Age | Commit message (Collapse) | Author |
|
This is a preparation patch, both added functions are not used yet.
The added __split_unmapped_folio() is able to split a folio with its
mapping removed in two manners: 1) uniform split (the existing way), and
2) buddy allocator like (or non-uniform) split.
The added __split_folio_to_order() can split a folio into any lower order.
For uniform split, __split_unmapped_folio() calls it once to split the
given folio to the new order. For buddy allocator like (non-uniform)
split, __split_unmapped_folio() calls it (folio_order - new_order) times
and each time splits the folio containing the given page to one lower
order.
[ziy@nvidia.com: unfreeze head folio after page cache entries are updated]
Link: https://lkml.kernel.org/r/0F15DA7F-1977-412F-9A3E-F06B515D4BD2@nvidia.com
[ziy@nvidia.com: use NULL instead of 0 for folio->private assignment]
Link: https://lkml.kernel.org/r/1E11B9DD-3A87-4C9C-8FB4-E1324FB6A21A@nvidia.com
Link: https://lkml.kernel.org/r/20250307174001.242794-3-ziy@nvidia.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <yang@os.amperecomputing.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Fixes: 6769183166b3 ("mm/swap_cgroup: decouple swap cgroup recording and clearing")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Muchun Song <muchun.song@linux.dev>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
According to the code logic, the first parameter of the sub-function
__get_vm_area_node() should be size instead of real_size.
Then in __get_vm_area_node(), the size will be aligned, so the redundant
alignment operation is deleted.
The use of the real_size variable causes code redundancy, so it is removed
to simplify the code.
The real prefix is generally used to indicate the adjusted value of a
parameter, but according to the code logic, it should indicate the
original value, so it is recommended to rename it to original_align.
Link: https://lkml.kernel.org/r/20250306072131.800499-1-liuye@kylinos.cn
Signed-off-by: Liu Ye <liuye@kylinos.cn>
Reviewed-by: "Uladzislau Rezki (Sony)" <urezki@gmail.com>
Cc: Christop Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The page_ext_next() function assumes that page extension objects for a
page order allocation always reside in the same memory section, which may
not be true and could lead to crashes. Use the new page_ext iteration API
instead.
Link: https://lkml.kernel.org/r/93c80b040960fa2ebab4a9729073f77a30649862.1741301089.git.luizcap@redhat.com
Fixes: cf54f310d0d3 ("mm/hugetlb: use __GFP_COMP for gigantic folios")
Signed-off-by: Luiz Capitulino <luizcap@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The page_ext_next() function assumes that page extension objects for a
page order allocation always reside in the same memory section, which may
not be true and could lead to crashes. Use the new page_ext iteration API
instead.
Link: https://lkml.kernel.org/r/ca2d53a020fe1cd65c442627ff6c0c40d591cbd8.1741301089.git.luizcap@redhat.com
Fixes: cf54f310d0d3 ("mm/hugetlb: use __GFP_COMP for gigantic folios")
Signed-off-by: Luiz Capitulino <luizcap@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: page_ext: Introduce new iteration API", v3.
Introduction
============
[ Thanks to David Hildenbrand for identifying the root cause of this
issue and proving guidance on how to fix it. The new API idea, bugs
and misconceptions are all mine though ]
Currently, trying to reserve 1G pages with page_owner=on and sparsemem
causes a crash. The reproducer is very simple:
1. Build the kernel with CONFIG_SPARSEMEM=y and the table extensions
2. Pass 'default_hugepagesz=1 page_owner=on' in the kernel command-line
3. Reserve one 1G page at run-time, this should crash (see patch 1 for
backtrace)
[ A crash with page_table_check is also possible, but harder to trigger ]
Apparently, starting with commit cf54f310d0d3 ("mm/hugetlb: use __GFP_COMP
for gigantic folios") we now pass the full allocation order to page
extension clients and the page extension implementation assumes that all
PFNs of an allocation range will be stored in the same memory section (which
is not true for 1G pages).
To fix this, this series introduces a new iteration API for page extension
objects. The API checks if the next page extension object can be retrieved
from the current section or if it needs to look up for it in another
section.
Please, find all details in patch 1.
I tested this series on arm64 and x86 by reserving 1G pages at run-time
and doing kernel builds (always with page_owner=on and page_table_check=on).
This patch (of 3):
The page extension implementation assumes that all page extensions of a
given page order are stored in the same memory section. The function
page_ext_next() relies on this assumption by adding an offset to the
current object to return the next adjacent page extension.
This behavior works as expected for flatmem but fails for sparsemem when
using 1G pages. The commit cf54f310d0d3 ("mm/hugetlb: use __GFP_COMP for
gigantic folios") exposes this issue, making it possible for a crash when
using page_owner or page_table_check page extensions.
The problem is that for 1G pages, the page extensions may span memory
section boundaries and be stored in different memory sections. This issue
was not visible before commit cf54f310d0d3 ("mm/hugetlb: use __GFP_COMP
for gigantic folios") because alloc_contig_pages() never passed more than
MAX_PAGE_ORDER to post_alloc_hook(). However, the series introducing
mentioned commit changed this behavior allowing the full 1G page order to
be passed.
Reproducer:
1. Build the kernel with CONFIG_SPARSEMEM=y and table extensions
support
2. Pass 'default_hugepagesz=1 page_owner=on' in the kernel command-line
3. Reserve one 1G page at run-time, this should crash (backtrace below)
To address this issue, this commit introduces a new API for iterating
through page extensions. The main iteration macro is for_each_page_ext()
and it must be called with the RCU read lock taken. Here's an usage
example:
"""
struct page_ext_iter iter;
struct page_ext *page_ext;
...
rcu_read_lock();
for_each_page_ext(page, 1 << order, page_ext, iter) {
struct my_page_ext *obj = get_my_page_ext_obj(page_ext);
...
}
rcu_read_unlock();
"""
The loop construct uses page_ext_iter_next() which checks to see if we
have crossed sections in the iteration. In this case,
page_ext_iter_next() retrieves the next page_ext object from another
section.
Thanks to David Hildenbrand for helping identify the root cause and
providing suggestions on how to fix and optmize the solution (final
implementation and bugs are all mine through).
