e/0x2a0 [ 152.913949][ T8030] btrfs_alloc_workqueue+0x6d/0x1d0 [ 152.914703][ T8030] scrub_workers_get+0x1e8/0x490 [ 152.915402][ T8030] btrfs_scrub_dev+0x1b9/0x9c0 [ 152.916077][ T8030] btrfs_ioctl+0x122c/0x4e50 [ 152.916729][ T8030] __x64_sys_ioctl+0x137/0x190 [ 152.917414][ T8030] do_syscall_64+0x34/0xb0 [ 152.918034][ T8030] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 152.918872][ T8030] [ 152.919203][ T8030] The buggy address belongs to the object at ffff88810d31bc00 [ 152.919203][ T8030] which belongs to the cache kmalloc-512 of size 512 [ 152.921155][ T8030] The buggy address is located 256 bytes inside of [ 152.921155][ T8030] 512-byte region [ffff88810d31bc00, ffff88810d31be00) [ 152.922993][ T8030] The buggy address belongs to the page: [ 152.923800][ T8030] page:ffffea000434c600 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x10d318 [ 152.925249][ T8030] head:ffffea000434c600 order:2 compound_mapcount:0 compound_pincount:0 [ 152.926399][ T8030] flags: 0x57ff00000010200(slab|head|node=1|zone=2|lastcpupid=0x7ff) [ 152.927515][ T8030] raw: 057ff00000010200 dead000000000100 dead000000000122 ffff888009c42c80 [ 152.928716][ T8030] raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000 [ 152.929890][ T8030] page dumped because: kasan: bad access detected [ 152.930759][ T8030] [ 152.931076][ T8030] Memory state around the buggy address: [ 152.931851][ T8030] ffff88810d31bc00: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 152.932967][ T8030] ffff88810d31bc80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 152.934068][ T8030] >ffff88810d31bd00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 152.935189][ T8030] ^ [ 152.935763][ T8030] ffff88810d31bd80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 152.936847][ T8030] ffff88810d31be00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 152.937940][ T8030] ================================================================== If apply_wqattrs_prepare() fails in alloc_workqueue(), it will call put_pwq() which invoke a work queue to call pwq_unbound_release_workfn() and use the 'wq'. The 'wq' allocated in alloc_workqueue() will be freed in error path when apply_wqattrs_prepare() fails. So it will lead a UAF. CPU0 CPU1 alloc_workqueue() alloc_and_link_pwqs() apply_wqattrs_prepare() fails apply_wqattrs_cleanup() schedule_work(&pwq->unbound_release_work) kfree(wq) worker_thread() pwq_unbound_release_workfn() <- trigger uaf here If apply_wqattrs_prepare() fails, the new pwq are not linked, it doesn't hold any reference to the 'wq', 'wq' is invalid to access in the worker, so add check pwq if linked to fix this. Fixes: 2d5f0764b526 ("workqueue: split apply_workqueue_attrs() into 3 stages") Cc: stable@vger.kernel.org # v4.2+ Reported-by: Hulk Robot <hulkci@huawei.com> Suggested-by: Lai Jiangshan <jiangshanlai@gmail.com> Signed-off-by: Yang Yingliang <yangyingliang@huawei.com> Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com> Tested-by: Pavel Skripkin <paskripkin@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2021-07-21cgroup1: fix leaked context root causing sporadic NULL deref in LTPPaul Gortmaker
Richard reported sporadic (roughly one in 10 or so) null dereferences and other strange behaviour for a set of automated LTP tests. Things like: BUG: kernel NULL pointer dereference, address: 0000000000000008 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 1516 Comm: umount Not tainted 5.10.0-yocto-standard #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-48-gd9c812dda519-prebuilt.qemu.org 04/01/2014 RIP: 0010:kernfs_sop_show_path+0x1b/0x60 ...or these others: RIP: 0010:do_mkdirat+0x6a/0xf0 RIP: 0010:d_alloc_parallel+0x98/0x510 RIP: 0010:do_readlinkat+0x86/0x120 There were other less common instances of some kind of a general scribble but the common theme was mount and cgroup and a dubious dentry triggering the NULL dereference. I was only able to reproduce it under qemu by replicating Richard's setup as closely as possible - I never did get it to happen on bare metal, even while keeping everything else the same. In commit 71d883c37e8d ("cgroup_do_mount(): massage calling conventions") we see this as a part of the overall change: -------------- struct cgroup_subsys *ss; - struct dentry *dentry; [...] - dentry = cgroup_do_mount(&cgroup_fs_type, fc->sb_flags, root, - CGROUP_SUPER_MAGIC, ns); [...] - if (percpu_ref_is_dying(&root->cgrp.self.refcnt)) { - struct super_block *sb = dentry->d_sb; - dput(dentry); + ret = cgroup_do_mount(fc, CGROUP_SUPER_MAGIC, ns); + if (!ret && percpu_ref_is_dying(&root->cgrp.self.refcnt)) { + struct super_block *sb = fc->root->d_sb; + dput(fc->root); deactivate_locked_super(sb); msleep(10); return restart_syscall(); } -------------- In changing from the local "*dentry" variable to using fc->root, we now export/leave that dentry pointer in the file context after doing the dput() in the unlikely "is_dying" case. With LTP doing a crazy amount of back to back mount/unmount [testcases/bin/cgroup_regression_5_1.sh] the unlikely becomes slightly likely and then bad things happen. A fix would be to not leave the stale reference in fc->root as follows: --------------                 dput(fc->root); + fc->root = NULL;                 deactivate_locked_super(sb); -------------- ...but then we are just open-coding a duplicate of fc_drop_locked() so we simply use that instead. Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Tejun Heo <tj@kernel.org> Cc: Zefan Li <lizefan.x@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: stable@vger.kernel.org # v5.1+ Reported-by: Richard Purdie <richard.purdie@linuxfoundation.org> Fixes: 71d883c37e8d ("cgroup_do_mount(): massage calling conventions") Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2021-07-20kcsan: permissive: Ignore data-racy 1-bit value changesMarco Elver
Add rules to ignore data-racy reads with only 1-bit value changes. Details about the rules are captured in comments in kernel/kcsan/permissive.h. More background follows. While investigating a number of data races, we've encountered data-racy accesses on flags variables to be very common. The typical pattern is a reader masking all but one bit, and/or the writer setting/clearing only 1 bit (current->flags being a frequently encountered case; more examples in mm/sl[au]b.c, which disable KCSAN for this reason). Since these types of data-racy accesses are common (with the assumption they are intentional and hard to miscompile) having the option (with CONFIG_KCSAN_PERMISSIVE=y) to filter them will avoid forcing everyone to mark them, and deliberately left to preference at this time. One important motivation for having this option built-in is to move closer to being able to enable KCSAN on CI systems or for testers wishing to test the whole kernel, while more easily filtering less interesting data races with higher probability. For the implementation, we considered several alternatives, but had one major requirement: that the rules be kept together with the Linux-kernel tree. Adding them to the compiler would preclude us from making changes quickly; if the rules require tweaks, having them part of the compiler requires waiting another ~1 year for the next release -- that's not realistic. We are left with the following options: 1. Maintain compiler plugins as part of the kernel-tree that removes instrumentation for some accesses (e.g. plain-& with 1-bit mask). The analysis would be reader-side focused, as no assumption can be made about racing writers. Because it seems unrealistic to maintain 2 plugins, one for LLVM and GCC, we would likely pick LLVM. Furthermore, no kernel infrastructure exists to maintain LLVM plugins, and the build-system implications and maintenance overheads do not look great (historically, plugins written against old LLVM APIs are not guaranteed to work with newer LLVM APIs). 