Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/rppt/memblock
Pull memblock fix from Mike Rapoport:
"Use kfree() to release kmalloced memblock regions
memblock.{reserved,memory}.regions may be allocated using kmalloc()
in memblock_double_array(). Use kfree() to release these kmalloced
regions"
* tag 'fixes-2022-02-26' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt/memblock:
memblock: use kfree() to release kmalloced memblock regions
|
|
oom reaping (__oom_reap_task_mm) relies on a 2 way synchronization with
exit_mmap. First it relies on the mmap_lock to exclude from unlock
path[1], page tables tear down (free_pgtables) and vma destruction.
This alone is not sufficient because mm->mmap is never reset.
For historical reasons[2] the lock is taken there is also MMF_OOM_SKIP
set for oom victims before.
The oom reaper only ever looks at oom victims so the whole scheme works
properly but process_mrelease can opearate on any task (with fatal
signals pending) which doesn't really imply oom victims. That means
that the MMF_OOM_SKIP part of the synchronization doesn't work and it
can see a task after the whole address space has been demolished and
traverse an already released mm->mmap list. This leads to use after
free as properly caught up by KASAN report.
Fix the issue by reseting mm->mmap so that MMF_OOM_SKIP synchronization
is not needed anymore. The MMF_OOM_SKIP is not removed from exit_mmap
yet but it acts mostly as an optimization now.
[1] 27ae357fa82b ("mm, oom: fix concurrent munlock and oom reaper unmap, v3")
[2] 212925802454 ("mm: oom: let oom_reap_task and exit_mmap run concurrently")
[mhocko@suse.com: changelog rewrite]
Link: https://lore.kernel.org/all/00000000000072ef2c05d7f81950@google.com/
Link: https://lkml.kernel.org/r/20220215201922.1908156-1-surenb@google.com
Fixes: 64591e8605d6 ("mm: protect free_pgtables with mmap_lock write lock in exit_mmap")
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reported-by: syzbot+2ccf63a4bd07cf39cab0@syzkaller.appspotmail.com
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Jan Engelhardt <jengelh@inai.de>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When we specify a large number for node in hugepages parameter, it may
be parsed to another number due to truncation in this statement:
node = tmp;
For example, add following parameter in command line:
hugepagesz=1G hugepages=4294967297:5
and kernel will allocate 5 hugepages for node 1 instead of ignoring it.
I move the validation check earlier to fix this issue, and slightly
simplifies the condition here.
Link: https://lkml.kernel.org/r/20220209134018.8242-1-liuyuntao10@huawei.com
Fixes: b5389086ad7be0 ("hugetlbfs: extend the definition of hugepages parameter to support node allocation")
Signed-off-by: Liu Yuntao <liuyuntao10@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This fixes the below crash:
kernel BUG at include/linux/mm.h:2373!
cpu 0x5d: Vector: 700 (Program Check) at [c00000003c6e76e0]
pc: c000000000581a54: pmd_to_page+0x54/0x80
lr: c00000000058d184: move_hugetlb_page_tables+0x4e4/0x5b0
sp: c00000003c6e7980
msr: 9000000000029033
current = 0xc00000003bd8d980
paca = 0xc000200fff610100 irqmask: 0x03 irq_happened: 0x01
pid = 9349, comm = hugepage-mremap
kernel BUG at include/linux/mm.h:2373!
move_hugetlb_page_tables+0x4e4/0x5b0 (link register)
move_hugetlb_page_tables+0x22c/0x5b0 (unreliable)
move_page_tables+0xdbc/0x1010
move_vma+0x254/0x5f0
sys_mremap+0x7c0/0x900
system_call_exception+0x160/0x2c0
the kernel can't use huge_pte_offset before it set the pte entry because
a page table lookup check for huge PTE bit in the page table to
differentiate between a huge pte entry and a pointer to pte page. A
huge_pte_alloc won't mark the page table entry huge and hence kernel
should not use huge_pte_offset after a huge_pte_alloc.
Link: https://lkml.kernel.org/r/20220211063221.99293-1-aneesh.kumar@linux.ibm.com
Fixes: 550a7d60bd5e ("mm, hugepages: add mremap() support for hugepage backed vma")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mina Almasry <almasrymina@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
One of the things that CONFIG_HARDENED_USERCOPY sanity-checks is whether
an object that is about to be copied to/from userspace is overlapping
the stack at all. If it is, it performs a number of inexpensive
bounds checks. One of the finer-grained checks is whether an object
crosses stack frames within the stack region. Doing this on x86 with
CONFIG_FRAME_POINTER was cheap/easy. Doing it with ORC was deemed too
heavy, and was left out (a while ago), leaving the courser whole-stack
check.
The LKDTM tests USERCOPY_STACK_FRAME_TO and USERCOPY_STACK_FRAME_FROM
try to exercise these cross-frame cases to validate the defense is
working. They have been failing ever since ORC was added (which was
expected). While Muhammad was investigating various LKDTM failures[1],
he asked me for additional details on them, and I realized that when
exact stack frame boundary checking is not available (i.e. everything
except x86 with FRAME_POINTER), it could check if a stack object is at
least "current depth valid", in the sense that any object within the
stack region but not between start-of-stack and current_stack_pointer
should be considered unavailable (i.e. its lifetime is from a call no
longer present on the stack).
Introduce ARCH_HAS_CURRENT_STACK_POINTER to track which architectures
have actually implemented the common global register alias.
Additionally report usercopy bounds checking failures with an offset
from current_stack_pointer, which may assist with diagnosing failures.
The LKDTM USERCOPY_STACK_FRAME_TO and USERCOPY_STACK_FRAME_FROM tests
(once slightly adjusted in a separate patch) pass again with this fixed.
