// SPDX-License-Identifier: GPL-2.0-or-later #include "cache.h" #include "backing_dev.h" #include "cache_dev.h" #include "dm_pcache.h" static int cache_data_head_init(struct pcache_cache *cache) { struct pcache_cache_segment *next_seg; struct pcache_cache_data_head *data_head; data_head = get_data_head(cache); next_seg = get_cache_segment(cache); if (!next_seg) return -EBUSY; cache_seg_get(next_seg); data_head->head_pos.cache_seg = next_seg; data_head->head_pos.seg_off = 0; return 0; } /** * cache_data_alloc - Allocate data for a cache key. * @cache: Pointer to the cache structure. * @key: Pointer to the cache key to allocate data for. * * This function tries to allocate space from the cache segment specified by the * data head. If the remaining space in the segment is insufficient to allocate * the requested length for the cache key, it will allocate whatever is available * and adjust the key's length accordingly. This function does not allocate * space that crosses segment boundaries. */ static int cache_data_alloc(struct pcache_cache *cache, struct pcache_cache_key *key) { struct pcache_cache_data_head *data_head; struct pcache_cache_pos *head_pos; struct pcache_cache_segment *cache_seg; u32 seg_remain; u32 allocated = 0, to_alloc; int ret = 0; preempt_disable(); data_head = get_data_head(cache); again: to_alloc = key->len - allocated; if (!data_head->head_pos.cache_seg) { seg_remain = 0; } else { cache_pos_copy(&key->cache_pos, &data_head->head_pos); key->seg_gen = key->cache_pos.cache_seg->gen; head_pos = &data_head->head_pos; cache_seg = head_pos->cache_seg; seg_remain = cache_seg_remain(head_pos); } if (seg_remain > to_alloc) { /* If remaining space in segment is sufficient for the cache key, allocate it. */ cache_pos_advance(head_pos, to_alloc); allocated += to_alloc; cache_seg_get(cache_seg); } else if (seg_remain) { /* If remaining space is not enough, allocate the remaining space and adjust the cache key length. */ cache_pos_advance(head_pos, seg_remain); key->len = seg_remain; /* Get for key: obtain a reference to the cache segment for the key. */ cache_seg_get(cache_seg); /* Put for head_pos->cache_seg: release the reference for the current head's segment. */ cache_seg_put(head_pos->cache_seg); head_pos->cache_seg = NULL; } else { /* Initialize a new data head if no segment is available. */ ret = cache_data_head_init(cache); if (ret) goto out; goto again; } out: preempt_enable(); return ret; } static int cache_copy_from_req_bio(struct pcache_cache *cache, struct pcache_cache_key *key, struct pcache_request *pcache_req, u32 bio_off) { struct pcache_cache_pos *pos = &key->cache_pos; struct pcache_segment *segment; segment = &pos->cache_seg->segment; return segment_copy_from_bio(segment, pos->seg_off, key->len, pcache_req->bio, bio_off); } static int cache_copy_to_req_bio(struct pcache_cache *cache, struct pcache_request *pcache_req, u32 bio_off, u32 len, struct pcache_cache_pos *pos, u64 key_gen) { struct pcache_cache_segment *cache_seg = pos->cache_seg; struct pcache_segment *segment = &cache_seg->segment; int ret; spin_lock(&cache_seg->gen_lock); if (key_gen < cache_seg->gen) { spin_unlock(&cache_seg->gen_lock); return -EINVAL; } ret = segment_copy_to_bio(segment, pos->seg_off, len, pcache_req->bio, bio_off); spin_unlock(&cache_seg->gen_lock); return ret; } /** * miss_read_end_req - Handle the end of a miss read request. * @backing_req: Pointer to the request structure. * @read_ret: Return value of read. * * This function is called when a backing request to read data from * the backing_dev is completed. If the key associated with the request * is empty (a placeholder), it allocates cache space for the key, * copies the data read from the bio into the cache, and updates * the key's status. If the key has been overwritten by a write * request during this process, it will be deleted from the cache * tree and no further action will be taken. */ static void miss_read_end_req(struct pcache_backing_dev_req *backing_req, int read_ret) { void *priv_data = backing_req->priv_data; struct pcache_request *pcache_req = backing_req->req.upper_req; struct pcache_cache *cache = backing_req->backing_dev->cache; int ret; if (priv_data) { struct pcache_cache_key *key; struct