Lastly, here's the backtrace, without kasan you can get random crashes:
[ 76.052526] BUG: KASAN: slab-out-of-bounds in __update_page_owner_handle+0x238/0x298
[ 76.060283] Write of size 4 at addr ffff07ff96240038 by task tee/3598
[ 76.066714]
[ 76.068203] CPU: 88 UID: 0 PID: 3598 Comm: tee Kdump: loaded Not tainted 6.13.0-rep1 #3
[ 76.076202] Hardware name: WIWYNN Mt.Jade Server System B81.030Z1.0007/Mt.Jade Motherboard, BIOS 2.10.20220810 (SCP: 2.10.20220810) 2022/08/10
[ 76.088972] Call trace:
[ 76.091411] show_stack+0x20/0x38 (C)
[ 76.095073] dump_stack_lvl+0x80/0xf8
[ 76.098733] print_address_description.constprop.0+0x88/0x398
[ 76.104476] print_report+0xa8/0x278
[ 76.108041] kasan_report+0xa8/0xf8
[ 76.111520] __asan_report_store4_noabort+0x20/0x30
[ 76.116391] __update_page_owner_handle+0x238/0x298
[ 76.121259] __set_page_owner+0xdc/0x140
[ 76.125173] post_alloc_hook+0x190/0x1d8
[ 76.129090] alloc_contig_range_noprof+0x54c/0x890
[ 76.133874] alloc_contig_pages_noprof+0x35c/0x4a8
[ 76.138656] alloc_gigantic_folio.isra.0+0x2c0/0x368
[ 76.143616] only_alloc_fresh_hugetlb_folio.isra.0+0x24/0x150
[ 76.149353] alloc_pool_huge_folio+0x11c/0x1f8
[ 76.153787] set_max_huge_pages+0x364/0xca8
[ 76.157961] __nr_hugepages_store_common+0xb0/0x1a0
[ 76.162829] nr_hugepages_store+0x108/0x118
[ 76.167003] kobj_attr_store+0x3c/0x70
[ 76.170745] sysfs_kf_write+0xfc/0x188
[ 76.174492] kernfs_fop_write_iter+0x274/0x3e0
[ 76.178927] vfs_write+0x64c/0x8e0
[ 76.182323] ksys_write+0xf8/0x1f0
[ 76.185716] __arm64_sys_write+0x74/0xb0
[ 76.189630] invoke_syscall.constprop.0+0xd8/0x1e0
[ 76.194412] do_el0_svc+0x164/0x1e0
[ 76.197891] el0_svc+0x40/0xe0
[ 76.200939] el0t_64_sync_handler+0x144/0x168
[ 76.205287] el0t_64_sync+0x1ac/0x1b0
Link: https://lkml.kernel.org/r/cover.1741301089.git.luizcap@redhat.com
Link: https://lkml.kernel.org/r/a45893880b7e1601082d39d2c5c8b50bcc096305.1741301089.git.luizcap@redhat.com
Fixes: cf54f310d0d3 ("mm/hugetlb: use __GFP_COMP for gigantic folios")
Signed-off-by: Luiz Capitulino <luizcap@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Luiz Capitulino <luizcap@redhat.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It is the responsibility of the caller to check pmd_none(); in any case,
we are not achieving anything by returning since there is no return value
to tell the caller that we succeeded or not. So remove this check.
Link: https://lkml.kernel.org/r/20250306144315.21907-1-dev.jain@arm.com
Signed-off-by: Dev Jain <dev.jain@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The operations layer hook was introduced to let operations set do any
aggregation data reset if needed. But it is not really be used now.
Remove it.
Link: https://lkml.kernel.org/r/20250306175908.66300-14-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The hook was introduced to let DAMON kernel API users access DAMOS
schemes-eligible regions in a safe way. Now it is no more used by anyone,
and the functionality is provided in a better way by damos_walk(). Remove
it.
Link: https://lkml.kernel.org/r/20250306175908.66300-13-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The callback was used by DAMON sysfs interface for reading DAMON internal
data. But it is no more being used, and damon_call() can do similar works
in a better way. Remove it.
Link: https://lkml.kernel.org/r/20250306175908.66300-12-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The function pointer field was added to be used as a place to do some
initialization works just before DAMON starts working. However, nobody is
using it now. Remove it.
Link: https://lkml.kernel.org/r/20250306175908.66300-11-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
damon_sysfs_schemes_clear_regions()
The comment on damon_sysfs_schemes_clear_regions() function is obsolete,
since it has updated to directly called from DAMON sysfs interface code.
Remove the outdated comment.
Link: https://lkml.kernel.org/r/20250306175908.66300-9-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
damon_sysfs_cmd_request is DAMON sysfs interface's own synchronization
mechanism for accessing DAMON internal data via damon_callback hooks. All
the users are now migrated to damon_call() and damos_walk(), so nobody
really uses it. No one writes to the data structure but reading code is
still remained. Remove the reading code and the entire data structure.
Link: https://lkml.kernel.org/r/20250306175908.66300-8-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
damon_sysfs_cmd_request_callback() is the damon_callback hook functions
that were used to handle user requests that need to read and/or write
DAMON internal data. All the usages are now updated to use damon_call()
or damos_walk(), though. Remove it and its callers.
Link: https://lkml.kernel.org/r/20250306175908.66300-7-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
damon_sysfs_handle_cmd()
damon_sysfs_handle_cmd() handles user requests that it can directly handle
on its own. For requests that need to be handled from damon_callback
hooks, it uses DAMON sysfs interface's own synchronous damon_callback
hooks management mechanism, namely damon_sysfs_cmd_request. Now all user
requests are handled without damon_callback hooks, so
damon_sysfs_cmd_request client code in damon_sysfs_andle_cmd() does
nothing in real. Remove the unnecessary code.
Link: https://lkml.kernel.org/r/20250306175908.66300-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
DAMON sysfs interface is using damon_callback->after_aggregation hook with
its self-implemented synchronization mechanism for the hook. It is
inefficient, complicated, and take up to one aggregation interval to
complete, which can be long on some configs.
