// SPDX-License-Identifier: GPL-2.0-or-later /* * Asynchronous Compression operations * * Copyright (c) 2016, Intel Corporation * Authors: Weigang Li * Giovanni Cabiddu */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "compress.h" struct crypto_scomp; enum { ACOMP_WALK_SLEEP = 1 << 0, ACOMP_WALK_SRC_LINEAR = 1 << 1, ACOMP_WALK_DST_LINEAR = 1 << 2, }; static const struct crypto_type crypto_acomp_type; static void acomp_reqchain_done(void *data, int err); static inline struct acomp_alg *__crypto_acomp_alg(struct crypto_alg *alg) { return container_of(alg, struct acomp_alg, calg.base); } static inline struct acomp_alg *crypto_acomp_alg(struct crypto_acomp *tfm) { return __crypto_acomp_alg(crypto_acomp_tfm(tfm)->__crt_alg); } static int __maybe_unused crypto_acomp_report( struct sk_buff *skb, struct crypto_alg *alg) { struct crypto_report_acomp racomp; memset(&racomp, 0, sizeof(racomp)); strscpy(racomp.type, "acomp", sizeof(racomp.type)); return nla_put(skb, CRYPTOCFGA_REPORT_ACOMP, sizeof(racomp), &racomp); } static void crypto_acomp_show(struct seq_file *m, struct crypto_alg *alg) __maybe_unused; static void crypto_acomp_show(struct seq_file *m, struct crypto_alg *alg) { seq_puts(m, "type : acomp\n"); } static void crypto_acomp_exit_tfm(struct crypto_tfm *tfm) { struct crypto_acomp *acomp = __crypto_acomp_tfm(tfm); struct acomp_alg *alg = crypto_acomp_alg(acomp); if (alg->exit) alg->exit(acomp); if (acomp_is_async(acomp)) crypto_free_acomp(crypto_acomp_fb(acomp)); } static int crypto_acomp_init_tfm(struct crypto_tfm *tfm) { struct crypto_acomp *acomp = __crypto_acomp_tfm(tfm); struct acomp_alg *alg = crypto_acomp_alg(acomp); struct crypto_acomp *fb = NULL; int err; if (tfm->__crt_alg->cra_type != &crypto_acomp_type) return crypto_init_scomp_ops_async(tfm); if (acomp_is_async(acomp)) { fb = crypto_alloc_acomp(crypto_acomp_alg_name(acomp), 0, CRYPTO_ALG_ASYNC); if (IS_ERR(fb)) return PTR_ERR(fb); err = -EINVAL; if (crypto_acomp_reqsize(fb) > MAX_SYNC_COMP_REQSIZE) goto out_free_fb; tfm->fb = crypto_acomp_tfm(fb); } acomp->compress = alg->compress; acomp->decompress = alg->decompress; acomp->reqsize = alg->base.cra_reqsize; acomp->base.exit = crypto_acomp_exit_tfm; if (!alg->init) return 0; err = alg->init(acomp); if (err) goto out_free_fb; return 0; out_free_fb: crypto_free_acomp(fb); return err; } static unsigned int crypto_acomp_extsize(struct crypto_alg *alg) { int extsize = crypto_alg_extsize(alg); if (alg->cra_type != &crypto_acomp_type) extsize += sizeof(struct crypto_scomp *); return extsize; } static const struct crypto_type crypto_acomp_type = { .extsize = crypto_acomp_extsize, .init_tfm = crypto_acomp_init_tfm, #ifdef CONFIG_PROC_FS .show = crypto_acomp_show, #endif #if IS_ENABLED(CONFIG_CRYPTO_USER) .report = crypto_acomp_report, #endif .maskclear = ~CRYPTO_ALG_TYPE_MASK, .maskset = CRYPTO_ALG_TYPE_ACOMPRESS_MASK, .type = CRYPTO_ALG_TYPE_ACOMPRESS, .tfmsize = offsetof(struct crypto_acomp, base), .algsize = offsetof(struct acomp_alg, base), }; struct crypto_acomp *crypto_alloc_acomp(const char *alg_name, u32 type, u32 mask) { return crypto_alloc_tfm(alg_name, &crypto_acomp_type, type, mask); } EXPORT_SYMBOL_GPL(crypto_alloc_acomp); struct