2. Find a set of rules that can be expressed in terms of observed value changes, and make it part of the KCSAN runtime. The analysis is writer-side focused, given we rely on observed value changes. The approach taken here is (2). While a complete approach requires both (1) and (2), experiments show that the majority of data races involving trivial bit operations on flags variables can be removed with (2) alone. It goes without saying that the filtering of data races using (1) or (2) does _not_ guarantee they are safe! Therefore, limiting ourselves to (2) for now is the conservative choice for setups that wish to enable CONFIG_KCSAN_PERMISSIVE=y. Signed-off-by: Marco Elver <elver@google.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20kcsan: Print if strict or non-strict during initMarco Elver
Show a brief message if KCSAN is strict or non-strict, and if non-strict also say that CONFIG_KCSAN_STRICT=y can be used to see all data races. This is to hint to users of KCSAN who blindly use the default config that their configuration might miss data races of interest. Signed-off-by: Marco Elver <elver@google.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20kcsan: Rework atomic.h into permissive.hMarco Elver
Rework atomic.h into permissive.h to better reflect its purpose, and introduce kcsan_ignore_address() and kcsan_ignore_data_race(). Introduce CONFIG_KCSAN_PERMISSIVE and update the stub functions in preparation for subsequent changes. As before, developers who choose to use KCSAN in "strict" mode will see all data races and are not affected. Furthermore, by relying on the value-change filter logic for kcsan_ignore_data_race(), even if the permissive rules are enabled, the opt-outs in report.c:skip_report() override them (such as for RCU-related functions by default). The option CONFIG_KCSAN_PERMISSIVE is disabled by default, so that the documented default behaviour of KCSAN does not change. Instead, like CONFIG_KCSAN_IGNORE_ATOMICS, the option needs to be explicitly opted in. Signed-off-by: Marco Elver <elver@google.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20kcsan: Reduce get_ctx() uses in kcsan_found_watchpoint()Marco Elver
There are a number get_ctx() calls that are close to each other, which results in poor codegen (repeated preempt_count loads). Specifically in kcsan_found_watchpoint() (even though it's a slow-path) it is beneficial to keep the race-window small until the watchpoint has actually been consumed to avoid missed opportunities to report a race. Let's clean it up a bit before we add more code in kcsan_found_watchpoint(). Signed-off-by: Marco Elver <elver@google.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20kcsan: Remove CONFIG_KCSAN_DEBUGMarco Elver
By this point CONFIG_KCSAN_DEBUG is pretty useless, as the system just isn't usable with it due to spamming console (I imagine a randconfig test robot will run into this sooner or later). Remove it. Back in 2019 I used it occasionally to record traces of watchpoints and verify the encoding is correct, but these days we have proper tests. If something similar is needed in future, just add it back ad-hoc. Signed-off-by: Marco Elver <elver@google.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20rcu: Fix macro name CONFIG_TASKS_RCU_TRACEZhouyi Zhou
This commit fixes several typos where CONFIG_TASKS_RCU_TRACE should instead be CONFIG_TASKS_TRACE_RCU. Among other things, these typos could cause CONFIG_TASKS_TRACE_RCU_READ_MB=y kernels to suffer from memory-ordering bugs that could result in false-positive quiescent states and too-short grace periods. Signed-off-by: Zhouyi Zhou <zhouzhouyi@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20rcu-tasks: Fix synchronize_rcu_rude() typo in commentPaul E. McKenney
This commit replaces the fictitious synchronize_rcu_rude() function with its real-world synchronize_rcu_tasks_rude() counterpart. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20rcu-tasks: Mark ->trc_reader_special.b.need_qs data racesPaul E. McKenney
There are several ->trc_reader_special.b.need_qs data races that are too low-probability for KCSAN to notice, but which will happen sooner or later. This commit therefore marks these accesses. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20rcu-tasks: Mark ->trc_reader_nesting data racesPaul E. McKenney
There are several ->trc_reader_nesting data races that are too low-probability for KCSAN to notice, but which will happen sooner or later. This commit therefore marks these accesses, and comments one that cannot race. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20rcu-tasks: Add comments explaining task_struct strategyPaul E. McKenney
Accesses to task_struct structures must be either protected by RCU or by get_task_struct(). Tasks trace RCU uses these in a non-obvious combination, in conjunction with an IPI handler. This commit therefore adds comments explaining this usage. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20rcu/nocb: Remove NOCB deferred wakeup from rcutree_dead_cpu()Frederic Weisbecker
At CPU offline time, we must handle any pending wakeup for the nocb_gp kthread linked to the outgoing CPU. Now we are making sure of that twice: 1) From rcu_report_dead() when the outgoing CPU makes the very last local cleanups by itself before switching offline. 2) From rcutree_dead_cpu(). Here the offlining CPU has gone and is truly now offline. Another CPU takes care of post-portem cleaning up and check if the offline CPU had pending wakeup. Both ways are fine but we have to choose one or the other because we don't need to repeat that action. Simply benefit from cache locality and keep only the first solution. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20rcu/nocb: Start moving nocb code to its own plugin fileFrederic Weisbecker
The kernel/rcu/tree_plugin.h file contains not only the plugins for preemptible RCU, but also many other features including rcu_nocbs callback offloading. This offloading has become large and complex, so it is time to put it in its own file. This commit starts that process. Suggested-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> [ paulmck: Rename to tree_nocb.h, add Frederic as author. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-07-20Merge branch 'timers/urgent' of ↵Thomas Gleixner
git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks into timers/urgent Pull dyntick fixes from Frederic Weisbecker: - Fix a rearm race in the posix cpu timer code - Handle get_next_timer_interrupt() correctly when no timers are pending Link: https://lore.kernel.org/r/20210715104218.81276-1-frederic@kernel.org