Use damon_call() instead. It provides a synchronization mechanism that
built inside DAMON's core layer, so more efficient than DAMON sysfs
interface's own one. Also it isolates the implementation inside the core
layer, and hence it makes the code easier to maintain. Finally, it takes
up to one sampling interval, which is much shorter than the aggregation
interval in common setups.
Link: https://lkml.kernel.org/r/20250306175908.66300-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently all DAMON kernel API callers do online DAMON parameters commit
from damon_callback->after_aggregation because only those are safe place
to call the DAMON monitoring attributes update function, namely
damon_set_attrs().
Because damon_callback hooks provide no synchronization, the callers work
in asynchronous ways or implement their own inefficient and complicated
synchronization mechanisms. It also means online DAMON parameters commit
can take up to one aggregation interval. On large systems having long
aggregation intervals, that can be too slow. The synchronization can be
done in more efficient and simple way while removing the latency
constraint if it can be done using damon_call().
The fact that damon_call() can be executed in the middle of the
aggregation makes damon_set_attrs() unsafe to be called from it, though.
Two real problems can occur in the case. First, converting the not yet
completely aggregated nr_accesses for new user-set intervals can arguably
degrade the accuracy or at least make the logic complicated. Second,
kdamond_reset_aggregated() will not be called after the monitoring results
update, so next aggregation starts from unclean state. This can result in
inconsistent and unexpected nr_accesses_bp.
Make it safe as follows. Catch the middle-of-the-aggregation case from
damon_set_attrs() by checking the passed_sample_intervals and
next_aggregationsis of the context. And pass the information to
nr_accesses conversion logic. The logic works as before if it is not the
case (called after the current aggregation is completed). If it is the
case (committing parameters in the middle of the aggregation), it drops
the nr_accesses information that so far aggregated, and make the status
same to the beginning of this aggregation, but as if the last aggregation
was started with the updated sampling/aggregation intervals.
The middle-of-aggregastion check introduce yet another edge case, though.
This happens because kdamond_tune_intervals() can also call
damon_set_attrs() with the middle-of-aggregation check. Consider
damon_call() for parameters commit and kdamond_tune_intervals() are called
in same iteration of kdamond main loop. Because kdamond_tune_interval()
is called for aggregation intervals, it should be the end of the
aggregation. The first damon_set_attrs() call from kdamond_call()
understands it is the end of the aggregation and correctly handle it.
But, because the damon_set_attrs() updated next_aggregation_sis of the
context. Hence, the second damon_set_attrs() invocation from
kdamond_tune_interval() believes it is called in the middle of the
aggregation. It therefore resets aggregated information so far. After
that, kdamond_reset_interval() is called and double-reset the aggregated
information. Avoid this case, too, by setting the next_aggregation_sis
before kdamond_tune_intervals() is invoked.
Link: https://lkml.kernel.org/r/20250306175908.66300-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
kdamond_call() callers may iterate the regions, so better to call it when
the number of regions is as small as possible. It is when
kdamond_merge_regions() is finished. Invoke it on the point.
This change is also aimed to make future changes for carrying online
parameters commit with damon_call() easier. The commit operation should
be able to make sequence between other aggregation interval based
operations including regioins merging and aggregation reset. Placing
damon_call() invocation after the regions merging makes the sequence
handling simpler.
Link: https://lkml.kernel.org/r/20250306175908.66300-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/damon/sysfs: commit parameters online via damon_call()".
Due to the lack of ways to synchronously access DAMON internal data, DAMON
sysfs interface is using damon_callback hooks with its own synchronization
mechanism. The mechanism is built on top of damon_callback hooks in an
ineifficient and complicated way.
Patch series "mm/damon: replace most damon_callback usages in sysfs with
new core functions", which starts with commit e035320fd38e
("mm/damon/sysfs-schemes: remove unnecessary schemes existence check in
damon_sysfs_schemes_clear_regions()") introduced two new DAMON kernel API
functions that providing the synchronous access, replaced most
damon_callback hooks usage in DAMON sysfs interface, and cleaned up
unnecessary code.
Continue the replacement and cleanup works. Update the last DAMON sysfs'
usage of its own synchronization mechanism, namely online DAMON parameters
commit, to use damon_call() instead of the damon_callback hooks and the
hard-to-maintain core-external synchronization mechanism. Then remove the
no more be used code due to the change, and more unused code that just not
yet cleaned up.
The first four patches (patches 1-4) of this series makes DAMON sysfs
interface's online parameters commit to use damon_call(). Then, following
three patches (patches 5-7) remove the DAMON sysfs interface's own
synchronization mechanism and its usages, which is no more be used by
anyone due to the first four patches. Finally, six patches (8-13) do more
cleanup of outdated comment and unused code.
This patch (of 13):
Online DAMON parameters commit via DAMON sysfs interface can make kdamond
stop. This behavior was made because it can make the implementation
simpler. The implementation tries committing the parameter without
validation. If it finds something wrong in the middle of the parameters
update, it returns error without reverting the partially committed
parameters back. It is safe though, since it immediately breaks kdamond
main loop in the case of the error return.
Users can make the wrong parameters by mistake, though. Stopping kdamond
in the case is not very useful behavior. Also this makes it difficult to
utilize damon_call() instead of damon_callback hook for online parameters
update, since damon_call() cannot immediately break kdamond main loop in
the middle.
Validate the input parameters and return error when it fails before
starting parameters updates. In case of mistakenly wrong parameters,
kdamond can continue running with the old and valid parameters.
Link: https://lkml.kernel.org/r/20250306175908.66300-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20250306175908.66300-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The point where the memory is released from memblock to the buddy
allocator is hidden inside arch-specific mem_init()s and the call to
memblock_free_all() is needlessly duplicated in every artiste cure and
after introduction of arch_mm_preinit() hook, mem_init() implementation on
many architecture only contains the call to memblock_free_all().
Pull memblock_free_all() call into mm_core_init() and drop mem_init() on
relevant architectures to make it more explicit where the free memory is
released from memblock to the buddy allocator and to reduce code
duplication in architecture specific code.