pcache_cache_subtree *cache_subtree; key = (struct pcache_cache_key *)priv_data; cache_subtree = key->cache_subtree; /* if this key was deleted from cache_subtree by a write, key->flags should be cleared, * so if cache_key_empty() return true, this key is still in cache_subtree */ spin_lock(&cache_subtree->tree_lock); if (cache_key_empty(key)) { /* Check if the backing request was successful. */ if (read_ret) { cache_key_delete(key); goto unlock; } /* Allocate cache space for the key and copy data from the backing_dev. */ ret = cache_data_alloc(cache, key); if (ret) { cache_key_delete(key); goto unlock; } ret = cache_copy_from_req_bio(cache, key, pcache_req, backing_req->req.bio_off); if (ret) { cache_seg_put(key->cache_pos.cache_seg); cache_key_delete(key); goto unlock; } key->flags &= ~PCACHE_CACHE_KEY_FLAGS_EMPTY; key->flags |= PCACHE_CACHE_KEY_FLAGS_CLEAN; /* Append the key to the cache. */ ret = cache_key_append(cache, key, false); if (ret) { cache_seg_put(key->cache_pos.cache_seg); cache_key_delete(key); goto unlock; } } unlock: spin_unlock(&cache_subtree->tree_lock); cache_key_put(key); } } /** * submit_cache_miss_req - Submit a backing request when cache data is missing * @cache: The cache context that manages cache operations * @backing_req: The cache request containing information about the read request * * This function is used to handle cases where a cache read request cannot locate * the required data in the cache. When such a miss occurs during `cache_subtree_walk`, * it triggers a backing read request to fetch data from the backing storage. * * If `pcache_req->priv_data` is set, it points to a `pcache_cache_key`, representing * a new cache key to be inserted into the cache. The function calls `cache_key_insert` * to attempt adding the key. On insertion failure, it releases the key reference and * clears `priv_data` to avoid further processing. */ static void submit_cache_miss_req(struct pcache_cache *cache, struct pcache_backing_dev_req *backing_req) { if (backing_req->priv_data) { struct pcache_cache_key *key; /* Attempt to insert the key into the cache if priv_data is set */ key = (struct pcache_cache_key *)backing_req->priv_data; cache_key_insert(&cache->req_key_tree, key, true); } backing_dev_req_submit(backing_req, false); } static void cache_miss_req_free(struct pcache_backing_dev_req *backing_req) { struct pcache_cache_key *key; if (backing_req->priv_data) { key = backing_req->priv_data; backing_req->priv_data = NULL; cache_key_put(key); /* for ->priv_data */ cache_key_put(key); /* for init ref in alloc */ } backing_dev_req_end(backing_req); } static struct pcache_backing_dev_req *cache_miss_req_alloc(struct pcache_cache *cache, struct pcache_request *parent, gfp_t gfp_mask) { struct pcache_backing_dev *backing_dev = cache->backing_dev; struct pcache_backing_dev_req *backing_req; struct pcache_cache_key *key = NULL; struct pcache_backing_dev_req_opts req_opts = { 0 }; req_opts.type = BACKING_DEV_REQ_TYPE_REQ; req_opts.gfp_mask = gfp_mask; req_opts.req.upper_req = parent; backing_req = backing_dev_req_alloc(backing_dev, &req_opts); if (!backing_req) return NULL; key = cache_key_alloc(&cache->req_key_tree, gfp_mask); if (!key) goto free_backing_req; cache_key_get(key); backing_req->priv_data = key; return backing_req; free_backing_req: cache_miss_req_free(backing_req); return NULL; } static void cache_miss_req_init(struct pcache_cache *cache, struct pcache_backing_dev_req *backing_req, struct pcache_request *parent, u32 off, u32 len, bool insert_key) { struct pcache_cache_key *key; struct pcache_backing_dev_req_opts req_opts = { 0 }; req_opts.type = BACKING_DEV_REQ_TYPE_REQ; req_opts.req.upper_req = parent; req_opts.req.req_off = off; req_opts.req.len = len; req_opts.end_fn = miss_read_end_req; backing_dev_req_init(backing_req, &req_opts); if (insert_key) { key = backing_req->priv_data; key->off = parent->off + off; key->len = len; key->flags |= PCACHE_CACHE_KEY_FLAGS_EMPTY; } else { key = backing_req->priv_data; backing_req->priv_data = NULL; cache_key_put(key); cache_key_put(key); } } static struct pcache_backing_dev_req *get_pre_alloc_req(struct pcache_cache_subtree_walk_ctx *ctx) { struct pcache_cache *cache = ctx->cache_tree->cache; struct pcache_request *pcache_req = ctx->pcache_req; struct pcache_backing_dev_req *backing_req; if (ctx->pre_alloc_req) { backing_req = ctx->pre_alloc_req; ctx->pre_alloc_req = NULL; return backing_req; } return cache_miss_req_alloc(cache, pcache_req, GFP_NOWAIT); } /* * In the process of walking the cache tree to locate cached data, this * function handles the situation where the requested data range lies * entirely before an existing cache node (`key_tmp`). This outcome * signifies that the target data is absent from the cache (cache miss). * * To fulfill this portion of the read request, the function creates a * backing request (`backing_req`) for the missing data range represented * by `key`. It then appends this request to the submission list in the * `ctx`, which will later be processed to retrieve the data from backing * storage. After setting up the backing request, `req_done` in `ctx` is * updated to reflect the length of the handled range, and the range * in `key` is adjusted by trimming off the portion that is now handled. * * The scenario handled here: * * |--------| key_tmp (existing cached range) * |====| key (requested range, preceding key_tmp) * * Since `key` is before `key_tmp`, it signifies that the requested data * range is missing in the cache (cache miss) and needs retrieval from * backing storage. */ static int read_before(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp, struct pcache_cache_subtree_walk_ctx *ctx) { struct pcache_backing_dev_req *backing_req; struct pcache_cache *cache = ctx->cache_tree->cache; /* * In this scenario, `key` represents a range that precedes `key_tmp`, * meaning the requested data range is missing from the cache tree * and must be retrieved from the backing_dev. */ backing_req = get_pre_alloc_req(ctx); if (!backing_req) return SUBTREE_WALK_RET_NEED_REQ; cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, key->len, true); list_add(&backing_req->node, ctx->submit_req_list); ctx->req_done += key->len; cache_key_cutfront(key, key->len); return SUBTREE_WALK_RET_OK; } /* * During cache_subtree_walk, this function manages a scenario where part of the * requested data range overlaps with an existing cache node (`key_tmp`). * * |----------------| key_tmp (existing cached range) * |===========| key (requested range, overlapping the tail of key_tmp) */ static int read_overlap_tail(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp, struct pcache_cache_subtree_walk_ctx *ctx) { struct pcache_cache *cache = ctx->cache_tree->cache; struct pcache_backing_dev_req *backing_req; u32 io_len; int ret; /* * Calculate the length of the non-overlapping portion of `key` * before `key_tmp`, representing the data missing in the cache. */ io_len = cache_key_lstart(key_tmp) - cache_key_lstart(key); if (io_len) { backing_req = get_pre_alloc_req(ctx); if (!backing_req) return SUBTREE_WALK_RET_NEED_REQ; cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, true); list_add(&backing_req->node, ctx->submit_req_list); ctx->req_done += io_len; cache_key_cutfront(key, io_len); } /* * Handle the overlapping portion by calculating the length of * the remaining data in `key` that coincides with `key_tmp`. */ io_len = cache_key_lend(key) - cache_key_lstart(key_tmp); if (cache_key_empty(key_tmp)) { backing_req = get_pre_alloc_req(ctx); if (!backing_req) return SUBTREE_WALK_RET_NEED_REQ; cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, false); submit_cache_miss_req(cache, backing_req); } else { ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, io_len, &key_tmp->cache_pos, key_tmp->seg_gen); if (ret) { if (ret == -EINVAL) { cache_key_delete(key_tmp); return SUBTREE_WALK_RET_RESEARCH; } ctx->ret = ret; return SUBTREE_WALK_RET_ERR; } } ctx->req_done += io_len; cache_key_cutfront(key, io_len); return SUBTREE_WALK_RET_OK; } /* * |----| key_tmp (existing cached range) * |==========| key (requested range) */ static int read_overlap_contain(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp, struct pcache_cache_subtree_walk_ctx *ctx) { struct pcache_cache *cache = ctx->cache_tree->cache; struct pcache_backing_dev_req *backing_req; u32 io_len; int ret; /* * Calculate the non-overlapping part of `key` before `key_tmp` * to identify the missing data length. */ io_len = cache_key_lstart(key_tmp) - cache_key_lstart(key); if (io_len) { backing_req = get_pre_alloc_req(ctx); if (!backing_req) return SUBTREE_WALK_RET_NEED_REQ; cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, true); list_add(&backing_req->node, ctx->submit_req_list); ctx->req_done += io_len; cache_key_cutfront(key, io_len); } /* * Handle the overlapping portion between `key` and `key_tmp`. */ io_len = key_tmp->len; if (cache_key_empty(key_tmp)) { backing_req = get_pre_alloc_req(ctx); if (!backing_req) return SUBTREE_WALK_RET_NEED_REQ; cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, false); submit_cache_miss_req(cache, backing_req); } else { ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, io_len, &key_tmp->cache_pos, key_tmp->seg_gen); if (ret) { if (ret == -EINVAL) { cache_key_delete(key_tmp); return SUBTREE_WALK_RET_RESEARCH; } ctx->ret = ret; return SUBTREE_WALK_RET_ERR; } } ctx->req_done += io_len; cache_key_cutfront(key, io_len); return SUBTREE_WALK_RET_OK; } /* * |-----------| key_tmp (existing cached range) * |====| key (requested range, fully within key_tmp) * * If `key_tmp` contains valid cached data, this function copies the relevant * portion to the request's bio. Otherwise, it sends a backing request to * fetch the required data range. */ static int read_overlap_contained(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp, struct pcache_cache_subtree_walk_ctx *ctx) { struct pcache_cache *cache = ctx->cache_tree->cache; struct pcache_backing_dev_req *backing_req; struct pcache_cache_pos pos; int ret; /* * Check if `key_tmp` is empty, indicating a miss. If so, initiate * a backing request to fetch the required data for `key`. */ if (cache_key_empty(key_tmp)) { backing_req = get_pre_alloc_req(ctx); if (!backing_req) return SUBTREE_WALK_RET_NEED_REQ; cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, key->len, false); submit_cache_miss_req(cache, backing_req); } else { cache_pos_copy(&pos, &key_tmp->cache_pos); cache_pos_advance(&pos, cache_key_lstart(key) - cache_key_lstart(key_tmp)); ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, key->len, &pos, key_tmp->seg_gen); if (ret) { if (ret == -EINVAL) { cache_key_delete(key_tmp); return SUBTREE_WALK_RET_RESEARCH; } ctx->ret = ret; return SUBTREE_WALK_RET_ERR; } } ctx->req_done += key->len; cache_key_cutfront(key, key->len); return SUBTREE_WALK_RET_OK; } /* * |--------| key_tmp (existing cached range) * |==========| key (requested range, overlapping the head of key_tmp) */ static int read_overlap_head(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp, struct pcache_cache_subtree_walk_ctx *ctx) { struct pcache_cache *cache = ctx->cache_tree->cache; struct pcache_backing_dev_req *backing_req; struct pcache_cache_pos pos; u32 io_len; int ret; io_len = cache_key_lend(key_tmp) - cache_key_lstart(key); if (cache_key_empty(key_tmp)) { backing_req = get_pre_alloc_req(ctx); if (!backing_req) return SUBTREE_WALK_RET_NEED_REQ; cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, io_len, false); submit_cache_miss_req(cache, backing_req); } else { cache_pos_copy(&pos, &key_tmp->cache_pos); cache_pos_advance(&pos, cache_key_lstart(key) - cache_key_lstart(key_tmp)); ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, io_len, &pos, key_tmp->seg_gen); if (ret) { if (ret == -EINVAL) { cache_key_delete(key_tmp); return SUBTREE_WALK_RET_RESEARCH; } ctx->ret = ret; return SUBTREE_WALK_RET_ERR; } } ctx->req_done += io_len; cache_key_cutfront(key, io_len); return SUBTREE_WALK_RET_OK; } /** * read_walk_finally - Finalizes the cache read tree walk by submitting any * remaining backing requests * @ctx: Context structure holding information about the cache, * read request, and submission list * @ret: the return value after this walk. * * This function is called at the end of the `cache_subtree_walk` during a * cache read operation. It completes the walk by checking if any data * requested by `key` was not found in the cache tree, and if so, it sends * a backing request to retrieve that data. Then, it iterates through the * submission list of backing requests created during the walk, removing * each request from the list and submitting it. * * The scenario managed here includes: * - Sending a backing request for the