2021-07-19audit: add header protection to kernel/audit.hMaYuming
Protect kernel/audit.h against multiple #include's. Signed-off-by: MaYuming <mayuming77@hotmail.com> [PM: rewrite subj/description] Signed-off-by: Paul Moore <paul@paul-moore.com>
2021-07-19printk: Userspace format indexing supportChris Down
We have a number of systems industry-wide that have a subset of their functionality that works as follows: 1. Receive a message from local kmsg, serial console, or netconsole; 2. Apply a set of rules to classify the message; 3. Do something based on this classification (like scheduling a remediation for the machine), rinse, and repeat. As a couple of examples of places we have this implemented just inside Facebook, although this isn't a Facebook-specific problem, we have this inside our netconsole processing (for alarm classification), and as part of our machine health checking. We use these messages to determine fairly important metrics around production health, and it's important that we get them right. While for some kinds of issues we have counters, tracepoints, or metrics with a stable interface which can reliably indicate the issue, in order to react to production issues quickly we need to work with the interface which most kernel developers naturally use when developing: printk. Most production issues come from unexpected phenomena, and as such usually the code in question doesn't have easily usable tracepoints or other counters available for the specific problem being mitigated. We have a number of lines of monitoring defence against problems in production (host metrics, process metrics, service metrics, etc), and where it's not feasible to reliably monitor at another level, this kind of pragmatic netconsole monitoring is essential. As one would expect, monitoring using printk is rather brittle for a number of reasons -- most notably that the message might disappear entirely in a new version of the kernel, or that the message may change in some way that the regex or other classification methods start to silently fail. One factor that makes this even harder is that, under normal operation, many of these messages are never expected to be hit. For example, there may be a rare hardware bug which one wants to detect if it was to ever happen again, but its recurrence is not likely or anticipated. This precludes using something like checking whether the printk in question was printed somewhere fleetwide recently to determine whether the message in question is still present or not, since we don't anticipate that it should be printed anywhere, but still need to monitor for its future presence in the long-term. This class of issue has happened on a number of occasions, causing unhealthy machines with hardware issues to remain in production for longer than ideal. As a recent example, some monitoring around blk_update_request fell out of date and caused semi-broken machines to remain in production for longer than would be desirable. Searching through the codebase to find the message is also extremely fragile, because many of the messages are further constructed beyond their callsite (eg. btrfs_printk and other module-specific wrappers, each with their own functionality). Even if they aren't, guessing the format and formulation of the underlying message based on the aesthetics of the message emitted is not a recipe for success at scale, and our previous issues with fleetwide machine health checking demonstrate as much. This provides a solution to the issue of silently changed or deleted printks: we record pointers to all printk format strings known at compile time into a new .printk_index section, both in vmlinux and modules. At runtime, this can then be iterated by looking at <debugfs>/printk/index/<module>, which emits the following format, both readable by humans and able to be parsed by machines: $ head -1 vmlinux; shuf -n 5 vmlinux # <level[,flags]> filename:line function "format" <5> block/blk-settings.c:661 disk_stack_limits "%s: Warning: Device %s is misaligned\n" <4> kernel/trace/trace.c:8296 trace_create_file "Could not create tracefs '%s' entry\n" <6> arch/x86/kernel/hpet.c:144 _hpet_print_config "hpet: %s(%d):\n" <6> init/do_mounts.c:605 prepare_namespace "Waiting for root device %s...\n" <6> drivers/acpi/osl.c:1410 acpi_no_auto_serialize_setup "ACPI: auto-serialization disabled\n" This mitigates the majority of cases where we have a highly-specific printk which we want to match on, as we can now enumerate and check whether the format changed or the printk callsite disappeared entirely in userspace. This allows us to catch changes to printks we monitor earlier and decide what to do about it before it becomes problematic. There is no additional runtime cost for printk callers or printk itself, and the assembly generated is exactly the same. Signed-off-by: Chris Down <chris@chrisdown.name> Cc: Petr Mladek <pmladek@suse.com> Cc: Jessica Yu <jeyu@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Reviewed-by: Petr Mladek <pmladek@suse.com> Tested-by: Petr Mladek <pmladek@suse.com> Reported-by: kernel test robot <lkp@intel.com> Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> Acked-by: Jessica Yu <jeyu@kernel.org> # for module.{c,h} Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/e42070983637ac5e384f17fbdbe86d19c7b212a5.1623775748.git.chris@chrisdown.name
2021-07-19printk: Rework parse_prefix into printk_parse_prefixChris Down
parse_prefix is needed externally by later patches, so move it into a context where it can be used as such. Also give it the printk_ prefix to reduce the chance of collisions. Signed-off-by: Chris Down <chris@chrisdown.name> Cc: Petr Mladek <pmladek@suse.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/b22ba314a860e5c7f887958f1eab2649f9bd1d06.1623775748.git.chris@chrisdown.name
2021-07-19printk: Straighten out log_flags into printk_info_flagsChris Down
In the past, `enum log_flags` was part of `struct log`, hence the name. `struct log` has since been reworked and now this struct is stored inside `struct printk_info`. However, the name was never updated, which is somewhat confusing -- especially since these flags operate at the record level rather than at the level of an abstract log. printk_info_flags also joins its other metadata struct friends in printk_ringbuffer.h. Signed-off-by: Chris Down <chris@chrisdown.name> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/3dd801982f02603e6e3aa4f8bc4f5ebb830a4949.1623775748.git.chris@chrisdown.name
2021-07-17Merge tag 'trace-v5.14-5' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing fix from Steven Rostedt: "Fix the histogram logic from possibly crashing the kernel Working on the histogram code, I found that if you dereference a char pointer in a trace event that happens to point to user space, it can crash the kernel, as it does no checks of that pointer. I have code coming that will do this better, so just remove this ability to treat character pointers in trace events as stings in the histogram" * tag 'trace-v5.14-5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: tracing: Do not reference char * as a string in histograms