Link: https://lkml.kernel.org/r/20250313135003.836600-14-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> [x86]
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Tested-by: Mark Brown <broonie@kernel.org>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Guo Ren (csky) <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russel King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, implementation of mem_init() in every architecture consists of
one or more of the following:
* initializations that must run before page allocator is active, for
instance swiotlb_init()
* a call to memblock_free_all() to release all the memory to the buddy
allocator
* initializations that must run after page allocator is ready and there is
no arch-specific hook other than mem_init() for that, like for example
register_page_bootmem_info() in x86 and sparc64 or simple setting of
mem_init_done = 1 in several architectures
* a bunch of semi-related stuff that apparently had no better place to
live, for example a ton of BUILD_BUG_ON()s in parisc.
Introduce arch_mm_preinit() that will be the first thing called from
mm_core_init(). On architectures that have initializations that must happen
before the page allocator is ready, move those into arch_mm_preinit() along
with the code that does not depend on ordering with page allocator setup.
On several architectures this results in reduction of mem_init() to a
single call to memblock_free_all() that allows its consolidation next.
Link: https://lkml.kernel.org/r/20250313135003.836600-13-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> [x86]
Tested-by: Mark Brown <broonie@kernel.org>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Guo Ren (csky) <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russel King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
All architectures that support HIGHMEM have their code that frees high
memory pages to the buddy allocator while __free_memory_core() is limited
to freeing only low memory.
There is no actual reason for that. The memory map is completely ready by
the time memblock_free_all() is called and high pages can be released to
the buddy allocator along with low memory.
Remove low memory limit from __free_memory_core() and drop per-architecture
code that frees high memory pages.
Link: https://lkml.kernel.org/r/20250313135003.836600-12-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> [x86]
Tested-by: Mark Brown <broonie@kernel.org>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Guo Ren (csky) <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russel King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
high_memory defines upper bound on the directly mapped memory. This bound
is defined by the beginning of ZONE_HIGHMEM when a system has high memory
and by the end of memory otherwise.
All this is known to generic memory management initialization code that
can set high_memory while initializing core mm structures.
Add a generic calculation of high_memory to free_area_init() and remove
per-architecture calculation except for the architectures that set and use
high_memory earlier than that.
Link: https://lkml.kernel.org/r/20250313135003.836600-11-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> [x86]
Tested-by: Mark Brown <broonie@kernel.org>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Guo Ren (csky) <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russel King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
max_mapnr is essentially the size of the memory map for systems that use
FLATMEM. There is no reason to calculate it in each and every architecture
when it's anyway calculated in alloc_node_mem_map().
Drop setting of max_mapnr from architecture code and set it once in
alloc_node_mem_map().
While on it, move definition of mem_map and max_mapnr to mm/mm_init.c so
there won't be two copies for MMU and !MMU variants.
Link: https://lkml.kernel.org/r/20250313135003.836600-10-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> [x86]
Tested-by: Mark Brown <broonie@kernel.org>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Guo Ren (csky) <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russel King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, we crash the kernel when a decompression failure occurs in
zswap (either because of memory corruption, or a bug in the compression
algorithm). This is overkill. We should only SIGBUS the unfortunate
process asking for the zswap entry on zswap load, and skip the corrupted
entry in zswap writeback.
See [1] for a recent upstream discussion about this.
The zswap writeback case is relatively straightforward to fix. For the
zswap_load() case, we change the return behavior:
* Return 0 on success.
* Return -ENOENT (with the folio locked) if zswap does not own the
swapped out content.
* Return -EIO if zswap owns the swapped out content, but encounters a
decompression failure for some reasons. The folio will be unlocked,
but not be marked up-to-date, which will eventually cause the process
requesting the page to SIGBUS (see the handling of not-up-to-date
folio in do_swap_page() in mm/memory.c), without crashing the kernel.
* Return -EINVAL if we encounter a large folio, as large folio should
not be swapped in while zswap is being used. Similar to the -EIO case,
we also unlock the folio but do not mark it as up-to-date to SIGBUS
the faulting process.
As a side effect, we require one extra zswap tree traversal in the load
and writeback paths. Quick benchmarking on a kernel build test shows no
performance difference:
With the new scheme:
real: mean: 125.1s, stdev: 0.12s
user: mean: 3265.23s, stdev: 9.62s
sys: mean: 2156.41s, stdev: 13.98s
The old scheme:
real: mean: 125.78s, stdev: 0.45s
user: mean: 3287.18s, stdev: 5.95s
sys: mean: 2177.08s, stdev: 26.52s
[nphamcs@gmail.com: fix documentation of zswap_load()]
Link: https://lkml.kernel.org/r/20250306222453.1269456-1-nphamcs@gmail.com
Link: https://lore.kernel.org/all/ZsiLElTykamcYZ6J@casper.infradead.org/ [1]
Link: https://lkml.kernel.org/r/20250306205011.784787-1-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Suggested-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In alloc_surplus_hugetlb_folio(), we increase nr_huge_pages and
surplus_huge_pages separately. In the middle window, if we set
nr_hugepages to smaller and satisfy count < persistent_huge_pages(h), the
surplus_huge_pages will be increased by adjust_pool_surplus().
After adding delay in the middle window, we can reproduce the problem
easily by following step:
1. echo 3 > /proc/sys/vm/nr_overcommit_hugepages
2. mmap two hugepages. When nr_huge_pages=2 and surplus_huge_pages=1,
goto step 3.
3. echo 0 > /proc/sys/vm/nr_huge_pages
Finally, nr_huge_pages is less than surplus_huge_pages.
To fix the problem, call only_alloc_fresh_hugetlb_folio() instead and
move down __prep_account_new_huge_page() into the hugetlb_lock.
Link: https://lkml.kernel.org/r/20250305035409.2391344-1-liushixin2@huawei.com
Fixes: 0c397daea1d4 ("mm, hugetlb: further simplify hugetlb allocation API")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Liu Shixin <liushixin2@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
wrong sysfs directory
Return error if the user tries to install a DAMOS filter on DAMOS filters
sysfs directory that assumed to be used for filters that handled by a
DAMON layer that not same to that for the installing filter.
Link: https://lkml.kernel.org/r/20250305222733.59089-7-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
given filters directory
Unlike their name and assumed purposes, {core,ops}_filters DAMOS sysfs
directories are allowing installing any type of filters. As a first step
for preventing such wrong installments, add information about filters that
handled by what layer should the installed to the given filters directory
in the DAMOS sysfs internal data structures.