crypto_acomp *crypto_alloc_acomp_node(const char *alg_name, u32 type, u32 mask, int node) { return crypto_alloc_tfm_node(alg_name, &crypto_acomp_type, type, mask, node); } EXPORT_SYMBOL_GPL(crypto_alloc_acomp_node); static void acomp_save_req(struct acomp_req *req, crypto_completion_t cplt) { struct acomp_req_chain *state = &req->chain; state->compl = req->base.complete; state->data = req->base.data; req->base.complete = cplt; req->base.data = state; } static void acomp_restore_req(struct acomp_req *req) { struct acomp_req_chain *state = req->base.data; req->base.complete = state->compl; req->base.data = state->data; } static void acomp_reqchain_virt(struct acomp_req *req) { struct acomp_req_chain *state = &req->chain; unsigned int slen = req->slen; unsigned int dlen = req->dlen; if (state->flags & CRYPTO_ACOMP_REQ_SRC_VIRT) acomp_request_set_src_dma(req, state->src, slen); if (state->flags & CRYPTO_ACOMP_REQ_DST_VIRT) acomp_request_set_dst_dma(req, state->dst, dlen); } static void acomp_virt_to_sg(struct acomp_req *req) { struct acomp_req_chain *state = &req->chain; state->flags = req->base.flags & (CRYPTO_ACOMP_REQ_SRC_VIRT | CRYPTO_ACOMP_REQ_DST_VIRT); if (acomp_request_src_isvirt(req)) { unsigned int slen = req->slen; const u8 *svirt = req->svirt; state->src = svirt; sg_init_one(&state->ssg, svirt, slen); acomp_request_set_src_sg(req, &state->ssg, slen); } if (acomp_request_dst_isvirt(req)) { unsigned int dlen = req->dlen; u8 *dvirt = req->dvirt; state->dst = dvirt; sg_init_one(&state->dsg, dvirt, dlen); acomp_request_set_dst_sg(req, &state->dsg, dlen); } } static int acomp_do_nondma(struct acomp_req *req, bool comp) { ACOMP_FBREQ_ON_STACK(fbreq, req); int err; if (comp) err = crypto_acomp_compress(fbreq); else err = crypto_acomp_decompress(fbreq); req->dlen = fbreq->dlen; return err; } static int acomp_do_one_req(struct acomp_req *req, bool comp) { if (acomp_request_isnondma(req)) return acomp_do_nondma(req, comp); acomp_virt_to_sg(req); return comp ? crypto_acomp_reqtfm(req)->compress(req) : crypto_acomp_reqtfm(req)->decompress(req); } static int acomp_reqchain_finish(struct acomp_req *req, int err) { acomp_reqchain_virt(req); acomp_restore_req(req); return err; } static void acomp_reqchain_done(void *data, int err) { struct acomp_req *req = data; crypto_completion_t compl; compl = req->chain.compl; data = req->chain.data; if (err == -EINPROGRESS) goto notify; err = acomp_reqchain_finish(req, err); notify: compl(data, err); } static int acomp_do_req_chain(struct acomp_req *req, bool comp) { int err; acomp_save_req(req, acomp_reqchain_done); err = acomp_do_one_req(req, comp); if (err == -EBUSY || err == -EINPROGRESS) return err; return acomp_reqchain_finish(req, err); } int crypto_acomp_compress(struct acomp_req *req) { struct crypto_acomp *tfm = crypto_acomp_reqtfm(req); if (acomp_req_on_stack(req) && acomp_is_async(tfm)) return -EAGAIN; if (crypto_acomp_req_virt(tfm) || acomp_request_issg(req)) return crypto_acomp_reqtfm(req)->compress(req); return acomp_do_req_chain(req, true); } EXPORT_SYMBOL_GPL(crypto_acomp_compress); int crypto_acomp_decompress(struct acomp_req *req) { struct crypto_acomp *tfm = crypto_acomp_reqtfm(req); if (acomp_req_on_stack(req) && acomp_is_async(tfm)) return -EAGAIN; if (crypto_acomp_req_virt(tfm) || acomp_request_issg(req)) return crypto_acomp_reqtfm(req)->decompress(req); return acomp_do_req_chain(req, false); } EXPORT_SYMBOL_GPL(crypto_acomp_decompress); void comp_prepare_alg(struct comp_alg_common *alg) { struct crypto_alg *base = &alg->base; base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK; } int crypto_register_acomp(struct acomp_alg *alg) { struct crypto_alg *base = &alg->calg.base; comp_prepare_alg(&alg->calg); base->cra_type = &crypto_acomp_type; base->cra_flags |= CRYPTO_ALG_TYPE_ACOMPRESS; return crypto_register_alg(base); } EXPORT_SYMBOL_GPL(crypto_register_acomp); void crypto_unregister_acomp(struct acomp_alg *alg) { crypto_unregister_alg(&alg->base); } EXPORT_SYMBOL_GPL(crypto_unregister_acomp); int crypto_register_acomps(struct acomp_alg *algs, int count) { int i, ret; for (i = 0; i < count; i++) { ret = crypto_register_acomp(&algs[i]); if (ret) goto err; } return 0; err: for (--i; i >= 0; --i) crypto_unregister_acomp(&algs[i]); return ret; } EXPORT_SYMBOL_GPL(crypto_register_acomps); void crypto_unregister_acomps(struct acomp_alg *algs, int count) { int i; for (i = count - 1; i >= 0; --i) crypto_unregister_acomp(&algs[i]); } EXPORT_SYMBOL_GPL(crypto_unregister_acomps); static void acomp_stream_workfn(struct work_struct *work) { struct crypto_acomp_streams *s = container_of(work, struct crypto_acomp_streams, stream_work); struct crypto_acomp_stream __percpu *streams = s->streams; int cpu; for_each_cpu(cpu, &s->stream_want) { struct crypto_acomp_stream *ps; void *ctx; ps = per_cpu_ptr(streams, cpu); if (ps->ctx) continue; ctx = s->alloc_ctx(); if (IS_ERR(ctx)) break; spin_lock_bh(&ps->lock); ps->ctx = ctx; spin_unlock_bh(&ps->lock); cpumask_clear_cpu(cpu, &s->stream_want); } } void crypto_acomp_free_streams(struct crypto_acomp_streams *s) { struct crypto_acomp_stream __percpu *streams = s->streams; void (*free_ctx)(void *); int i; s->streams = NULL; if (!streams) return; cancel_work_sync(&s->stream_work); free_ctx = s->free_ctx; for_each_possible_cpu(i) { struct crypto_acomp_stream *ps = per_cpu_ptr(streams, i); if (!ps->ctx) continue; free_ctx(ps->ctx); } free_percpu(streams); } EXPORT_SYMBOL_GPL(crypto_acomp_free_streams); int crypto_acomp_alloc_streams(struct crypto_acomp_streams *s) { struct crypto_acomp_stream __percpu *streams; struct crypto_acomp_stream *ps; unsigned int i; void *ctx; if (s->streams) return 0; streams = alloc_percpu(struct crypto_acomp_stream); if (!streams) return -ENOMEM; ctx = s->alloc_ctx(); if (IS_ERR(ctx)) { free_percpu(streams); return PTR_ERR(ctx); } i = cpumask_first(cpu_possible_mask); ps = per_cpu_ptr(streams, i); ps->ctx = ctx; for_each_possible_cpu(i) { ps = per_cpu_ptr(streams, i); spin_lock_init(&ps->lock); } s->streams = streams; INIT_WORK(&s->stream_work, acomp_stream_workfn); return 0; } EXPORT_SYMBOL_GPL(crypto_acomp_alloc_streams); struct crypto_acomp_stream *crypto_acomp_lock_stream_bh( struct crypto_acomp_streams *s) __acquires(stream) { struct crypto_acomp_stream __percpu *streams = s->streams; int cpu = raw_smp_processor_id(); struct crypto_acomp_stream *ps; ps = per_cpu_ptr(streams, cpu); spin_lock_bh(&ps->lock); if (likely(ps->ctx)) return ps; spin_unlock(&ps->lock); cpumask_set_cpu(cpu, &s->stream_want); schedule_work(&s->stream_work); ps = per_cpu_ptr(streams, cpumask_first(cpu_possible_mask)); spin_lock(&ps->lock); return ps; } EXPORT_SYMBOL_GPL(crypto_acomp_lock_stream_bh); void acomp_walk_done_src(struct acomp_walk *walk, int used) { walk->slen -= used; if ((walk->flags & ACOMP_WALK_SRC_LINEAR)) scatterwalk_advance(&walk->in, used); else scatterwalk_done_src(&walk->in, used); if ((walk->flags & ACOMP_WALK_SLEEP)) cond_resched(); } EXPORT_SYMBOL_GPL(acomp_walk_done_src); void acomp_walk_done_dst(struct acomp_walk *walk, int used) { walk->dlen -= used; if ((walk->flags & ACOMP_WALK_DST_LINEAR)) scatterwalk_advance(&walk->out, used); else scatterwalk_done_dst(&walk->out, used); if ((walk->flags & ACOMP_WALK_SLEEP)) cond_resched(); } EXPORT_SYMBOL_GPL(acomp_walk_done_dst); int acomp_walk_next_src(struct acomp_walk *walk) { unsigned int slen = walk->slen; unsigned int max = UINT_MAX; if (!preempt_model_preemptible() && (walk->flags & ACOMP_WALK_SLEEP)) max = PAGE_SIZE; if ((walk->flags & ACOMP_WALK_SRC_LINEAR)) { walk->in.__addr = (void *)(((u8 *)walk->in.sg) + walk->in.offset); return min(slen, max); } return slen ? scatterwalk_next(&walk->in, slen) : 0; } EXPORT_SYMBOL_GPL(acomp_walk_next_src); int acomp_walk_next_dst(struct acomp_walk *walk) { unsigned int dlen = walk->dlen; unsigned int max = UINT_MAX; if (!preempt_model_preemptible() && (walk->flags & ACOMP_WALK_SLEEP)) max = PAGE_SIZE; if ((walk->flags & ACOMP_WALK_DST_LINEAR)) { walk->out.__addr = (void *)(((u8 *)walk->out.sg) + walk->out.offset); return min(dlen, max); } return dlen ? scatterwalk_next(&walk->out, dlen) : 0; } EXPORT_SYMBOL_GPL(acomp_walk_next_dst); int acomp_walk_virt(struct acomp_walk *__restrict walk, struct acomp_req *__restrict req, bool atomic) { struct scatterlist *src = req->src; struct scatterlist *dst = req->dst; walk->slen = req->slen; walk->dlen = req->dlen; if (!walk->slen || !walk->dlen) return -EINVAL; walk->flags = 0; if ((req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) && !atomic) walk->flags |= ACOMP_WALK_SLEEP; if ((req->base.flags & CRYPTO_ACOMP_REQ_SRC_VIRT)) walk->flags |= ACOMP_WALK_SRC_LINEAR; if ((req->base.flags & CRYPTO_ACOMP_REQ_DST_VIRT)) walk->flags |= ACOMP_WALK_DST_LINEAR; if ((walk->flags & ACOMP_WALK_SRC_LINEAR)) { walk->in.sg = (void *)req->svirt; walk->in.offset = 0; } else scatterwalk_start(&walk->in, src); if ((walk->flags & ACOMP_WALK_DST_LINEAR)) { walk->out.sg = (void *)req->dvirt; walk->out.offset = 0; } else scatterwalk_start(&walk->out, dst); return 0; } EXPORT_SYMBOL_GPL(acomp_walk_virt); struct acomp_req *acomp_request_clone(struct acomp_req *req, size_t total, gfp_t gfp) { struct acomp_req *nreq; nreq = container_of(crypto_request_clone(&req->base, total, gfp), struct acomp_req, base); if (nreq == req) return req; if (req->src == &req->chain.ssg) nreq->src = &nreq->chain.ssg; if (req->dst == &req->chain.dsg) nreq->dst = &nreq->chain.dsg; return nreq; } EXPORT_SYMBOL_GPL(acomp_request_clone); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Asynchronous compression type");