2021-07-16bpf: Add ambient BPF runtime context stored in currentAndrii Nakryiko
b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") fixed the problem with cgroup-local storage use in BPF by pre-allocating per-CPU array of 8 cgroup storage pointers to accommodate possible BPF program preemptions and nested executions. While this seems to work good in practice, it introduces new and unnecessary failure mode in which not all BPF programs might be executed if we fail to find an unused slot for cgroup storage, however unlikely it is. It might also not be so unlikely when/if we allow sleepable cgroup BPF programs in the future. Further, the way that cgroup storage is implemented as ambiently-available property during entire BPF program execution is a convenient way to pass extra information to BPF program and helpers without requiring user code to pass around extra arguments explicitly. So it would be good to have a generic solution that can allow implementing this without arbitrary restrictions. Ideally, such solution would work for both preemptable and sleepable BPF programs in exactly the same way. This patch introduces such solution, bpf_run_ctx. It adds one pointer field (bpf_ctx) to task_struct. This field is maintained by BPF_PROG_RUN family of macros in such a way that it always stays valid throughout BPF program execution. BPF program preemption is handled by remembering previous current->bpf_ctx value locally while executing nested BPF program and restoring old value after nested BPF program finishes. This is handled by two helper functions, bpf_set_run_ctx() and bpf_reset_run_ctx(), which are supposed to be used before and after BPF program runs, respectively. Restoring old value of the pointer handles preemption, while bpf_run_ctx pointer being a property of current task_struct naturally solves this problem for sleepable BPF programs by "following" BPF program execution as it is scheduled in and out of CPU. It would even allow CPU migration of BPF programs, even though it's not currently allowed by BPF infra. This patch cleans up cgroup local storage handling as a first application. The design itself is generic, though, with bpf_run_ctx being an empty struct that is supposed to be embedded into a specific struct for a given BPF program type (bpf_cg_run_ctx in this case). Follow up patches are planned that will expand this mechanism for other uses within tracing BPF programs. To verify that this change doesn't revert the fix to the original cgroup storage issue, I ran the same repro as in the original report ([0]) and didn't get any problems. Replacing bpf_reset_run_ctx(old_run_ctx) with bpf_reset_run_ctx(NULL) triggers the issue pretty quickly (so repro does work). [0] https://lore.kernel.org/bpf/YEEvBUiJl2pJkxTd@krava/ Fixes: b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210712230615.3525979-1-andrii@kernel.org
2021-07-16Merge branch 'urgent' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu Pull RCU fixes from Paul McKenney: - fix regressions induced by a merge-window change in scheduler semantics, which means that smp_processor_id() can no longer be used in kthreads using simple affinity to bind themselves to a specific CPU. - fix a bug in Tasks Trace RCU that was thought to be strictly theoretical. However, production workloads have started hitting this, so these fixes need to be merged sooner rather than later. - fix a minor printk()-format-mismatch issue introduced during the merge window. * 'urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: rcu: Fix pr_info() formats and values in show_rcu_gp_kthreads() rcu-tasks: Don't delete holdouts within trc_wait_for_one_reader() rcu-tasks: Don't delete holdouts within trc_inspect_reader() refscale: Avoid false-positive warnings in ref_scale_reader() scftorture: Avoid false-positive warnings in scftorture_invoker()
2021-07-16locking/rwsem: Remove an unused parameter of rwsem_wake()xuyehan
The 2nd parameter 'count' is not used in this function. The places where the function is called are also modified. Signed-off-by: xuyehan <xuyehan@xiaomi.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Waiman Long <longman@redhat.com> Link: https://lore.kernel.org/r/1625547043-28103-1-git-send-email-yehanxu1@gmail.com
2021-07-16perf: Refactor permissions check into perf_check_permission()Marco Elver
Refactor the permission check in perf_event_open() into a helper perf_check_permission(). This makes the permission check logic more readable (because we no longer have a negated disjunction). Add a comment mentioning the ptrace check also checks the uid. No functional change intended. Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Link: https://lore.kernel.org/r/20210705084453.2151729-2-elver@google.com
2021-07-16perf: Fix required permissions if sigtrap is requestedMarco Elver
If perf_event_open() is called with another task as target and perf_event_attr::sigtrap is set, and the target task's user does not match the calling user, also require the CAP_KILL capability or PTRACE_MODE_ATTACH permissions. Otherwise, with the CAP_PERFMON capability alone it would be possible for a user to send SIGTRAP signals via perf events to another user's tasks. This could potentially result in those tasks being terminated if they cannot handle SIGTRAP signals. Note: The check complements the existing capability check, but is not supposed to supersede the ptrace_may_access() check. At a high level we now have: capable of CAP_PERFMON and (CAP_KILL if sigtrap) OR ptrace_may_access(...) // also checks for same thread-group and uid Fixes: 97ba62b27867 ("perf: Add support for SIGTRAP on perf events") Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Dmitry Vyukov <dvyukov@google.com> Cc: <stable@vger.kernel.org> # 5.13+ Link: https://lore.kernel.org/r/20210705084453.2151729-1-elver@google.com
2021-07-16cgroup: remove cgroup_mount from commentszhaoxiaoqiang11
Git rid of an outdated comment. Since cgroup was fully switched to fs_context, cgroup_mount() is gone and it's confusing to mention in comments of cgroup_kill_sb(). Delete it. Signed-off-by: zhaoxiaoqiang11 <zhaoxiaoqiang11@jd.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2021-07-16bpf: Fix pointer arithmetic mask tightening under state pruningDaniel Borkmann
In 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") we narrowed the offset mask for unprivileged pointer arithmetic in order to mitigate a corner case where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of- bounds in order to leak kernel memory via side-channel to user space. The verifier's state pruning for scalars leaves one corner case open where in the first verification path R_x holds an unknown scalar with an aux->alu_limit of e.g. 7, and in a second verification path that same register R_x, here denoted as R_x', holds an unknown scalar which has tighter bounds and would thus satisfy range_within(R_x, R_x') as well as tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3: Given the second path fits the register constraints for pruning, the final generated mask from aux->alu_limit will remain at 7. While technically not wrong for the non-speculative domain, it would however be possible to craft similar cases where the mask would be too wide as in 7fedb63a8307. One way to fix it is to detect the presence of unknown scalar map pointer arithmetic and force a deeper search on unknown scalars to ensure that we do not run into a masking mismatch. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-16bpf: Remove superfluous aux sanitation on subprog rejectionDaniel Borkmann