[1] https://github.com/kernelci/kernelci-project/issues/84
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Reported-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
---
v1: https://lore.kernel.org/lkml/20220216201449.2087956-1-keescook@chromium.org
v2: https://lore.kernel.org/lkml/20220224060342.1855457-1-keescook@chromium.org
v3: https://lore.kernel.org/lkml/20220225173345.3358109-1-keescook@chromium.org
v4: - improve commit log (akpm)
|
|
There are no remaining callers of set_fs(), so CONFIG_SET_FS
can be removed globally, along with the thread_info field and
any references to it.
This turns access_ok() into a cheaper check against TASK_SIZE_MAX.
As CONFIG_SET_FS is now gone, drop all remaining references to
set_fs()/get_fs(), mm_segment_t, user_addr_max() and uaccess_kernel().
Acked-by: Sam Ravnborg <sam@ravnborg.org> # for sparc32 changes
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Tested-by: Sergey Matyukevich <sergey.matyukevich@synopsys.com> # for arc changes
Acked-by: Stafford Horne <shorne@gmail.com> # [openrisc, asm-generic]
Acked-by: Dinh Nguyen <dinguyen@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Nine architectures are still missing __{get,put}_kernel_nofault:
alpha, ia64, microblaze, nds32, nios2, openrisc, sh, sparc32, xtensa.
Add a generic version that lets everything use the normal
copy_{from,to}_kernel_nofault() code based on these, removing the last
use of get_fs()/set_fs() from architecture-independent code.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Use helper function is_power_of_2() to check if KMALLOC_MIN_SIZE is power
of two. Minor readability improvement.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Link: https://lore.kernel.org/r/20220217091609.8214-1-linmiaohe@huawei.com
|
|
kmem_cache_boot is never accessed outside slob.c. Make it static.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Link: https://lore.kernel.org/r/20220217085842.29032-1-linmiaohe@huawei.com
|
|
The nid is only used to act as output parameter of __next_mem_range.
Since NULL can be passed to __next_mem_range as out_nid, we can thus
remove nid by passing NULL here.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
[rppt: updated the commit message]
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
|
|
memblock.{reserved,memory}.regions may be allocated using kmalloc() in
memblock_double_array(). Use kfree() to release these kmalloced regions
indicated by memblock_{reserved,memory}_in_slab.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Fixes: 3010f876500f ("mm: discard memblock data later")
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
|
|
4.8 commit 7751b2da6be0 ("vmscan: split file huge pages before paging
them out") inserted a split_huge_page_to_list() into shrink_page_list()
without considering the mlock case: no problem if the page has already
been marked as Mlocked (the !page_evictable check much higher up will
have skipped all this), but it has always been the case that races or
omissions in setting Mlocked can rely on page reclaim to detect this
and correct it before actually reclaiming - and that remains so, but
what a shame if a hugepage is needlessly split before discovering it.
It is surprising that page_check_references() returns PAGEREF_RECLAIM
when VM_LOCKED, but there was a good reason for that: try_to_unmap_one()
is where the condition is detected and corrected; and until now it could
not be done in page_referenced_one(), because that does not always have
the page locked. Now that mlock's requirement for page lock has gone,
copy try_to_unmap_one()'s mlock restoration into page_referenced_one(),
and let page_check_references() return PAGEREF_ACTIVATE in this case.
But page_referenced_one() may find a pte mapping one part of a hugepage:
what hold should a pte mapped in a VM_LOCKED area exert over the entire
huge page? That's debatable. The approach taken here is to treat that
pte mapping in page_referenced_one() as if not VM_LOCKED, and if no
VM_LOCKED pmd mapping is found later in the walk, and lack of reference
permits, then PAGEREF_RECLAIM take it to attempted splitting as before.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
collapse_file() is using unmap_mapping_pages(1) on each small page found
mapped, unlike others (reclaim, migration, splitting, memory-failure) who
use try_to_unmap(). There are four advantages to try_to_unmap(): first,
its TTU_IGNORE_MLOCK option now avoids leaving mlocked page in pagevec;
second, its vma lookup uses i_mmap_lock_read() not i_mmap_lock_write();
third, it breaks out early if page is not mapped everywhere it might be;
fourth, its TTU_BATCH_FLUSH option can be used, as in page reclaim, to
save up all the TLB flushing until all of the pages have been unmapped.
Wild guess: perhaps it was originally written to use try_to_unmap(),
but hit the VM_BUG_ON_PAGE(page_mapped) after unmapping, because without
TTU_SYNC it may skip page table locks; but unmap_mapping_pages() never
skips them, so fixed the issue. I did once hit that VM_BUG_ON_PAGE()
since making this change: we could pass TTU_SYNC here, but I think just
delete the check - the race is very rare, this is an ordinary small page
so we don't need to be so paranoid about mapcount surprises, and the
page_ref_freeze() just below already handles the case adequately.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Page migration of a VM_LOCKED page tends to fail, because when the old
page is unmapped, it is put on the mlock pagevec with raised refcount,
which then fails the freeze.
At first I thought this would be fixed by a local mlock_page_drain() at
the upper rmap_walk() level - which would have nicely batched all the
munlocks of that page; but tests show that the task can too easily move
to another cpu, leaving pagevec residue behind which fails the migration.
So try_to_migrate_one() drain the local pagevec after page_remove_rmap()
from a VM_LOCKED vma; and do the same in try_to_unmap_one(), whose
TTU_IGNORE_MLOCK users would want the same treatment; and do the same
in remove_migration_pte() - not important when successfully inserting
a new page, but necessary when hoping to retry after failure.
Any new pagevec runs the risk of adding a new way of stranding, and we
might discover other corners where mlock_page_drain() or lru_add_drain()
would now help.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
A weakness of the page->mlock_count approach is the need for lruvec lock
while holding page table lock. That is not an overhead we would allow on
normal pages, but I think acceptable just for pages in an mlocked area.