Link: https://lkml.kernel.org/r/20250305222733.59089-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
damos_filter_for_ops() can be useful to avoid putting wrong type of
filters in wrong place. Make it be exposed to DAMON kernel API callers.
Link: https://lkml.kernel.org/r/20250305222733.59089-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Connect user inputs for files under core_filters and ops_filters with
DAMON, so that the files can really function. Becasuse {core,ops}_filters
are easier to be managed in terms of expecting filters evaluation order,
add filters in {core,ops}_filters before 'filters' directory.
Link: https://lkml.kernel.org/r/20250305222733.59089-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Implement two DAMOS sysfs directories for managing core and operations
layer handled filters separately. Those are named as 'core_filters' and
'ops_filters', and have files hierarchy same to 'filters'. This commit is
only populating and cleaning up the directories, not really connecting the
files with DAMON. Following changes will make the connections.
Link: https://lkml.kernel.org/r/20250305222733.59089-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
different named directories
Patch series "mm/damon: add sysfs dirs for managing DAMOS filters based on
handling layers".
DAMOS filters are categorized into two groups based on their handling
layers, namely core and operations layers. The categorization affects
when each filter is evaluated. Core layer handled filters are evaluated
first. The order meant nothing before, but introduction of allow filters
changed that.
DAMOS sysfs interface provides single directory for filters, namely
'filters'. Users can install any filters in any order there. DAMON will
internally categorize those into core and operations layer handled ones,
and apply the evaluation order rule. The ordering rule is clearly
documented. But the interface could still confuse users since it is
allowed to install filters on the directory in mixed ways.
Add two sysfs directories for managing filters by handling layers, namely
'core_filters' and 'ops_filters' for filters that handled by core and
operations layer, respectively. Those are avoided to be used for
installing filters that not handled by the assumed layers.
For backward compatibility, keep 'filters' directory with its curernt
behavior. Filters installed in the directory will be added to DAMON after
those of 'core_filters' and 'ops_filters' directories, with the automatic
categorizations. Also recommend users to use the new directories while
noticing 'filters' directory could be deprecated in future on the usage
documents.
Note that new directories provide all features that were provided with
'filters', but just in a more clear way. Deprecating 'filters' in future
will hence not make an irreversal feature loss.
This patch (of 8):
damon_sysfs_scheme_set_filters() is using a hard-coded directory name,
"filters". Refactor for general named directories of same files
hierarchy, to use from upcoming changes for adding sibling directories
having files same to those of "filters", and named as "core_filters" and
"ops_filters".
[arnd@arndb.deL avoid Wformat-security warning]
Link: https://lkml.kernel.org/r/20250310135142.4176976-1-arnd@kernel.org
Link: https://lkml.kernel.org/r/20250305222733.59089-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20250305222733.59089-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
(CONFIG_NO_PAGE_MAPCOUNT)
Everything is in place to stop using the per-page mapcounts in large
folios: the mapcount of tail pages will always be logically 0 (-1 value),
just like it currently is for hugetlb folios already, and the page
mapcount of the head page is either 0 (-1 value) or contains a page type
(e.g., hugetlb).
Maintaining _nr_pages_mapped without per-page mapcounts is impossible, so
that one also has to go with CONFIG_NO_PAGE_MAPCOUNT.
There are two remaining implications:
(1) Per-node, per-cgroup and per-lruvec stats of "NR_ANON_MAPPED"
("mapped anonymous memory") and "NR_FILE_MAPPED"
("mapped file memory"):
As soon as any page of the folio is mapped -- folio_mapped() -- we
now account the complete folio as mapped. Once the last page is
unmapped -- !folio_mapped() -- we account the complete folio as
unmapped.
This implies that ...
* "AnonPages" and "Mapped" in /proc/meminfo and
/sys/devices/system/node/*/meminfo
* cgroup v2: "anon" and "file_mapped" in "memory.stat" and
"memory.numa_stat"
* cgroup v1: "rss" and "mapped_file" in "memory.stat" and
"memory.numa_stat
... can now appear higher than before. But note that these folios do
consume that memory, simply not all pages are actually currently
mapped.
It's worth nothing that other accounting in the kernel (esp. cgroup
charging on allocation) is not affected by this change.
[why oh why is "anon" called "rss" in cgroup v1]
(2) Detecting partial mappings
Detecting whether anon THPs are partially mapped gets a bit more
unreliable. As long as a single MM maps such a large folio
("exclusively mapped"), we can reliably detect it. Especially before
fork() / after a short-lived child process quit, we will detect
partial mappings reliably, which is the common case.
In essence, if the average per-page mapcount in an anon THP is < 1,
we know for sure that we have a partial mapping.
However, as soon as multiple MMs are involved, we might miss detecting
partial mappings: this might be relevant with long-lived child
processes. If we have a fully-mapped anon folio before fork(), once
our child processes and our parent all unmap (zap/COW) the same pages
(but not the complete folio), we might not detect the partial mapping.
However, once the child processes quit we would detect the partial
mapping.
How relevant this case is in practice remains to be seen.
Swapout/migration will likely mitigate this.
In the future, RMAP walkers could check for that for that case
(e.g., when collecting access bits during reclaim) and simply flag
them for deferred-splitting.
Link: https://lkml.kernel.org/r/20250303163014.1128035-21-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
in large folios
We're close to the finishing line: let's introduce a new
CONFIG_NO_PAGE_MAPCOUNT config option where we will incrementally remove
any dependencies on per-page mapcounts in large folios. Once that's done,
we'll stop maintaining the per-page mapcounts with this config option
enabled.
CONFIG_NO_PAGE_MAPCOUNT will be EXPERIMENTAL for now, as we'll have to
learn about some of the real world impact of some of the implications.
As writing "!CONFIG_NO_PAGE_MAPCOUNT" is really nasty, let's introduce a
helper config option "CONFIG_PAGE_MAPCOUNT" that expresses the negation.
Link: https://lkml.kernel.org/r/20250303163014.1128035-16-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's reuse our new MM ownership tracking infrastructure for large folios
to make folio_likely_mapped_shared() never return false negatives -- never
indicating "not mapped shared" although the folio *is* mapped shared.