Follow-up to fe9a5ca7e370 ("bpf: Do not mark insn as seen under speculative path verification"). The sanitize_insn_aux_data() helper does not serve a particular purpose in today's code. The original intention for the helper was that if function-by-function verification fails, a given program would be cleared from temporary insn_aux_data[], and then its verification would be re-attempted in the context of the main program a second time. However, a failure in do_check_subprogs() will skip do_check_main() and propagate the error to the user instead, thus such situation can never occur. Given its interaction is not compatible to the Spectre v1 mitigation (due to comparing aux->seen with env->pass_cnt), just remove sanitize_insn_aux_data() to avoid future bugs in this area. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-16dma-mapping: handle vmalloc addresses in dma_common_{mmap,get_sgtable}Roman Skakun
xen-swiotlb can use vmalloc backed addresses for dma coherent allocations and uses the common helpers. Properly handle them to unbreak Xen on ARM platforms. Fixes: 1b65c4e5a9af ("swiotlb-xen: use xen_alloc/free_coherent_pages") Signed-off-by: Roman Skakun <roman_skakun@epam.com> Reviewed-by: Andrii Anisov <andrii_anisov@epam.com> [hch: split the patch, renamed the helpers] Signed-off-by: Christoph Hellwig <hch@lst.de>
2021-07-15Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextDavid S. Miller
Alexei Starovoitov says: ==================== pull-request: bpf-next 2021-07-15 The following pull-request contains BPF updates for your *net-next* tree. We've added 45 non-merge commits during the last 15 day(s) which contain a total of 52 files changed, 3122 insertions(+), 384 deletions(-). The main changes are: 1) Introduce bpf timers, from Alexei. 2) Add sockmap support for unix datagram socket, from Cong. 3) Fix potential memleak and UAF in the verifier, from He. 4) Add bpf_get_func_ip helper, from Jiri. 5) Improvements to generic XDP mode, from Kumar. 6) Support for passing xdp_md to XDP programs in bpf_prog_run, from Zvi. =================== Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-15sock_map: Relax config dependency to CONFIG_NETCong Wang
Currently sock_map still has Kconfig dependency on CONFIG_INET, but there is no actual functional dependency on it after we introduce ->psock_update_sk_prot(). We have to extend it to CONFIG_NET now as we are going to support AF_UNIX. Signed-off-by: Cong Wang <cong.wang@bytedance.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210704190252.11866-2-xiyou.wangcong@gmail.com
2021-07-15bpf: Add bpf_get_func_ip helper for kprobe programsJiri Olsa
Adding bpf_get_func_ip helper for BPF_PROG_TYPE_KPROBE programs, so it's now possible to call bpf_get_func_ip from both kprobe and kretprobe programs. Taking the caller's address from 'struct kprobe::addr', which is defined for both kprobe and kretprobe. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org> Link: https://lore.kernel.org/bpf/20210714094400.396467-5-jolsa@kernel.org
2021-07-15bpf: Add bpf_get_func_ip helper for tracing programsJiri Olsa
Adding bpf_get_func_ip helper for BPF_PROG_TYPE_TRACING programs, specifically for all trampoline attach types. The trampoline's caller IP address is stored in (ctx - 8) address. so there's no reason to actually call the helper, but rather fixup the call instruction and return [ctx - 8] value directly. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210714094400.396467-4-jolsa@kernel.org
2021-07-15bpf: Enable BPF_TRAMP_F_IP_ARG for trampolines with call_get_func_ipJiri Olsa
Enabling BPF_TRAMP_F_IP_ARG for trampolines that actually need it. The BPF_TRAMP_F_IP_ARG adds extra 3 instructions to trampoline code and is used only by programs with bpf_get_func_ip helper, which is added in following patch and sets call_get_func_ip bit. This patch ensures that BPF_TRAMP_F_IP_ARG flag is used only for trampolines that have programs with call_get_func_ip set. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210714094400.396467-3-jolsa@kernel.org
2021-07-15Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpfDavid S. Miller
Andrii Nakryiko says: ==================== pull-request: bpf 2021-07-15 The following pull-request contains BPF updates for your *net* tree. We've added 9 non-merge commits during the last 5 day(s) which contain a total of 9 files changed, 37 insertions(+), 15 deletions(-). The main changes are: 1) Fix NULL pointer dereference in BPF_TEST_RUN for BPF_XDP_DEVMAP and BPF_XDP_CPUMAP programs, from Xuan Zhuo. 2) Fix use-after-free of net_device in XDP bpf_link, from Xuan Zhuo. 3) Follow-up fix to subprog poke descriptor use-after-free problem, from Daniel Borkmann and John Fastabend. 4) Fix out-of-range array access in s390 BPF JIT backend, from Colin Ian King. 5) Fix memory leak in BPF sockmap, from John Fastabend. 6) Fix for sockmap to prevent proc stats reporting bug, from John Fastabend and Jakub Sitnicki. 7) Fix NULL pointer dereference in bpftool, from Tobias Klauser. 8) AF_XDP documentation fixes, from Baruch Siach. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-15tracing: Do not reference char * as a string in histogramsSteven Rostedt (VMware)
The histogram logic was allowing events with char * pointers to be used as normal strings. But it was easy to crash the kernel with: # echo 'hist:keys=filename' > events/syscalls/sys_enter_openat/trigger And open some files, and boom! BUG: unable to handle page fault for address: 00007f2ced0c3280 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 1173fa067 P4D 1173fa067 PUD 1171b6067 PMD 1171dd067 PTE 0 Oops: 0000 [#1] PREEMPT SMP CPU: 6 PID: 1810 Comm: cat Not tainted 5.13.0-rc5-test+ #61 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v03.03 07/14/2016 RIP: 0010:strlen+0x0/0x20 Code: f6 82 80 2a 0b a9 20 74 11 0f b6 50 01 48 83 c0 01 f6 82 80 2a 0b a9 20 75 ef c3 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 <80> 3f 00 74 10 48 89 f8 48 83 c0 01 80 38 00 75 f7 48 29 f8 c3 RSP: 0018:ffffbdbf81567b50 EFLAGS: 00010246 RAX: 0000000000000003 RBX: ffff93815cdb3800 RCX: ffff9382401a22d0 RDX: 0000000000000100 RSI: 0000000000000000 RDI: 00007f2ced0c3280 RBP: 0000000000000100 R08: ffff9382409ff074 R09: ffffbdbf81567c98 R10: ffff9382409ff074 R11: 0000000000000000 R12: ffff9382409ff074 R13: 0000000000000001 R14: ffff93815a744f00 R15: 00007f2ced0c3280 FS: 00007f2ced0f8580(0000) GS:ffff93825a800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2ced0c3280 CR3: 0000000107069005 CR4: 00000000001706e0 Call Trace: event_hist_trigger+0x463/0x5f0 ? find_held_lock+0x32/0x90 ? sched_clock_cpu+0xe/0xd0 ? lock_release+0x155/0x440 ? kernel_init_free_pages+0x6d/0x90 ? preempt_count_sub+0x9b/0xd0 ? kernel_init_free_pages+0x6d/0x90 ? get_page_from_freelist+0x12c4/0x1680 ? __rb_reserve_next+0xe5/0x460 ? ring_buffer_lock_reserve+0x12a/0x3f0 event_triggers_call+0x52/0xe0 ftrace_syscall_enter+0x264/0x2c0 syscall_trace_enter.constprop.0+0x1ee/0x210 do_syscall_64+0x1c/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae Where it triggered a fault on strlen(key) where key was the filename. The reason is that filename is a char * to user space, and the histogram code just blindly dereferenced it, with obvious bad results. I originally tried to use strncpy_from_user/kernel_nofault() but found that there's other places that its dereferenced and not worth the effort. Just do not allow "char *" to act like strings. Link: https://lkml.kernel.org/r/20210715000206.025df9d2@rorschach.local.home Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com> Cc: stable@vger.kernel.org Acked-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Tom Zanussi <zanussi@kernel.org> Fixes: 79e577cbce4c4 ("tracing: Support string type key properly") Fixes: 5967bd5c4239 ("tracing: Let filter_assign_type() detect FILTER_PTR_STRING") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-07-15Merge tag 'Wimplicit-fallthrough-clang-5.14-rc2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux Pull fallthrough fixes from Gustavo Silva: "This fixes many fall-through warnings when building with Clang and -Wimplicit-fallthrough, and also enables -Wimplicit-fallthrough for Clang, globally. It's also important to notice that since we have adopted the use of the pseudo-keyword macro fallthrough, we also want to avoid having more /* fall through */ comments being introduced. Contrary to GCC, Clang doesn't recognize any comments as implicit fall-through markings when the -Wimplicit-fallthrough option is enabled. So, in order to avoid having more comments being introduced, we use the option -Wimplicit-fallthrough=5 for GCC, which similar to Clang, will cause a warning in case a code comment is intended to be used as a fall-through marking. The patch for Makefile also enforces this. We had almost 4,000 of these issues for Clang in the beginning, and there might be a couple more out there when building some architectures with certain configurations. However, with the recent fixes I think we are in good shape and it is now possible to enable the warning for Clang" * tag 'Wimplicit-fallthrough-clang-5.14-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux: (27 commits) Makefile: Enable -Wimplicit-fallthrough for Clang powerpc/smp: Fix fall-through warning for Clang dmaengine: mpc512x: Fix fall-through warning for Clang usb: gadget: fsl_qe_udc: Fix fall-through warning for Clang powerpc/powernv: Fix fall-through warning for Clang MIPS: Fix unreachable code issue MIPS: Fix fall-through warnings for Clang ASoC: Mediatek: MT8183: Fix fall-through warning for Clang power: supply: Fix fall-through warnings for Clang dmaengine: ti: k3-udma: Fix fall-through warning for Clang s390: Fix fall-through warnings for Clang dmaengine: ipu: Fix fall-through warning for Clang iommu/arm-smmu-v3: Fix fall-through warning for Clang mmc: jz4740: Fix fall-through warning for Clang PCI: Fix fall-through warning for Clang scsi: libsas: Fix fall-through warning for Clang video: fbdev: Fix fall-through warning for Clang math-emu: Fix fall-through warning cpufreq: Fix fall-through warning for Clang drm/msm: Fix fall-through warning in msm_gem_new_impl() ...
2021-07-15bpf: Teach stack depth check about async callbacks.Alexei Starovoitov
Teach max stack depth checking algorithm about async callbacks that don't increase bpf program stack size. Also add sanity check that bpf_tail_call didn't sneak into async cb. It's impossible, since PTR_TO_CTX is not available in async cb, hence the program cannot contain bpf_tail_call(ctx,...); Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-10-alexei.starovoitov@gmail.com
2021-07-15bpf: Implement verifier support for validation of async callbacks.Alexei Starovoitov
bpf_for_each_map_elem() and bpf_timer_set_callback() helpers are relying on PTR_TO_FUNC infra in the verifier to validate addresses to subprograms and pass them into the helpers as function callbacks. In case of bpf_for_each_map_elem() the callback is invoked synchronously and the verifier treats it as a normal subprogram call by adding another bpf_func_state and new frame in __check_func_call(). bpf_timer_set_callback() doesn't invoke the callback directly. The subprogram will be called asynchronously from bpf_timer_cb(). Teach the verifier to validate such async callbacks as special kind of jump by pushing verifier state into stack and let pop_stack() process it. Special care needs to be taken during state pruning. The call insn doing bpf_timer_set_callback has to be a prune_point. Otherwise short timer callbacks might not have prune points in front of bpf_timer_set_callback() which means is_state_visited() will be called after this call insn is processed in __check_func_call(). Which means that another async_cb state will be pushed to be walked later and the verifier will eventually hit BPF_COMPLEXITY_LIMIT_JMP_SEQ limit. Since push_async_cb() looks like another push_stack() branch the infinite loop detection will trigger false positive. To recognize this case mark such states as in_async_callback_fn. To distinguish infinite loop in async callback vs the same callback called with different arguments for different map and timer add async_entry_cnt to bpf_func_state. Enforce return zero from async callbacks. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-9-alexei.starovoitov@gmail.com
2021-07-15bpf: Relax verifier recursion check.Alexei Starovoitov
In the following bpf subprogram: static int timer_cb(void *map, void *key, void *value) { bpf_timer_set_callback(.., timer_cb); } the 'timer_cb' is a pointer to a function. ld_imm64 insn is used to carry this pointer. bpf_pseudo_func() returns true for such ld_imm64 insn. Unlike bpf_for_each_map_elem() the bpf_timer_set_callback() is asynchronous. Relax control flow check to allow such "recursion" that is seen as an infinite loop by check_cfg(). The distinction between bpf_for_each_map_elem() the bpf_timer_set_callback() is done in the follow up patch. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-8-alexei.starovoitov@gmail.com
2021-07-15bpf: Remember BTF of inner maps.Alexei Starovoitov
BTF is required for 'struct bpf_timer' to be recognized inside map value. The bpf timers are supported inside inner maps. Remember 'struct btf *' in inner_map_meta to make it available to the verifier in the sequence: struct bpf_map *inner_map = bpf_map_lookup_elem(&outer_map, ...); if (inner_map) timer = bpf_map_lookup_elem(&inner_map, ...); Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-7-alexei.starovoitov@gmail.com
2021-07-15bpf: Prevent pointer mismatch in bpf_timer_init.Alexei Starovoitov