But let's try to amortize the extra cost by gathering on per-cpu pagevec
before acquiring the lruvec lock.
I have an unverified conjecture that the mlock pagevec might work out
well for delaying the mlock processing of new file pages until they have
got off lru_cache_add()'s pagevec and on to LRU.
The initialization of page->mlock_count is subject to races and awkward:
0 or !!PageMlocked or 1? Was it wrong even in the implementation before
this commit, which just widens the window? I haven't gone back to think
it through. Maybe someone can point out a better way to initialize it.
Bringing lru_cache_add_inactive_or_unevictable()'s mlock initialization
into mm/mlock.c has helped: mlock_new_page(), using the mlock pagevec,
rather than lru_cache_add()'s pagevec.
Experimented with various orderings: the right thing seems to be for
mlock_page() and mlock_new_page() to TestSetPageMlocked before adding to
pagevec, but munlock_page() to leave TestClearPageMlocked to the later
pagevec processing.
Dropped the VM_BUG_ON_PAGE(PageTail)s this time around: they have made
their point, and the thp_nr_page()s already contain a VM_BUG_ON_PGFLAGS()
for that.
This still leaves acquiring lruvec locks under page table lock each time
the pagevec fills (or a THP is added): which I suppose is rather silly,
since they sit on pagevec waiting to be processed long after page table
lock has been dropped; but I'm disinclined to uglify the calling sequence
until some load shows an actual problem with it (nothing wrong with
taking lruvec lock under page table lock, just "nicer" to do it less).
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Oded Gabbay reports that enabling NUMA balancing causes corruption with
his Gaudi accelerator test load:
"All the details are in the bug, but the bottom line is that somehow,
this patch causes corruption when the numa balancing feature is
enabled AND we don't use process affinity AND we use GUP to pin pages
so our accelerator can DMA to/from system memory.
Either disabling numa balancing, using process affinity to bind to
specific numa-node or reverting this patch causes the bug to
disappear"
and Oded bisected the issue to commit 09854ba94c6a ("mm: do_wp_page()
simplification").
Now, the NUMA balancing shouldn't actually be changing the writability
of a page, and as such shouldn't matter for COW. But it appears it
does. Suspicious.
However, regardless of that, the condition for enabling NUMA faults in
change_pte_range() is nonsensical. It uses "page_mapcount(page)" to
decide if a COW page should be NUMA-protected or not, and that makes
absolutely no sense.
The number of mappings a page has is irrelevant: not only does GUP get a
reference to a page as in Oded's case, but the other mappings migth be
paged out and the only reference to them would be in the page count.
Since we should never try to NUMA-balance a page that we can't move
anyway due to other references, just fix the code to use 'page_count()'.
Oded confirms that that fixes his issue.
Now, this does imply that something in NUMA balancing ends up changing
page protections (other than the obvious one of making the page
inaccessible to get the NUMA faulting information). Otherwise the COW
simplification wouldn't matter - since doing the GUP on the page would
make sure it's writable.
The cause of that permission change would be good to figure out too,
since it clearly results in spurious COW events - but fixing the
nonsensical test that just happened to work before is obviously the
CorrectThing(tm) to do regardless.
Fixes: 09854ba94c6a ("mm: do_wp_page() simplification")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=215616
Link: https://lore.kernel.org/all/CAFCwf10eNmwq2wD71xjUhqkvv5+_pJMR1nPug2RqNDcFT4H86Q@mail.gmail.com/
Reported-and-tested-by: Oded Gabbay <oded.gabbay@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
My reading of comment on smp_mb__after_atomic() in __pagevec_lru_add_fn()
says that it can now be deleted; and that remains so when the next patch
is added.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Compaction, NUMA page movement, THP collapse/split, and memory failure
do isolate unevictable pages from their "LRU", losing the record of
mlock_count in doing so (isolators are likely to use page->lru for their
own private lists, so mlock_count has to be presumed lost).
That's unfortunate, and we should put in some work to correct that: one
can imagine a function to build up the mlock_count again - but it would
require i_mmap_rwsem for read, so be careful where it's called. Or
page_referenced_one() and try_to_unmap_one() might do that extra work.
But one place that can very easily be improved is page migration's
__unmap_and_move(): a small adjustment to where the successful new page
is put back on LRU, and its mlock_count (if any) is built back up by
remove_migration_ptes().
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Fill in missing pieces: reimplementation of munlock_vma_pages_range(),
required to lower the mlock_counts when munlocking without munmapping;
and its complement, implementation of mlock_vma_pages_range(), required
to raise the mlock_counts on pages already there when a range is mlocked.
Combine them into just the one function mlock_vma_pages_range(), using
walk_page_range() to run mlock_pte_range(). This approach fixes the
"Very slow unlockall()" of unpopulated PROT_NONE areas, reported in
https://lore.kernel.org/linux-mm/70885d37-62b7-748b-29df-9e94f3291736@gmail.com/
Munlock clears VM_LOCKED at the start, under exclusive mmap_lock; but if
a racing truncate or holepunch (depending on i_mmap_rwsem) gets to the
pte first, it will not try to munlock the page: leaving release_pages()
to correct it when the last reference to the page is gone - that's okay,
a page is not evictable anyway while it is held by an extra reference.
Mlock sets VM_LOCKED at the start, under exclusive mmap_lock; but if
a racing remove_migration_pte() or try_to_unmap_one() (depending on
i_mmap_rwsem) gets to the pte first, it will try to mlock the page,
then mlock_pte_range() mlock it a second time. This is harder to
reproduce, but a more serious race because it could leave the page
unevictable indefinitely though the area is munlocked afterwards.
Guard against it by setting the (inappropriate) VM_IO flag,
and modifying mlock_vma_page() to decline such vmas.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Previous patches have been preparatory: now implement page->mlock_count.