With that, we can rename it to folio_maybe_mapped_shared() and get rid of
the dependency on the mapcount of the first folio page.
The semantics are now arguably clearer: no mixture of "false negatives"
and "false positives", only the remaining possibility for "false
positives".
Thoroughly document the new semantics. We might now detect that a large
folio is "maybe mapped shared" although it *no longer* is -- but once was.
Now, if more than two MMs mapped a folio at the same time, and the MM
mapping the folio exclusively at the end is not one tracked in the two
folio MM slots, we will detect the folio as "maybe mapped shared".
For anonymous folios, usually (except weird corner cases) all PTEs that
target a "maybe mapped shared" folio are R/O. As soon as a child process
would write to them (iow, actively use them), we would CoW and effectively
replace these PTEs. Most cases (below) are not expected to really matter
with large anonymous folios for this reason.
Most importantly, there will be no change at all for:
* small folios
* hugetlb folios
* PMD-mapped PMD-sized THPs (single mapping)
This change has the potential to affect existing callers of
folio_likely_mapped_shared() -> folio_maybe_mapped_shared():
(1) fs/proc/task_mmu.c: no change (hugetlb)
(2) khugepaged counts PTEs that target shared folios towards
max_ptes_shared (default: HPAGE_PMD_NR / 2), meaning we could skip a
collapse where we would have previously collapsed. This only applies
to anonymous folios and is not expected to matter in practice.
Worth noting that this change sorts out case (A) documented in
commit 1bafe96e89f0 ("mm/khugepaged: replace page_mapcount() check by
folio_likely_mapped_shared()") by removing the possibility for "false
negatives".
(3) MADV_COLD / MADV_PAGEOUT / MADV_FREE will not try splitting
PTE-mapped THPs that are considered shared but not fully covered by
the requested range, consequently not processing them.
PMD-mapped PMD-sized THP are not affected, or when all PTEs are
covered. These functions are usually only called on anon/file folios
that are exclusively mapped most of the time (no other file mappings
or no fork()), so the "false negatives" are not expected to matter in
practice.
(4) mbind() / migrate_pages() / move_pages() will refuse to migrate
shared folios unless MPOL_MF_MOVE_ALL is effective (requires
CAP_SYS_NICE). We will now reject some folios that could be migrated.
Similar to (3), especially with MPOL_MF_MOVE_ALL, so this is not
expected to matter in practice.
Note that cpuset_migrate_mm_workfn() calls do_migrate_pages() with
MPOL_MF_MOVE_ALL.
(5) NUMA hinting
mm/migrate.c:migrate_misplaced_folio_prepare() will skip file
folios that are probably shared libraries (-> "mapped shared" and
executable). This check would have detected it as a shared library at
some point (at least 3 MMs mapping it), so detecting it afterwards
does not sound wrong (still a shared library). Not expected to
matter.
mm/memory.c:numa_migrate_check() will indicate TNF_SHARED in
MAP_SHARED file mappings when encountering a shared folio. Similar
reasoning, not expected to matter.
mm/mprotect.c:change_pte_range() will skip folios detected as
shared in CoW mappings. Similarly, this is not expected to matter in
practice, but if it would ever be a problem we could relax that check
a bit (e.g., basing it on the average page-mapcount in a folio),
because it was only an optimization when many (e.g., 288) processes
were mapping the same folios -- see commit 859d4adc3415 ("mm: numa: do
not trap faults on shared data section pages.")
(6) mm/rmap.c:folio_referenced_one() will skip exclusive swapbacked
folios in dying processes. Applies to anonymous folios only. Without
"false negatives", we'll now skip all actually shared ones. Skipping
ones that are actually exclusive won't really matter, it's a pure
optimization, and is not expected to matter in practice.
In theory, one can detect the problematic scenario: folio_mapcount() > 0
and no folio MM slot is occupied ("state unknown"). One could reset the
MM slots while doing an rmap walk, which migration / folio split already
do when setting everything up. Further, when batching PTEs we might
naturally learn about a owner (e.g., folio_mapcount() == nr_ptes) and
could update the owner. However, we'll defer that until the scenarios
where it would really matter are clear.
Link: https://lkml.kernel.org/r/20250303163014.1128035-15-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, we never end up reusing PTE-mapped THPs after fork. This
wasn't really a problem with PMD-sized THPs, because they would have to be
PTE-mapped first, but it's getting a problem with smaller THP sizes that
are effectively always PTE-mapped.
With our new "mapped exclusively" vs "maybe mapped shared" logic for large
folios, implementing CoW reuse for PTE-mapped THPs is straight forward: if
exclusively mapped, make sure that all references are from these (our)
mappings. Add some helpful comments to explain the details.
CONFIG_TRANSPARENT_HUGEPAGE selects CONFIG_MM_ID. If we spot an anon
large folio without CONFIG_TRANSPARENT_HUGEPAGE in that code, something is
seriously messed up.
There are plenty of things we can optimize in the future: For example, we
could remember that the folio is fully exclusive so we could speedup the
next fault further. Also, we could try "faulting around", turning
surrounding PTEs that map the same folio writable. But especially the
latter might increase COW latency, so it would need further investigation.
Link: https://lkml.kernel.org/r/20250303163014.1128035-14-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
For small folios, we traditionally use the mapcount to decide whether it
was "certainly mapped exclusively" by a single MM (mapcount == 1) or
whether it "maybe mapped shared" by multiple MMs (mapcount > 1). For
PMD-sized folios that were PMD-mapped, we were able to use a similar
mechanism (single PMD mapping), but for PTE-mapped folios and in the
future folios that span multiple PMDs, this does not work.
So we need a different mechanism to handle large folios. Let's add a new
mechanism to detect whether a large folio is "certainly mapped
exclusively", or whether it is "maybe mapped shared".
We'll use this information next to optimize CoW reuse for PTE-mapped
anonymous THP, and to convert folio_likely_mapped_shared() to
folio_maybe_mapped_shared(), independent of per-page mapcounts.
For each large folio, we'll have two slots, whereby a slot stores:
(1) an MM id: unique id assigned to each MM
(2) a per-MM mapcount
If a slot is unoccupied, it can be taken by the next MM that maps folio
page.
