// SPDX-License-Identifier: GPL-2.0-or-later /* * Symmetric key cipher operations. * * Generic encrypt/decrypt wrapper for ciphers, handles operations across * multiple page boundaries by using temporary blocks. In user context, * the kernel is given a chance to schedule us once per page. * * Copyright (c) 2015 Herbert Xu */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "skcipher.h" #define CRYPTO_ALG_TYPE_SKCIPHER_MASK 0x0000000e static const struct crypto_type crypto_skcipher_type; static inline struct skcipher_alg *__crypto_skcipher_alg( struct crypto_alg *alg) { return container_of(alg, struct skcipher_alg, base); } int skcipher_walk_virt(struct skcipher_walk *__restrict walk, struct skcipher_request *__restrict req, bool atomic) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct skcipher_alg *alg; might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP); alg = crypto_skcipher_alg(tfm); walk->total = req->cryptlen; walk->nbytes = 0; walk->iv = req->iv; walk->oiv = req->iv; if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)) atomic = true; if (unlikely(!walk->total)) return 0; scatterwalk_start(&walk->in, req->src); scatterwalk_start(&walk->out, req->dst); walk->blocksize = crypto_skcipher_blocksize(tfm); walk->ivsize = crypto_skcipher_ivsize(tfm); walk->alignmask = crypto_skcipher_alignmask(tfm); if (alg->co.base.cra_type != &crypto_skcipher_type) walk->stride = alg->co.chunksize; else walk->stride = alg->walksize; return skcipher_walk_first(walk, atomic); } EXPORT_SYMBOL_GPL(skcipher_walk_virt); static int skcipher_walk_aead_common(struct skcipher_walk *__restrict walk, struct aead_request *__restrict req, bool atomic) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); walk->nbytes = 0; walk->iv = req->iv; walk->oiv = req->iv; if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)) atomic = true; if (unlikely(!walk->total)) return 0; scatterwalk_start_at_pos(&walk->in, req->src, req->assoclen); scatterwalk_start_at_pos(&walk->out, req->dst, req->assoclen); walk->blocksize = crypto_aead_blocksize(tfm); walk->stride = crypto_aead_chunksize(tfm); walk->ivsize = crypto_aead_ivsize(tfm); walk->alignmask = crypto_aead_alignmask(tfm); return skcipher_walk_first(walk, atomic); } int skcipher_walk_aead_encrypt(struct skcipher_walk *__restrict walk, struct aead_request *__restrict req, bool atomic) { walk->total = req->cryptlen; return skcipher_walk_aead_common(walk, req, atomic); } EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt); int skcipher_walk_aead_decrypt(struct skcipher_walk *__restrict walk, struct aead_request *__restrict req, bool atomic) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); walk->total = req->cryptlen - crypto_aead_authsize(tfm); return skcipher_walk_aead_common(walk, req, atomic); } EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt); static void skcipher_set_needkey(struct crypto_skcipher *tfm) { if (crypto_skcipher_max_keysize(tfm) != 0) crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY); } static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { unsigned long alignmask = crypto_skcipher_alignmask(tfm); struct skcipher_alg *cipher = crypto_skcipher_alg(tfm); u8 *buffer, *alignbuffer; unsigned long absize; int ret; absize = keylen + alignmask; buffer = kmalloc(absize, GFP_ATOMIC); if (!buffer) return -ENOMEM; alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1); memcpy(alignbuffer, key, keylen); ret = cipher->setkey(tfm, alignbuffer, keylen); kfree_sensitive(buffer); return ret; } int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct skcipher_alg *cipher = crypto_skcipher_alg(tfm); unsigned long alignmask = crypto_skcipher_alignmask(tfm); int err; if (cipher->co.base.cra_type != &crypto_skcipher_type) { struct crypto_lskcipher **ctx = crypto_skcipher_ctx(tfm); crypto_lskcipher_clear_flags(*ctx, CRYPTO_TFM_REQ_MASK); crypto_lskcipher_set_flags(*ctx, crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); err = crypto_lskcipher_setkey(*ctx, key, keylen); goto out; } if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) return -EINVAL; if ((unsigned long)key & alignmask) err = skcipher_setkey_unaligned(tfm, key, keylen); else err = cipher->setkey(tfm, key, keylen); out: if (unlikely(err)) { skcipher_set_needkey(tfm); return err; } crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY); return 0; } EXPORT_SYMBOL_GPL(crypto_skcipher_setkey); int crypto_skcipher_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct skcipher_alg *alg = crypto_skcipher_alg(tfm); if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; if (alg->co.base.cra_type != &crypto_skcipher_type) return crypto_lskcipher_encrypt_sg(req); return alg->encrypt(req); } EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt); int crypto_skcipher_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct skcipher_alg *alg = crypto_skcipher_alg(tfm); if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; if (alg->co.base.cra_type != &crypto_skcipher_type) return crypto_lskcipher_decrypt_sg(req); return alg->decrypt(req); } EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt); static int crypto_lskcipher_export(struct skcipher_request *req, void *out) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); u8 *ivs = skcipher_request_ctx(req); ivs = PTR_ALIGN(ivs, crypto_skcipher_alignmask(tfm) + 1); memcpy(out, ivs + crypto_skcipher_ivsize(tfm), crypto_skcipher_statesize(tfm)); return 0; } static int crypto_lskcipher_import(struct skcipher_request *req, const void *in) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); u8 *ivs = skcipher_request_ctx(req); ivs = PTR_ALIGN(ivs, crypto_skcipher_alignmask(tfm) + 1); memcpy(ivs + crypto_skcipher_ivsize(tfm), in, crypto_skcipher_statesize(tfm)); return 0; } static int skcipher_noexport(struct skcipher_request *req, void *out) { return 0; } static int skcipher_noimport(struct skcipher_request *req, const void *in) { return 0; } int crypto_skcipher_export(struct skcipher_request *req, void *out) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct skcipher_alg *alg = crypto_skcipher_alg(tfm); if (alg->co.base.cra_type != &crypto_skcipher_type) return crypto_lskcipher_export(req, out); return alg->export(req, out); } EXPORT_SYMBOL_GPL(crypto_skcipher_export); int crypto_skcipher_import(struct skcipher_request *req, const void *in) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct skcipher_alg *alg = crypto_skcipher_alg(tfm); if (alg->co.base.cra_type != &crypto_skcipher_type) return crypto_lskcipher_import(req, in); return alg->import(req, in); } EXPORT_SYMBOL_GPL(crypto_skcipher_import); static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm) { struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); alg->exit(skcipher); } static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm) { struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); skcipher_set_needkey(skcipher); if (tfm->__crt_alg->cra_type != &crypto_skcipher_type) { unsigned am = crypto_skcipher_alignmask(skcipher); unsigned reqsize; reqsize = am & ~(crypto_tfm_ctx_alignment() - 1); reqsize += crypto_skcipher_ivsize(skcipher); reqsize += crypto_skcipher_statesize(skcipher); crypto_skcipher_set_reqsize(skcipher, reqsize); return crypto_init_lskcipher_ops_sg(tfm); } if (alg->exit) skcipher->base.exit = crypto_skcipher_exit_tfm; if (alg->init) return alg->init(skcipher); return 0; } static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg) { if (alg->cra_type != &crypto_skcipher_type) return sizeof(struct crypto_lskcipher *); return crypto_alg_extsize(alg); } static void crypto_skcipher_free_instance(struct crypto_instance *inst) { struct skcipher_instance *skcipher = container_of(inst, struct skcipher_instance, s.base); skcipher->free(skcipher); } static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg) __maybe_unused; static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg) { struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg); seq_printf(m, "type : skcipher\n"); seq_printf(m, "async : %s\n", str_yes_no(alg->cra_flags & CRYPTO_ALG_ASYNC)); seq_printf(m, "blocksize : %u\n", alg->cra_blocksize); seq_printf(m, "min keysize : %u\n", skcipher->min_keysize); seq_printf(m, "max keysize : %u\n", skcipher->max_keysize); seq_printf(m, "ivsize : %u\n", skcipher->ivsize); seq_printf(m, "chunksize : %u\n", skcipher->chunksize); seq_printf(m, "walksize : %u\n", skcipher->walksize); seq_printf(m, "statesize : %u\n", skcipher->statesize); } static int __maybe_unused crypto_skcipher_report( struct sk_buff *skb, struct crypto_alg *alg) { struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg); struct crypto_report_blkcipher rblkcipher; memset(&rblkcipher, 0, sizeof(rblkcipher)); strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type)); strscpy(rblkcipher.geniv, "", sizeof(rblkcipher.geniv)); rblkcipher.blocksize = alg->cra_blocksize; rblkcipher.min_keysize = skcipher->min_keysize; rblkcipher.max_keysize = skcipher->max_keysize; rblkcipher.ivsize = skcipher->ivsize; return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER, sizeof(rblkcipher), &rblkcipher); } static const struct crypto_type crypto_skcipher_type = { .extsize = crypto_skcipher_extsize, .init_tfm = crypto_skcipher_init_tfm, .free = crypto_skcipher_free_instance, #ifdef CONFIG_PROC_FS .show = crypto_skcipher_show, #endif #if IS_ENABLED(CONFIG_CRYPTO_USER) .report = crypto_skcipher_report, #endif .maskclear = ~CRYPTO_ALG_TYPE_MASK, .maskset = CRYPTO_ALG_TYPE_SKCIPHER_MASK, .type = CRYPTO_ALG_TYPE_SKCIPHER, .tfmsize = offsetof(struct crypto_skcipher, base), .algsize = offsetof(struct skcipher_alg, base), }; int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask) { spawn->base.frontend = &crypto_skcipher_type; return crypto_grab_spawn(&spawn->base, inst, name, type, mask); } EXPORT_SYMBOL_GPL(crypto_grab_skcipher); struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, u32 type, u32 mask) { return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask); } EXPORT_SYMBOL_GPL(crypto_alloc_skcipher); struct crypto_sync_skcipher *crypto_alloc_sync_skcipher( const char *alg_name, u32 type, u32 mask) { struct crypto_skcipher *tfm; /* Only sync algorithms allowed. */ mask |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_SKCIPHER_REQSIZE_LARGE; type &= ~(CRYPTO_ALG_ASYNC | CRYPTO_ALG_SKCIPHER_REQSIZE_LARGE); tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask); /* * Make sure we do not allocate something that might get used with * an on-stack request: check the request size. */ if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) > MAX_SYNC_SKCIPHER_REQSIZE)) { crypto_free_skcipher(tfm); return ERR_PTR(-EINVAL); } return (struct crypto_sync_skcipher *)tfm; } EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher); int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask) { return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask); } EXPORT_SYMBOL_GPL(crypto_has_skcipher); int skcipher_prepare_alg_common(struct skcipher_alg_common *alg) { struct crypto_alg *base = &alg->base; if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 || alg->statesize > PAGE_SIZE / 2 || (alg->ivsize + alg->statesize) > PAGE_SIZE / 2) return -EINVAL; if (!alg->chunksize) alg->chunksize = base->cra_blocksize; base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK; return 0; } static int skcipher_prepare_alg(struct skcipher_alg *alg) { struct crypto_alg *base = &alg->base; int err; err = skcipher_prepare_alg_common(&alg->co); if (err) return err; if (alg->walksize > PAGE_SIZE / 8) return -EINVAL; if (!alg->walksize) alg->walksize = alg->chunksize; if (!alg->statesize) { alg->import = skcipher_noimport; alg->export = skcipher_noexport; } else if (!