The ordering of the "Unevictable LRU" is of no significance, and there is
no point holding unevictable pages on a list: place page->mlock_count to
overlay page->lru.prev (since page->lru.next is overlaid by compound_head,
which needs to be even so as not to satisfy PageTail - though 2 could be
added instead of 1 for each mlock, if that's ever an improvement).
But it's only safe to rely on or modify page->mlock_count while lruvec
lock is held and page is on unevictable "LRU" - we can save lots of edits
by continuing to pretend that there's an imaginary LRU here (there is an
unevictable count which still needs to be maintained, but not a list).
The mlock_count technique suffers from an unreliability much like with
page_mlock(): while someone else has the page off LRU, not much can
be done. As before, err on the safe side (behave as if mlock_count 0),
and let try_to_unlock_one() move the page to unevictable if reclaim finds
out later on - a few misplaced pages don't matter, what we want to avoid
is imbalancing reclaim by flooding evictable lists with unevictable pages.
I am not a fan of "if (!isolate_lru_page(page)) putback_lru_page(page);":
if we have taken lruvec lock to get the page off its present list, then
we save everyone trouble (and however many extra atomic ops) by putting
it on its destination list immediately.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Placing munlock_vma_page() at the end of page_remove_rmap() shifts most
of the munlocking to clear_page_mlock(), since PageMlocked is typically
still set when mapcount has fallen to 0. That is not what we want: we
want /proc/vmstat's unevictable_pgs_cleared to remain as a useful check
on the integrity of of the mlock/munlock protocol - small numbers are
not surprising, but big numbers mean the protocol is not working.
That could be easily fixed by placing munlock_vma_page() at the start of
page_remove_rmap(); but later in the series we shall want to batch the
munlocking, and that too would tend to leave PageMlocked still set at
the point when it is checked.
So delete clear_page_mlock() now: leave it instead to release_pages()
(and __page_cache_release()) to do this backstop clearing of Mlocked,
when page refcount has fallen to 0. If a pinned page occasionally gets
counted as Mlocked and Unevictable until it is unpinned, that's okay.
A slightly regrettable side-effect of this change is that, since
release_pages() and __page_cache_release() may be called at interrupt
time, those places which update NR_MLOCK with interrupts enabled
had better use mod_zone_page_state() than __mod_zone_page_state()
(but holding the lruvec lock always has interrupts disabled).
This change, forcing Mlocked off when refcount 0 instead of earlier
when mapcount 0, is not fundamental: it can be reversed if performance
or something else is found to suffer; but this is the easiest way to
separate the stats - let's not complicate that without good reason.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Add vma argument to mlock_vma_page() and munlock_vma_page(), make them
inline functions which check (vma->vm_flags & VM_LOCKED) before calling
mlock_page() and munlock_page() in mm/mlock.c.
Add bool compound to mlock_vma_page() and munlock_vma_page(): this is
because we have understandable difficulty in accounting pte maps of THPs,
and if passed a PageHead page, mlock_page() and munlock_page() cannot
tell whether it's a pmd map to be counted or a pte map to be ignored.
Add vma arg to page_add_file_rmap() and page_remove_rmap(), like the
others, and use that to call mlock_vma_page() at the end of the page
adds, and munlock_vma_page() at the end of page_remove_rmap() (end or
beginning? unimportant, but end was easier for assertions in testing).
No page lock is required (although almost all adds happen to hold it):
delete the "Serialize with page migration" BUG_ON(!PageLocked(page))s.
Certainly page lock did serialize with page migration, but I'm having
difficulty explaining why that was ever important.
Mlock accounting on THPs has been hard to define, differed between anon
and file, involved PageDoubleMap in some places and not others, required
clear_page_mlock() at some points. Keep it simple now: just count the
pmds and ignore the ptes, there is no reason for ptes to undo pmd mlocks.
page_add_new_anon_rmap() callers unchanged: they have long been calling
lru_cache_add_inactive_or_unevictable(), which does its own VM_LOCKED
handling (it also checks for not VM_SPECIAL: I think that's overcautious,
and inconsistent with other checks, that mmap_region() already prevents
VM_LOCKED on VM_SPECIAL; but haven't quite convinced myself to change it).
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
munlock_vma_pages_range() will still be required, when munlocking but
not munmapping a set of pages; but when unmapping a pte, the mlock count
will be maintained in much the same way as it will be maintained when
mapping in the pte. Which removes the need for munlock_vma_pages_all()
on mlocked vmas when munmapping or exiting: eliminating the catastrophic
contention on i_mmap_rwsem, and the need for page lock on the pages.
There is still a need to update locked_vm accounting according to the
munmapped vmas when munmapping: do that in detach_vmas_to_be_unmapped().
exit_mmap() does not need locked_vm updates, so delete unlock_range().
And wasn't I the one who forbade the OOM reaper to attack mlocked vmas,
because of the uncertainty in blocking on all those page locks?
No fear of that now, so permit the OOM reaper on mlocked vmas.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
If counting page mlocks, we must not double-count: follow_page_pte() can
tell if a page has already been Mlocked or not, but cannot tell if a pte
has already been counted or not: that will have to be done when the pte
is mapped in (which lru_cache_add_inactive_or_unevictable() already tracks
for new anon pages, but there's no such tracking yet for others).
Delete all the FOLL_MLOCK code - faulting in the missing pages will do
all that is necessary, without special mlock_vma_page() calls from here.
But then FOLL_POPULATE turns out to serve no purpose - it was there so
that its absence would tell faultin_page() not to faultin page when
setting up VM_LOCKONFAULT areas; but if there's no special work needed
here for mlock, then there's no work at all here for VM_LOCKONFAULT.
Have I got that right? I've not looked into the history, but see that
FOLL_POPULATE goes back before VM_LOCKONFAULT: did it serve a different
purpose before? Ah, yes, it was used to skip the old stack guard page.