In addition, we'll remember the current state -- "mapped exclusively" vs.
"maybe mapped shared" -- and use a bit spinlock to sync on updates and to
reduce the total number of atomic accesses on updates. In the future, it
might be possible to squeeze a proper spinlock into "struct folio". For
now, keep it simple, as we require the whole thing with THP only, that is
incompatible with RT.
As we have to squeeze this information into the "struct folio" of even
folios of order-1 (2 pages), and we generally want to reduce the required
metadata, we'll assign each MM a unique ID that can fit into an int. In
total, we can squeeze everything into 4x int (2x long) on 64bit.
32bit support is a bit challenging, because we only have 2x long == 2x int
in order-1 folios. But we can make it work for now, because we neither
expect many MMs nor very large folios on 32bit.
We will reliably detect folios as "mapped exclusively" vs. "mapped
shared" as long as only two MMs map pages of a folio at one point in time
-- for example with fork() and short-lived child processes, or with apps
that hand over state from one instance to another.
As soon as three MMs are involved at the same time, we might detect "maybe
mapped shared" although the folio is "mapped exclusively".
Example 1:
(1) App1 faults in a (shmem/file-backed) folio page -> Tracked as MM0
(2) App2 faults in a folio page -> Tracked as MM1
(4) App1 unmaps all folio pages
-> We will detect "mapped exclusively".
Example 2:
(1) App1 faults in a (shmem/file-backed) folio page -> Tracked as MM0
(2) App2 faults in a folio page -> Tracked as MM1
(3) App3 faults in a folio page -> No slot available, tracked as "unknown"
(4) App1 and App2 unmap all folio pages
-> We will detect "maybe mapped shared".
Make use of __always_inline to keep possible performance degradation when
(un)mapping large folios to a minimum.
Note: by squeezing the two flags into the "unsigned long" that stores the
MM ids, we can use non-atomic __bit_spin_unlock() and non-atomic
setting/clearing of the "maybe mapped shared" bit, effectively not adding
any new atomics on the hot path when updating the large mapcount + new
metadata, which further helps reduce the runtime overhead in
micro-benchmarks.
Link: https://lkml.kernel.org/r/20250303163014.1128035-13-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's just use the "large" variant in code where we are sure that we have
a large folio in our hands: this way we are sure that we don't perform any
unnecessary "large" checks.
While at it, convert the VM_BUG_ON_VMA to a VM_WARN_ON_ONCE.
Maybe in the future there will not be a difference in that regard between
large and small folios; in that case, unifying the handling again will be
easy. E.g., folio_large_nr_pages() will simply translate to
folio_nr_pages() until we replace all instances.
Link: https://lkml.kernel.org/r/20250303163014.1128035-12-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's abstract the operations so we can extend these operations easily.
Link: https://lkml.kernel.org/r/20250303163014.1128035-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We'll need access to the destination MM when modifying the mapcount large
folios next. So pass in the VMA.
Link: https://lkml.kernel.org/r/20250303163014.1128035-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We'll need access to the destination MM when modifying the large mapcount
of a non-hugetlb large folios next. So pass in the destination VMA.
Link: https://lkml.kernel.org/r/20250303163014.1128035-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's free up some space on 32bit in page[1] by moving the _pincount to
page[2].
Ordinary folios only use the entire mapcount with PMD mappings, so order-1
folios don't apply. Similarly, hugetlb folios are always larger than
order-1, turning the entire mapcount essentially unused for all order-1
folios. Moving it to order-1 folios will not change anything.
On 32bit, simply check in folio_entire_mapcount() whether we have an
order-1 folio, and return 0 in that case.
Note that THPs on 32bit are not particularly common (and we don't care too
much about performance), but we want to keep it working reliably, because
likely we want to use large folios there as well in the future,
independent of PMD leaf support.
Once we dynamically allocate "struct folio", the 32bit specifics will go
away again; even small folios could then have a pincount.
Link: https://lkml.kernel.org/r/20250303163014.1128035-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's free up some space on 32bit in page[1] by moving the _pincount to
page[2].
For order-1 folios (never anon folios!) on 32bit, we will now also use the
GUP_PIN_COUNTING_BIAS approach. A fully-mapped order-1 folio requires 2
references. With GUP_PIN_COUNTING_BIAS being 1024, we'd detect such
folios as "maybe pinned" with 512 full mappings, instead of 1024 for
order-0. As anon folios are out of the picture (which are the most
relevant users of checking for pinnings on *mapped* pages) and we are
talking about 32bit, this is not expected to cause any trouble.
In __dump_page(), copy one additional folio page if we detect a folio with
an order > 1, so we can dump the pincount on order > 1 folios reliably.
Note that THPs on 32bit are not particularly common (and we don't care too
much about performance), but we want to keep it working reliably, because
likely we want to use large folios there as well in the future,
independent of PMD leaf support.
Once we dynamically allocate "struct folio", fortunately the 32bit
specifics will likely go away again; even small folios could then have a
pincount and folio_has_pincount() would essentially always return "true".
Link: https://lkml.kernel.org/r/20250303163014.1128035-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's just move the hugetlb specific stuff to a separate page, and stop
letting it overlay other fields for now.
This frees up some space in page[2], which we will use on 32bit to free up
some space in page[1]. While we could move these things to page[3]
instead, it's cleaner to just move the hugetlb specific things out of the
way and pack the core-folio stuff as tight as possible. ... and we can
minimize the work required in dump_folio.
We can now avoid re-initializing &folio->_deferred_list in hugetlb code.
Hopefully dynamically allocating "strut folio" in the future will further
clean this up.
Link: https://lkml.kernel.org/r/20250303163014.1128035-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's free up some more of the "unconditionally available on 64BIT" space
in order-1 folios by letting _folio_nr_pages overlay memcg_data in the
first tail page (second folio page). Consequently, we have the
optimization now whenever we have CONFIG_MEMCG, independent of 64BIT.
We have to make sure that page->memcg on tail pages does not return
"surprises". page_memcg_check() already properly refuses PageTail().