(alg->import && alg->export)) return -EINVAL; base->cra_type = &crypto_skcipher_type; base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER; return 0; } int crypto_register_skcipher(struct skcipher_alg *alg) { struct crypto_alg *base = &alg->base; int err; err = skcipher_prepare_alg(alg); if (err) return err; return crypto_register_alg(base); } EXPORT_SYMBOL_GPL(crypto_register_skcipher); void crypto_unregister_skcipher(struct skcipher_alg *alg) { crypto_unregister_alg(&alg->base); } EXPORT_SYMBOL_GPL(crypto_unregister_skcipher); int crypto_register_skciphers(struct skcipher_alg *algs, int count) { int i, ret; for (i = 0; i < count; i++) { ret = crypto_register_skcipher(&algs[i]); if (ret) goto err; } return 0; err: for (--i; i >= 0; --i) crypto_unregister_skcipher(&algs[i]); return ret; } EXPORT_SYMBOL_GPL(crypto_register_skciphers); void crypto_unregister_skciphers(struct skcipher_alg *algs, int count) { int i; for (i = count - 1; i >= 0; --i) crypto_unregister_skcipher(&algs[i]); } EXPORT_SYMBOL_GPL(crypto_unregister_skciphers); int skcipher_register_instance(struct crypto_template *tmpl, struct skcipher_instance *inst) { int err; if (WARN_ON(!inst->free)) return -EINVAL; err = skcipher_prepare_alg(&inst->alg); if (err) return err; return crypto_register_instance(tmpl, skcipher_crypto_instance(inst)); } EXPORT_SYMBOL_GPL(skcipher_register_instance); static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct crypto_cipher *cipher = skcipher_cipher_simple(tfm); crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK); crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); return crypto_cipher_setkey(cipher, key, keylen); } static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm) { struct skcipher_instance *inst = skcipher_alg_instance(tfm); struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst); struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); struct crypto_cipher *cipher; cipher = crypto_spawn_cipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->cipher = cipher; return 0; } static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm) { struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); crypto_free_cipher(ctx->cipher); } static void skcipher_free_instance_simple(struct skcipher_instance *inst) { crypto_drop_cipher(skcipher_instance_ctx(inst)); kfree(inst); } /** * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode * * Allocate an skcipher_instance for a simple block cipher mode of operation, * e.g. cbc or ecb. The instance context will have just a single crypto_spawn, * that for the underlying cipher. The {min,max}_keysize, ivsize, blocksize, * alignmask, and priority are set from the underlying cipher but can be * overridden if needed. The tfm context defaults to skcipher_ctx_simple, and * default ->setkey(), ->init(), and ->exit() methods are installed. * * @tmpl: the template being instantiated * @tb: the template parameters * * Return: a pointer to the new instance, or an ERR_PTR(). The caller still * needs to register the instance. */ struct skcipher_instance *skcipher_alloc_instance_simple( struct crypto_template *tmpl, struct rtattr **tb) { u32 mask; struct skcipher_instance *inst; struct crypto_cipher_spawn *spawn; struct crypto_alg *cipher_alg; int err; err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask); if (err) return ERR_PTR(err); inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); if (!inst) return ERR_PTR(-ENOMEM); spawn = skcipher_instance_ctx(inst); err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst), crypto_attr_alg_name(tb[1]), 0, mask); if (err) goto err_free_inst; cipher_alg = crypto_spawn_cipher_alg(spawn); err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name, cipher_alg); if (err) goto err_free_inst; inst->free = skcipher_free_instance_simple; /* Default algorithm properties, can be overridden */ inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize; inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask; inst->alg.base.cra_priority = cipher_alg->cra_priority; inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize; inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize; inst->alg.ivsize = cipher_alg->cra_blocksize; /* Use skcipher_ctx_simple by default, can be overridden */ inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple); inst->alg.setkey = skcipher_setkey_simple; inst->alg.init = skcipher_init_tfm_simple; inst->alg.exit = skcipher_exit_tfm_simple; return inst; err_free_inst: skcipher_free_instance_simple(inst); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Symmetric key cipher type"); MODULE_IMPORT_NS("CRYPTO_INTERNAL");