And is it intentional that COW is not broken on existing pages when
setting up a VM_LOCKONFAULT area? I can see that being argued either
way, and have no reason to disagree with current behaviour.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
We have recommended some applications to mlock their userspace, but that
turns out to be counter-productive: when many processes mlock the same
file, contention on rmap's i_mmap_rwsem can become intolerable at exit: it
is needed for write, to remove any vma mapping that file from rmap's tree;
but hogged for read by those with mlocks calling page_mlock() (formerly
known as try_to_munlock()) on *each* page mapped from the file (the
purpose being to find out whether another process has the page mlocked,
so therefore it should not be unmlocked yet).
Several optimizations have been made in the past: one is to skip
page_mlock() when mapcount tells that nothing else has this page
mapped; but that doesn't help at all when others do have it mapped.
This time around, I initially intended to add a preliminary search
of the rmap tree for overlapping VM_LOCKED ranges; but that gets
messy with locking order, when in doubt whether a page is actually
present; and risks adding even more contention on the i_mmap_rwsem.
A solution would be much easier, if only there were space in struct page
for an mlock_count... but actually, most of the time, there is space for
it - an mlocked page spends most of its life on an unevictable LRU, but
since 3.18 removed the scan_unevictable_pages sysctl, that "LRU" has
been redundant. Let's try to reuse its page->lru.
But leave that until a later patch: in this patch, clear the ground by
removing page_mlock(), and all the infrastructure that has gathered
around it - which mostly hinders understanding, and will make reviewing
new additions harder. Don't mind those old comments about THPs, they
date from before 4.5's refcounting rework: splitting is not a risk here.
Just keep a minimal version of munlock_vma_page(), as reminder of what it
should attend to (in particular, the odd way PGSTRANDED is counted out of
PGMUNLOCKED), and likewise a stub for munlock_vma_pages_range(). Move
unchanged __mlock_posix_error_return() out of the way, down to above its
caller: this series then makes no further change after mlock_fixup().
After this and each following commit, the kernel builds, boots and runs;
but with deficiencies which may show up in testing of mlock and munlock.
The system calls succeed or fail as before, and mlock remains effective
in preventing page reclaim; but meminfo's Unevictable and Mlocked amounts
may be shown too low after mlock, grow, then stay too high after munlock:
with previously mlocked pages remaining unevictable for too long, until
finally unmapped and freed and counts corrected. Normal service will be
resumed in "mm/munlock: mlock_pte_range() when mlocking or munlocking".
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
A new mm doesn't have a PASID yet when it's created. Initialize
the mm's PASID on fork() or for init_mm to INVALID_IOASID (-1).
INIT_PASID (0) is reserved for kernel legacy DMA PASID. It cannot be
allocated to a user process. Initializing the process's PASID to 0 may
cause confusion that's why the process uses the reserved kernel legacy
DMA PASID. Initializing the PASID to INVALID_IOASID (-1) explicitly
tells the process doesn't have a valid PASID yet.
Even though the only user of mm_pasid_init() is in fork.c, define it in
<linux/sched/mm.h> as the first of three mm/pasid life cycle functions
(init/set/drop) to keep these all together.
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220207230254.3342514-5-fenghua.yu@intel.com
|
|
The parameter kfence_sample_interval can be set via boot parameter and
late shell command, which is convenient for automated tests and KFENCE
parameter optimization. However, KFENCE test case just uses
compile-time CONFIG_KFENCE_SAMPLE_INTERVAL, which will make KFENCE test
case not run as users desired. Export kfence_sample_interval, so that
KFENCE test case can use run-time-set sample interval.
Link: https://lkml.kernel.org/r/20220207034432.185532-1-liupeng256@huawei.com
Signed-off-by: Peng Liu <liupeng256@huawei.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Christian Knig <christian.koenig@amd.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Alexander reported a circular lock dependency revealed by the mmap1 ltp
test:
LOCKDEP_CIRCULAR (suite: ltp, case: mtest06 (mmap1))
WARNING: possible circular locking dependency detected
5.17.0-20220113.rc0.git0.f2211f194038.300.fc35.s390x+debug #1 Not tainted
------------------------------------------------------
mmap1/202299 is trying to acquire lock:
00000001892c0188 (css_set_lock){..-.}-{2:2}, at: obj_cgroup_release+0x4a/0xe0
but task is already holding lock:
00000000ca3b3818 (&sighand->siglock){-.-.}-{2:2}, at: force_sig_info_to_task+0x38/0x180
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&sighand->siglock){-.-.}-{2:2}:
__lock_acquire+0x604/0xbd8
lock_acquire.part.0+0xe2/0x238
lock_acquire+0xb0/0x200
_raw_spin_lock_irqsave+0x6a/0xd8
__lock_task_sighand+0x90/0x190
cgroup_freeze_task+0x2e/0x90
cgroup_migrate_execute+0x11c/0x608
cgroup_update_dfl_csses+0x246/0x270
cgroup_subtree_control_write+0x238/0x518
kernfs_fop_write_iter+0x13e/0x1e0
new_sync_write+0x100/0x190
vfs_write+0x22c/0x2d8
ksys_write+0x6c/0xf8
__do_syscall+0x1da/0x208
system_call+0x82/0xb0