bpf_timer_init() arguments are: 1. pointer to a timer (which is embedded in map element). 2. pointer to a map. Make sure that pointer to a timer actually belongs to that map. Use map_uid (which is unique id of inner map) to reject: inner_map1 = bpf_map_lookup_elem(outer_map, key1) inner_map2 = bpf_map_lookup_elem(outer_map, key2) if (inner_map1 && inner_map2) { timer = bpf_map_lookup_elem(inner_map1); if (timer) // mismatch would have been allowed bpf_timer_init(timer, inner_map2); } Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-6-alexei.starovoitov@gmail.com
2021-07-15bpf: Add map side support for bpf timers.Alexei Starovoitov
Restrict bpf timers to array, hash (both preallocated and kmalloced), and lru map types. The per-cpu maps with timers don't make sense, since 'struct bpf_timer' is a part of map value. bpf timers in per-cpu maps would mean that the number of timers depends on number of possible cpus and timers would not be accessible from all cpus. lpm map support can be added in the future. The timers in inner maps are supported. The bpf_map_update/delete_elem() helpers and sys_bpf commands cancel and free bpf_timer in a given map element. Similar to 'struct bpf_spin_lock' BTF is required and it is used to validate that map element indeed contains 'struct bpf_timer'. Make check_and_init_map_value() init both bpf_spin_lock and bpf_timer when map element data is reused in preallocated htab and lru maps. Teach copy_map_value() to support both bpf_spin_lock and bpf_timer in a single map element. There could be one of each, but not more than one. Due to 'one bpf_timer in one element' restriction do not support timers in global data, since global data is a map of single element, but from bpf program side it's seen as many global variables and restriction of single global timer would be odd. The sys_bpf map_freeze and sys_mmap syscalls are not allowed on maps with timers, since user space could have corrupted mmap element and crashed the kernel. The maps with timers cannot be readonly. Due to these restrictions search for bpf_timer in datasec BTF in case it was placed in the global data to report clear error. The previous patch allowed 'struct bpf_timer' as a first field in a map element only. Relax this restriction. Refactor lru map to s/bpf_lru_push_free/htab_lru_push_free/ to cancel and free the timer when lru map deletes an element as a part of it eviction algorithm. Make sure that bpf program cannot access 'struct bpf_timer' via direct load/store. The timer operation are done through helpers only. This is similar to 'struct bpf_spin_lock'. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-5-alexei.starovoitov@gmail.com
2021-07-15bpf: Introduce bpf timers.Alexei Starovoitov
Introduce 'struct bpf_timer { __u64 :64; __u64 :64; };' that can be embedded in hash/array/lru maps as a regular field and helpers to operate on it: // Initialize the timer. // First 4 bits of 'flags' specify clockid. // Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed. long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, int flags); // Configure the timer to call 'callback_fn' static function. long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); // Arm the timer to expire 'nsec' nanoseconds from the current time. long bpf_timer_start(struct bpf_timer *timer, u64 nsec, u64 flags); // Cancel the timer and wait for callback_fn to finish if it was running. long bpf_timer_cancel(struct bpf_timer *timer); Here is how BPF program might look like: struct map_elem { int counter; struct bpf_timer timer; }; struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(max_entries, 1000); __type(key, int); __type(value, struct map_elem); } hmap SEC(".maps"); static int timer_cb(void *map, int *key, struct map_elem *val); /* val points to particular map element that contains bpf_timer. */ SEC("fentry/bpf_fentry_test1") int BPF_PROG(test1, int a) { struct map_elem *val; int key = 0; val = bpf_map_lookup_elem(&hmap, &key); if (val) { bpf_timer_init(&val->timer, &hmap, CLOCK_REALTIME); bpf_timer_set_callback(&val->timer, timer_cb); bpf_timer_start(&val->timer, 1000 /* call timer_cb2 in 1 usec */, 0); } } This patch adds helper implementations that rely on hrtimers to call bpf functions as timers expire. The following patches add necessary safety checks. Only programs with CAP_BPF are allowed to use bpf_timer. The amount of timers used by the program is constrained by the memcg recorded at map creation time. The bpf_timer_init() helper needs explicit 'map' argument because inner maps are dynamic and not known at load time. While the bpf_timer_set_callback() is receiving hidden 'aux->prog' argument supplied by the verifier. The prog pointer is needed to do refcnting of bpf program to make sure that program doesn't get freed while the timer is armed. This approach relies on "user refcnt" scheme used in prog_array that stores bpf programs for bpf_tail_call. The bpf_timer_set_callback() will increment the prog refcnt which is paired with bpf_timer_cancel() that will drop the prog refcnt. The ops->map_release_uref is responsible for cancelling the timers and dropping prog refcnt when user space reference to a map reaches zero. This uref approach is done to make sure that Ctrl-C of user space process will not leave timers running forever unless the user space explicitly pinned a map that contained timers in bpffs. bpf_timer_init() and bpf_timer_set_callback() will return -EPERM if map doesn't have user references (is not held by open file descriptor from user space and not pinned in bpffs). The bpf_map_delete_elem() and bpf_map_update_elem() operations cancel and free the timer if given map element had it allocated. "bpftool map update" command can be used to cancel timers. The 'struct bpf_timer' is explicitly __attribute__((aligned(8))) because '__u64 :64' has 1 byte alignment of 8 byte padding. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com
2021-07-15bpf: Factor out bpf_spin_lock into helpers.Alexei Starovoitov
Move ____bpf_spin_lock/unlock into helpers to make it more clear that quadruple underscore bpf_spin_lock/unlock are irqsave/restore variants. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-3-alexei.starovoitov@gmail.com
2021-07-15bpf: Prepare bpf_prog_put() to be called from irq context.Alexei Starovoitov
Currently bpf_prog_put() is called from the task context only. With addition of bpf timers the timer related helpers will start calling bpf_prog_put() from irq-saved region and in rare cases might drop the refcnt to zero. To address this case, first, convert bpf_prog_free_id() to be irq-save (this is similar to bpf_map_free_id), and, second, defer non irq appropriate calls into work queue. For example: bpf_audit_prog() is calling kmalloc and wake_up_interruptible, bpf_prog_kallsyms_del_all()->bpf_ksym_del()->spin_unlock_bh(). They are not safe with irqs disabled. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-2-alexei.starovoitov@gmail.com
2021-07-14bpf: Fix potential memleak and UAF in the verifier.He Fengqing