Let's do that earlier in print_page_owner_memcg() to avoid printing wrong
"Slab cache page" information. No other code should touch that field on
tail pages of compound pages.
Reset the "_nr_pages" to 0 when splitting folios, or when freeing them
back to the buddy (to avoid false page->memcg_data "bad page" reports).
Note that in __split_huge_page(), folio_nr_pages() would stop working
already as soon as we start messing with the subpages.
Most kernel configs should have at least CONFIG_MEMCG enabled, even if
disabled at runtime. 64byte "struct memmap" is what we usually have on
64BIT.
While at it, rename "_folio_nr_pages" to "_nr_pages".
Hopefully memdescs / dynamically allocating "strut folio" in the future
will further clean this up, e.g., making _nr_pages available in all
configs and maybe even in small folios. Doing that should be fairly easy
on top of this change.
[david@redhat.com: make "make htmldoc" happy]
Link: https://lkml.kernel.org/r/a97f8a91-ec41-4796-81e3-7c9e0e491ba4@redhat.com
Link: https://lkml.kernel.org/r/20250303163014.1128035-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Finish refactoring the page table logic by threading the PMC state
throughout the operation, allowing us to control the operation as we go.
Additionally, update the old_addr, new_addr fields in move_page_tables()
as we progress through the process making use of the fact we have this
state object now to track this.
With these changes made, not only is the code far more readable, but we
can finally transmit state throughout the entire operation, which lays the
groundwork for sensibly making changes in future to how the mremap()
operation is performed.
Additionally take the opportunity to refactor the means of determining the
progress of the operation, abstracting this to pmc_progress() and
simplifying the logic to make it clearer what's going on.
Link: https://lkml.kernel.org/r/230dd7a2b7b01a6eef442678f284d575e800356e.1741639347.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Harry Yoo <harry.yoo@oracle.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
A lot of state is threaded throughout the page table moving logic within
the mremap code, including boolean values which control behaviour
specifically in regard to whether rmap locks need be held over the
operation and whether the VMA belongs to a temporary stack being moved by
move_arg_pages() (and consequently, relocate_vma_down()).
As we already transmit state throughout this operation, it is neater and
more readable to maintain a small state object. We do so in the form of
pagetable_move_control.
In addition, this allows us to update parameters within the state as we
manipulate things, for instance with regard to the page table realignment
logic.
In future I want to add additional functionality to the page table logic,
so this is an additional motivation for making it easier to do so.
This patch changes move_page_tables() to accept a pointer to a
pagetable_move_control struct, and performs changes at this level only.
Further page table logic will be updated in a subsequent patch.
We additionally also take the opportunity to add significant comments
describing the address realignment logic to make it abundantly clear what
is going on in this code.
Link: https://lkml.kernel.org/r/e20180add9c8746184aa3f23a61fff69a06cdaa9.1741639347.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Harry Yoo <harry.yoo@oracle.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We invoke ksm_madvise() with an intentionally dummy flags field, so no
need to pass around.
Additionally, the code tries to be 'clever' with account_start,
account_end, using these to both check that vma->vm_start != 0 and that we
ought to account the newly split portion of VMA post-move, either before
or after it.
We need to do this because we intentionally removed VM_ACCOUNT on the VMA
prior to unmapping, so we don't erroneously unaccount memory (we have
already calculated the correct amount to account and accounted it, any
subsequent subtraction will be incorrect).
This patch significantly expands the comment (from 2002!) about
'concealing' the flag to make it abundantly clear what's going on, as well
as adding and expanding a number of other comments also.
We can remove account_start, account_end by instead tracking when we
account (i.e. vma->vm_flags has the VM_ACCOUNT flag set, and this is not
an MREMAP_DONTUNMAP operation), and figuring out when to reinstate the
VM_ACCOUNT flag on prior/subsequent VMAs separately.
We additionally break the function into logical pieces and attack the very
confusing error handling logic (where, for instance, new_addr is set to
err).
After this change the code is considerably more readable and easy to
manipulate.
Link: https://lkml.kernel.org/r/e7eaa307e444ba2b04d94fd985c907c8e896f893.1741639347.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Harry Yoo <harry.yoo@oracle.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Update move_vma() to use the threaded VRM object, de-duplicate code and
separate into smaller functions to aid readability and debug-ability.
This in turn allows further simplification of expand_vma() as we can
simply thread VRM through the function.
We also take the opportunity to abstract the account charging page count
into the VRM in order that we can correctly thread this through the
operation.
We additionally do the same for tracking mm statistics - exec_vm,
stack_vm, data_vm, and locked_vm.
As part of this change, we slightly modify when locked pages statistics
are counted for in mm_struct statistics. However this should cause no
issues, as there is no chance of underflow, nor will any rlimit failures
occur as a result.
This is an intermediate step before a further refactoring of move_vma() in
order to aid review.
Link: https://lkml.kernel.org/r/ab611d6efae11bddab2db2b8bb3925b1d1954c7d.1741639347.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Harry Yoo <harry.yoo@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
A number of mremap() calls both pass around and modify a large number of
parameters, making the code less readable and often repeatedly having to
determine things such as VMA, size delta, and more.
Avoid this by using the common pattern of passing a state object through
the operation, updating it as we go. We introduce the vma_remap_struct or
'VRM' for this purpose.
This also gives us the ability to accumulate further state through the
operation that would otherwise require awkward and error-prone pointer
passing.
We can also now trivially define helper functions that operate on a VRM
object.
This pattern has proven itself to be very powerful when implemented for
VMA merge, VMA unmapping and memory mapping operations, so it is
battle-tested and functional.
We both introduce the data structure and use it, introducing helper
functions as needed to make things readable, we move some state such as
mmap lock and mlock() status to the VRM, we introduce a means of
classifying the type of mremap() operation and de-duplicate the
get_unmapped_area() lookup.
We also neatly thread userfaultfd state throughout the operation.
Note that there is further refactoring to be done, chiefly adjust
move_vma() to accept a VRM parameter. We defer this as there is
pre-requisite work required to be able to do so which we will do in a
subsequent patch.
Link: https://lkml.kernel.org/r/27951739dc83b2b1523b81fa9c009ba348388d40.1741639347.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Harry Yoo <harry.yoo@oracle.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|