-> #0 (css_set_lock){..-.}-{2:2}:
check_prev_add+0xe0/0xed8
validate_chain+0x736/0xb20
__lock_acquire+0x604/0xbd8
lock_acquire.part.0+0xe2/0x238
lock_acquire+0xb0/0x200
_raw_spin_lock_irqsave+0x6a/0xd8
obj_cgroup_release+0x4a/0xe0
percpu_ref_put_many.constprop.0+0x150/0x168
drain_obj_stock+0x94/0xe8
refill_obj_stock+0x94/0x278
obj_cgroup_charge+0x164/0x1d8
kmem_cache_alloc+0xac/0x528
__sigqueue_alloc+0x150/0x308
__send_signal+0x260/0x550
send_signal+0x7e/0x348
force_sig_info_to_task+0x104/0x180
force_sig_fault+0x48/0x58
__do_pgm_check+0x120/0x1f0
pgm_check_handler+0x11e/0x180
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&sighand->siglock);
lock(css_set_lock);
lock(&sighand->siglock);
lock(css_set_lock);
*** DEADLOCK ***
2 locks held by mmap1/202299:
#0: 00000000ca3b3818 (&sighand->siglock){-.-.}-{2:2}, at: force_sig_info_to_task+0x38/0x180
#1: 00000001892ad560 (rcu_read_lock){....}-{1:2}, at: percpu_ref_put_many.constprop.0+0x0/0x168
stack backtrace:
CPU: 15 PID: 202299 Comm: mmap1 Not tainted 5.17.0-20220113.rc0.git0.f2211f194038.300.fc35.s390x+debug #1
Hardware name: IBM 3906 M04 704 (LPAR)
Call Trace:
dump_stack_lvl+0x76/0x98
check_noncircular+0x136/0x158
check_prev_add+0xe0/0xed8
validate_chain+0x736/0xb20
__lock_acquire+0x604/0xbd8
lock_acquire.part.0+0xe2/0x238
lock_acquire+0xb0/0x200
_raw_spin_lock_irqsave+0x6a/0xd8
obj_cgroup_release+0x4a/0xe0
percpu_ref_put_many.constprop.0+0x150/0x168
drain_obj_stock+0x94/0xe8
refill_obj_stock+0x94/0x278
obj_cgroup_charge+0x164/0x1d8
kmem_cache_alloc+0xac/0x528
__sigqueue_alloc+0x150/0x308
__send_signal+0x260/0x550
send_signal+0x7e/0x348
force_sig_info_to_task+0x104/0x180
force_sig_fault+0x48/0x58
__do_pgm_check+0x120/0x1f0
pgm_check_handler+0x11e/0x180
INFO: lockdep is turned off.
In this example a slab allocation from __send_signal() caused a
refilling and draining of a percpu objcg stock, resulted in a releasing
of another non-related objcg. Objcg release path requires taking the
css_set_lock, which is used to synchronize objcg lists.
This can create a circular dependency with the sighandler lock, which is
taken with the locked css_set_lock by the freezer code (to freeze a
task).
In general it seems that using css_set_lock to synchronize objcg lists
makes any slab allocations and deallocation with the locked css_set_lock
and any intervened locks risky.
To fix the problem and make the code more robust let's stop using
css_set_lock to synchronize objcg lists and use a new dedicated spinlock
instead.
Link: https://lkml.kernel.org/r/Yfm1IHmoGdyUR81T@carbon.dhcp.thefacebook.com
Fixes: bf4f059954dc ("mm: memcg/slab: obj_cgroup API")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Tested-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Jeremy Linton <jeremy.linton@arm.com>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A soft lockup bug in kcompactd was reported in a private bugzilla with
the following visible in dmesg;
watchdog: BUG: soft lockup - CPU#33 stuck for 26s! [kcompactd0:479]
watchdog: BUG: soft lockup - CPU#33 stuck for 52s! [kcompactd0:479]
watchdog: BUG: soft lockup - CPU#33 stuck for 78s! [kcompactd0:479]
watchdog: BUG: soft lockup - CPU#33 stuck for 104s! [kcompactd0:479]
The machine had 256G of RAM with no swap and an earlier failed
allocation indicated that node 0 where kcompactd was run was potentially
unreclaimable;
Node 0 active_anon:29355112kB inactive_anon:2913528kB active_file:0kB
inactive_file:0kB unevictable:64kB isolated(anon):0kB isolated(file):0kB
mapped:8kB dirty:0kB writeback:0kB shmem:26780kB shmem_thp:
0kB shmem_pmdmapped: 0kB anon_thp: 23480320kB writeback_tmp:0kB
kernel_stack:2272kB pagetables:24500kB all_unreclaimable? yes
Vlastimil Babka investigated a crash dump and found that a task
migrating pages was trying to drain PCP lists;
PID: 52922 TASK: ffff969f820e5000 CPU: 19 COMMAND: "kworker/u128:3"
Call Trace:
__schedule
schedule
schedule_timeout
wait_for_completion
__flush_work
__drain_all_pages
__alloc_pages_slowpath.constprop.114
__alloc_pages
alloc_migration_target
migrate_pages
migrate_to_node
do_migrate_pages
cpuset_migrate_mm_workfn
process_one_work
worker_thread
kthread
ret_from_fork
This failure is specific to CONFIG_PREEMPT=n builds. The root of the
problem is that kcompact0 is not rescheduling on a CPU while a task that
has isolated a large number of the pages from the LRU is waiting on
kcompact0 to reschedule so the pages can be released. While
shrink_inactive_list() only loops once around too_many_isolated, reclaim
can continue without rescheduling if sc->skipped_deactivate == 1 which
could happen if there was no file LRU and the inactive anon list was not
low.
Link: https://lkml.kernel.org/r/20220203100326.GD3301@suse.de
Fixes: d818fca1cac3 ("mm/vmscan: throttle reclaim and compaction when too may pages are isolated")
Signed-off-by: Mel Gorman <mgorman@suse.de>
Debugged-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When using devm_request_free_mem_region() and devm_memremap_pages() to
add ZONE_DEVICE memory, if requested free mem region's end pfn were
huge(e.g., 0x400000000), the node_end_pfn() will be also huge (see
move_pfn_range_to_zone()). Thus it creates a huge hole between
node_start_pfn() and node_end_pfn().
We found on some AMD APUs, amdkfd requested such a free mem region and
created a huge hole. In such a case, following code snippet was just
doing busy test_bit() looping on the huge hole.