In bpf_patch_insn_data(), we first use the bpf_patch_insn_single() to insert new instructions, then use adjust_insn_aux_data() to adjust insn_aux_data. If the old env->prog have no enough room for new inserted instructions, we use bpf_prog_realloc to construct new_prog and free the old env->prog. There have two errors here. First, if adjust_insn_aux_data() return ENOMEM, we should free the new_prog. Second, if adjust_insn_aux_data() return ENOMEM, bpf_patch_insn_data() will return NULL, and env->prog has been freed in bpf_prog_realloc, but we will use it in bpf_check(). So in this patch, we make the adjust_insn_aux_data() never fails. In bpf_patch_insn_data(), we first pre-malloc memory for the new insn_aux_data, then call bpf_patch_insn_single() to insert new instructions, at last call adjust_insn_aux_data() to adjust insn_aux_data. Fixes: 8041902dae52 ("bpf: adjust insn_aux_data when patching insns") Signed-off-by: He Fengqing <hefengqing@huawei.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20210714101815.164322-1-hefengqing@huawei.com
2021-07-15timers: Fix get_next_timer_interrupt() with no timers pendingNicolas Saenz Julienne
31cd0e119d50 ("timers: Recalculate next timer interrupt only when necessary") subtly altered get_next_timer_interrupt()'s behaviour. The function no longer consistently returns KTIME_MAX with no timers pending. In order to decide if there are any timers pending we check whether the next expiry will happen NEXT_TIMER_MAX_DELTA jiffies from now. Unfortunately, the next expiry time and the timer base clock are no longer updated in unison. The former changes upon certain timer operations (enqueue, expire, detach), whereas the latter keeps track of jiffies as they move forward. Ultimately breaking the logic above. A simplified example: - Upon entering get_next_timer_interrupt() with: jiffies = 1 base->clk = 0; base->next_expiry = NEXT_TIMER_MAX_DELTA; 'base->next_expiry == base->clk + NEXT_TIMER_MAX_DELTA', the function returns KTIME_MAX. - 'base->clk' is updated to the jiffies value. - The next time we enter get_next_timer_interrupt(), taking into account no timer operations happened: base->clk = 1; base->next_expiry = NEXT_TIMER_MAX_DELTA; 'base->next_expiry != base->clk + NEXT_TIMER_MAX_DELTA', the function returns a valid expire time, which is incorrect. This ultimately might unnecessarily rearm sched's timer on nohz_full setups, and add latency to the system[1]. So, introduce 'base->timers_pending'[2], update it every time 'base->next_expiry' changes, and use it in get_next_timer_interrupt(). [1] See tick_nohz_stop_tick(). [2] A quick pahole check on x86_64 and arm64 shows it doesn't make 'struct timer_base' any bigger. Fixes: 31cd0e119d50 ("timers: Recalculate next timer interrupt only when necessary") Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
2021-07-15posix-cpu-timers: Fix rearm racing against process tickFrederic Weisbecker
Since the process wide cputime counter is started locklessly from posix_cpu_timer_rearm(), it can be concurrently stopped by operations on other timers from the same thread group, such as in the following unlucky scenario: CPU 0 CPU 1 ----- ----- timer_settime(TIMER B) posix_cpu_timer_rearm(TIMER A) cpu_clock_sample_group() (pct->timers_active already true) handle_posix_cpu_timers() check_process_timers() stop_process_timers() pct->timers_active = false arm_timer(TIMER A) tick -> run_posix_cpu_timers() // sees !pct->timers_active, ignore // our TIMER A Fix this with simply locking process wide cputime counting start and timer arm in the same block. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Fixes: 60f2ceaa8111 ("posix-cpu-timers: Remove unnecessary locking around cpu_clock_sample_group") Cc: stable@vger.kernel.org Cc: Oleg Nesterov <oleg@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Eric W. Biederman <ebiederm@xmission.com>
2021-07-14Merge tag 'net-5.14-rc2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net Pull networking fixes from Jakub Kicinski. "Including fixes from bpf and netfilter. Current release - regressions: - sock: fix parameter order in sock_setsockopt() Current release - new code bugs: - netfilter: nft_last: - fix incorrect arithmetic when restoring last used - honor NFTA_LAST_SET on restoration Previous releases - regressions: - udp: properly flush normal packet at GRO time - sfc: ensure correct number of XDP queues; don't allow enabling the feature if there isn't sufficient resources to Tx from any CPU - dsa: sja1105: fix address learning getting disabled on the CPU port - mptcp: addresses a rmem accounting issue that could keep packets in subflow receive buffers longer than necessary, delaying MPTCP-level ACKs - ip_tunnel: fix mtu calculation for ETHER tunnel devices - do not reuse skbs allocated from skbuff_fclone_cache in the napi skb cache, we'd try to return them to the wrong slab cache - tcp: consistently disable header prediction for mptcp Previous releases - always broken: - bpf: fix subprog poke descriptor tracking use-after-free - ipv6: - allocate enough headroom in ip6_finish_output2() in case iptables TEE is used - tcp: drop silly ICMPv6 packet too big messages to avoid expensive and pointless lookups (which may serve as a DDOS vector) - make sure fwmark is copied in SYNACK packets - fix 'disable_policy' for forwarded packets (align with IPv4) - netfilter: conntrack: - do not renew entry stuck in tcp SYN_SENT state - do not mark RST in the reply direction coming after SYN packet for an out-of-sync entry - mptcp: cleanly handle error conditions with MP_JOIN and syncookies - mptcp: fix double free when rejecting a join due to port mismatch - validate lwtstate->data before returning from skb_tunnel_info() - tcp: call sk_wmem_schedule before sk_mem_charge in zerocopy path - mt76: mt7921: continue to probe driver when fw already downloaded - bonding: fix multiple issues with offloading IPsec to (thru?) bond - stmmac: ptp: fix issues around Qbv support and setting time back - bcmgenet: always clear wake-up based on energy detection Misc: - sctp: move 198 addresses from unusable to private scope - ptp: support virtual clocks and timestamping - openvswitch: optimize operation for key comparison" * tag 'net-5.14-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (158 commits) net: dsa: properly check for the bridge_leave methods in dsa_switch_bridge_leave() sfc: add logs explaining XDP_TX/REDIRECT is not available sfc: ensure correct number of XDP queues sfc: fix lack of XDP TX queues - error XDP TX failed (-22) net: fddi: fix UAF in fza_probe net: dsa: sja1105: fix address learning getting disabled on the CPU port net: ocelot: fix switchdev objects synced for wrong netdev with LAG offload net: Use nlmsg_unicast() instead of netlink_unicast() octeontx2-pf: Fix uninitialized boolean variable pps ipv6: allocate enough headroom in ip6_finish_output2() net: hdlc: rename 'mod_init' & 'mod_exit' functions to be module-specific net: bridge: multicast: fix MRD advertisement router port marking race net: bridge: multicast: fix PIM hello router port marking race net: phy: marvell10g: fix differentiation of 88X3310 from 88X3340 dsa: fix for_each_child.cocci warnings virtio_net: check virtqueue_add_sgs() return value mptcp: properly account bulk freed memory selftests: mptcp: fix case multiple subflows limited by server mptcp: avoid processing packet if a subflow reset mptcp: fix syncookie process if mptcp can not_accept new subflow ...