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
struct page *page = pfn_to_online_page(pfn);
if (!page)
continue;
...
}
So we got a soft lockup:
watchdog: BUG: soft lockup - CPU#6 stuck for 26s! [bash:1221]
CPU: 6 PID: 1221 Comm: bash Not tainted 5.15.0-custom #1
RIP: 0010:pfn_to_online_page+0x5/0xd0
Call Trace:
? kmemleak_scan+0x16a/0x440
kmemleak_write+0x306/0x3a0
? common_file_perm+0x72/0x170
full_proxy_write+0x5c/0x90
vfs_write+0xb9/0x260
ksys_write+0x67/0xe0
__x64_sys_write+0x1a/0x20
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
I did some tests with the patch.
(1) amdgpu module unloaded
before the patch:
real 0m0.976s
user 0m0.000s
sys 0m0.968s
after the patch:
real 0m0.981s
user 0m0.000s
sys 0m0.973s
(2) amdgpu module loaded
before the patch:
real 0m35.365s
user 0m0.000s
sys 0m35.354s
after the patch:
real 0m1.049s
user 0m0.000s
sys 0m1.042s
Link: https://lkml.kernel.org/r/20211108140029.721144-1-lang.yu@amd.com
Signed-off-by: Lang Yu <lang.yu@amd.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
syzbot detected a case where the page table counters were not properly
updated.
syzkaller login: ------------[ cut here ]------------
kernel BUG at mm/page_table_check.c:162!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 3099 Comm: pasha Not tainted 5.16.0+ #48
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIO4
RIP: 0010:__page_table_check_zero+0x159/0x1a0
Call Trace:
free_pcp_prepare+0x3be/0xaa0
free_unref_page+0x1c/0x650
free_compound_page+0xec/0x130
free_transhuge_page+0x1be/0x260
__put_compound_page+0x90/0xd0
release_pages+0x54c/0x1060
__pagevec_release+0x7c/0x110
shmem_undo_range+0x85e/0x1250
...
The repro involved having a huge page that is split due to uprobe event
temporarily replacing one of the pages in the huge page. Later the huge
page was combined again, but the counters were off, as the PTE level was
not properly updated.
Make sure that when PMD is cleared and prior to freeing the level the
PTEs are updated.
Link: https://lkml.kernel.org/r/20220131203249.2832273-5-pasha.tatashin@soleen.com
Fixes: df4e817b7108 ("mm: page table check")
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Paul Turner <pjt@google.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Unify the code that flushes, clears pmd entry, and frees the PTE table
level into a new function collapse_and_free_pmd().
This cleanup is useful as in the next patch we will add another call to
this function to iterate through PTE prior to freeing the level for page
table check.
Link: https://lkml.kernel.org/r/20220131203249.2832273-4-pasha.tatashin@soleen.com
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Paul Turner <pjt@google.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
For consistency, use "unsigned long" for all page counters.
Also, reduce code duplication by calling __page_table_check_*_clear()
from __page_table_check_*_set() functions.
Link: https://lkml.kernel.org/r/20220131203249.2832273-3-pasha.tatashin@soleen.com
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Wei Xu <weixugc@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Paul Turner <pjt@google.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "page table check fixes and cleanups", v5.
This patch (of 4):
The pte entry that is used in pte_advanced_tests() is never removed from
the page table at the end of the test.
The issue is detected by page_table_check, to repro compile kernel with
the following configs:
CONFIG_DEBUG_VM_PGTABLE=y
CONFIG_PAGE_TABLE_CHECK=y
CONFIG_PAGE_TABLE_CHECK_ENFORCED=y
During the boot the following BUG is printed:
debug_vm_pgtable: [debug_vm_pgtable ]: Validating architecture page table helpers
------------[ cut here ]------------
kernel BUG at mm/page_table_check.c:162!
invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.16.0-11413-g2c271fe77d52 #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
...
The entry should be properly removed from the page table before the page
is released to the free list.
Link: https://lkml.kernel.org/r/20220131203249.2832273-1-pasha.tatashin@soleen.com
Link: https://lkml.kernel.org/r/20220131203249.2832273-2-pasha.tatashin@soleen.com
Fixes: a5c3b9ffb0f4 ("mm/debug_vm_pgtable: add tests validating advanced arch page table helpers")
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Tested-by: Zi Yan <ziy@nvidia.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org> [5.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This reverts commit 721fb891ad0b3956d5c168b2931e3e5e4fb7ca40.
Commit 721fb891ad0b ("mm/page_isolation: unset migratetype directly for
non Buddy page") will result memory that should in buddy disappear by
mistake. move_freepages_block moves all pages in pageblock instead of
pages indicated by input parameter, so if input pages is not in buddy
but other pages in pageblock is in buddy, it will result in page out of
control.
Link: https://lkml.kernel.org/r/20220126024436.13921-1-chenwandun@huawei.com
Fixes: 721fb891ad0b ("mm/page_isolation: unset migratetype directly for non Buddy page")
Signed-off-by: Chen Wandun <chenwandun@huawei.com>
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Dong Aisheng <aisheng.dong@nxp.com>
Tested-by: Francesco Dolcini <francesco.dolcini@toradex.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This reverts commit 54d516b1d62ff8f17cee2da06e5e4706a0d00b8a
That commit did a refactoring that effectively combined fast and slow
gup paths (again). And that was again incorrect, for two reasons:
a) Fast gup and slow gup get reference counts on pages in different
ways and with different goals: see Linus' writeup in commit
cd1adf1b63a1 ("Revert "mm/gup: remove try_get_page(), call
try_get_compound_head() directly""), and
b) try_grab_compound_head() also has a specific check for
"FOLL_LONGTERM && !is_pinned(page)", that assumes that the caller
can fall back to slow gup. This resulted in new failures, as
recently report by Will McVicker [1].
But (a) has problems too, even though they may not have been reported
yet. So just revert this.
Link: https://lore.kernel.org/r/20220131203504.3458775-1-willmcvicker@google.com [1]
Fixes: 54d516b1d62f ("mm/gup: small refactoring: simplify try_grab_page()")
Reported-and-tested-by: Will McVicker <willmcvicker@google.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Minchan Kim <minchan@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: stable@vger.kernel.org # 5.15
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pass the block_device and operation that we plan to use this bio for to
bio_alloc to optimize the assignment. NULL/0 can be passed, both for the
passthrough case on a raw request_queue and to temporarily avoid
refactoring some nasty code.
Also move the gfp_mask argument after the nr_vecs argument for a much
more logical calling convention matching what most of the kernel does.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220124091107.642561-18-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
memory_failure_dev_pagemap() at the moment assumes base pages (e.g.
dax_lock_page()). For devmap with compound pages fetch the
compound_head in case a tail page memory failure is being handled.
Currently this is a nop, but in the advent of compound pages in
dev_pagemap it allows memory_failure_dev_pagemap() to keep working.
Without this fix memory-failure handling (i.e. MCEs on pmem) with
device-dax configured namespaces will regress (and crash).
Link: https://lkml.kernel.org/r/20211202204422.26777-2-joao.m.martins@oracle.com
Reported-by: Jane Chu <jane.chu@oracle.com>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull bitmap updates from Yury Norov:
- introduce for_each_set_bitrange()
- use find_first_*_bit() instead of find_next_*_bit() where possible
- unify for_each_bit() macros
* tag 'bitmap-5.17-rc1' of git://github.com/norov/linux:
vsprintf: rework bitmap_list_string
lib: bitmap: add performance test for bitmap_print_to_pagebuf
bitmap: unify find_bit operations
mm/percpu: micro-optimize pcpu_is_populated()
Replace for_each_*_bit_from() with for_each_*_bit() where appropriate
find: micro-optimize for_each_{set,clear}_bit()
include/linux: move for_each_bit() macros from bitops.h to find.h
cpumask: replace cpumask_next_* with cpumask_first_* where appropriate
tools: sync tools/bitmap with mother linux
all: replace find_next{,_zero}_bit with find_first{,_zero}_bit where appropriate
cpumask: use find_first_and_bit()
lib: add find_first_and_bit()
arch: remove GENERIC_FIND_FIRST_BIT entirely
include: move find.h from asm_generic to linux
bitops: move find_bit_*_le functions from le.h to find.h
bitops: protect find_first_{,zero}_bit properly
|
|
Merge yet more updates from Andrew Morton:
"This is the post-linux-next queue. Material which was based on or
dependent upon material which was in -next.
69 patches.
Subsystems affected by this patch series: mm (migration and zsmalloc),
sysctl, proc, and lib"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (69 commits)
mm: hide the FRONTSWAP Kconfig symbol
frontswap: remove support for multiple ops
mm: mark swap_lock and swap_active_head static
frontswap: simplify frontswap_register_ops
frontswap: remove frontswap_test
mm: simplify try_to_unuse
frontswap: remove the frontswap exports
frontswap: simplify frontswap_init
frontswap: remove frontswap_curr_pages
frontswap: remove frontswap_shrink
frontswap: remove frontswap_tmem_exclusive_gets
frontswap: remove frontswap_writethrough
mm: remove cleancache
lib/stackdepot: always do filter_irq_stacks() in stack_depot_save()
lib/stackdepot: allow optional init and stack_table allocation by kvmalloc()
proc: remove PDE_DATA() completely
fs: proc: store PDE()->data into inode->i_private
zsmalloc: replace get_cpu_var with local_lock
zsmalloc: replace per zpage lock with pool->migrate_lock
locking/rwlocks: introduce write_lock_nested
...
|
|
Pull more folio updates from Matthew Wilcox:
"Three small folio patches.
One bug fix, one patch pulled forward from the patches destined for
5.18 and then a patch to make use of that functionality"
* tag 'folio-5.17a' of git://git.infradead.org/users/willy/pagecache:
filemap: Use folio_put_refs() in filemap_free_folio()
mm: Add folio_put_refs()
pagevec: Initialise folio_batch->percpu_pvec_drained
|
|
Select FRONTSWAP from ZSWAP instead of prompting for it.
Link: https://lkml.kernel.org/r/20211224062246.1258487-14-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is only a single instance of frontswap ops in the kernel, so
simplify the frontswap code by removing support for multiple operations.
Link: https://lkml.kernel.org/r/20211224062246.1258487-13-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
swap_lock and swap_active_head are only used in swapfile.c, so mark them
static.
Link: https://lkml.kernel.org/r/20211224062246.1258487-12-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Given that frontswap_register_ops must be called from built-in code,
there is no need to handle the case of swapfiles coming online before or
during it, so delete the code that deals with that case.
Link: https://lkml.kernel.org/r/20211224062246.1258487-11-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
frontswap_test is unused now, remove it.
Link: https://lkml.kernel.org/r/20211224062246.1258487-10-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Remove the unused frontswap and pages_to_unuse arguments, and mark the
function static now that the caller in frontswap is gone.
[akpm@linux-foundation.org: fix shmem_unuse() stub, per Matthew]
Link: https://lkml.kernel.org/r/20211224062246.1258487-9-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
None of the frontswap API is called from modular code.
Link: https://lkml.kernel.org/r/20211224062246.1258487-8-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Just use IS_ENABLED() and remove the __frontswap_init indirection.
Also remove the unused export.
Link: https://lkml.kernel.org/r/20211224062246.1258487-7-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
frontswap_curr_pages is never called, so remove it.
Link: https://lkml.kernel.org/r/20211224062246.1258487-6-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|