remaining length of `key` if it was * not fulfilled by existing cache entries. * - Iterating through `ctx->submit_req_list` to submit each backing request * enqueued during the walk. * * This ensures all necessary backing requests for cache misses are submitted * to the backing storage to retrieve any data that could not be found in * the cache. */ static int read_walk_finally(struct pcache_cache_subtree_walk_ctx *ctx, int ret) { struct pcache_cache *cache = ctx->cache_tree->cache; struct pcache_backing_dev_req *backing_req, *next_req; struct pcache_cache_key *key = ctx->key; list_for_each_entry_safe(backing_req, next_req, ctx->submit_req_list, node) { list_del_init(&backing_req->node); submit_cache_miss_req(ctx->cache_tree->cache, backing_req); } if (ret != SUBTREE_WALK_RET_OK) return ret; if (key->len) { backing_req = get_pre_alloc_req(ctx); if (!backing_req) return SUBTREE_WALK_RET_NEED_REQ; cache_miss_req_init(cache, backing_req, ctx->pcache_req, ctx->req_done, key->len, true); submit_cache_miss_req(cache, backing_req); ctx->req_done += key->len; } return SUBTREE_WALK_RET_OK; } /* * This function is used within `cache_subtree_walk` to determine whether the * read operation has covered the requested data length. It compares the * amount of data processed (`ctx->req_done`) with the total data length * specified in the original request (`ctx->pcache_req->data_len`). * * If `req_done` meets or exceeds the required data length, the function * returns `true`, indicating the walk is complete. Otherwise, it returns `false`, * signaling that additional data processing is needed to fulfill the request. */ static bool read_walk_done(struct pcache_cache_subtree_walk_ctx *ctx) { return (ctx->req_done >= ctx->pcache_req->data_len); } /** * cache_read - Process a read request by traversing the cache tree * @cache: Cache structure holding cache trees and related configurations * @pcache_req: Request structure with information about the data to read * * This function attempts to fulfill a read request by traversing the cache tree(s) * to locate cached data for the requested range. If parts of the data are missing * in the cache, backing requests are generated to retrieve the required segments. * * The function operates by initializing a key for the requested data range and * preparing a context (`walk_ctx`) to manage the cache tree traversal. The context * includes pointers to functions (e.g., `read_before`, `read_overlap_tail`) that handle * specific conditions encountered during the traversal. The `walk_finally` and `walk_done` * functions manage the end stages of the traversal, while the `delete_key_list` and * `submit_req_list` lists track any keys to be deleted or requests to be submitted. * * The function first calculates the requested range and checks if it fits within the * current cache tree (based on the tree's size limits). It then locks the cache tree * and performs a search to locate any matching keys. If there are outdated keys, * these are deleted, and the search is restarted to ensure accurate data retrieval. * * If the requested range spans multiple cache trees, the function moves on to the * next tree once the current range has been processed. This continues until the * entire requested data length has been handled. */ static int cache_read(struct pcache_cache *cache, struct pcache_request *pcache_req) { struct pcache_cache_key key_data = { .off = pcache_req->off, .len = pcache_req->data_len }; struct pcache_cache_subtree *cache_subtree; struct pcache_cache_key *key_tmp = NULL, *key_next; struct rb_node *prev_node = NULL; struct pcache_cache_key *key = &key_data; struct pcache_cache_subtree_walk_ctx walk_ctx = { 0 }; struct pcache_backing_dev_req *backing_req, *next_req; LIST_HEAD(delete_key_list); LIST_HEAD(submit_req_list); int ret; walk_ctx.cache_tree = &cache->req_key_tree; walk_ctx.req_done = 0; walk_ctx.pcache_req = pcache_req; walk_ctx.before = read_before; walk_ctx.overlap_tail = read_overlap_tail; walk_ctx.overlap_head = read_overlap_head; walk_ctx.overlap_contain = read_overlap_contain; walk_ctx.overlap_contained = read_overlap_contained; walk_ctx.walk_finally = read_walk_finally; walk_ctx.walk_done = read_walk_done; walk_ctx.delete_key_list = &delete_key_list; walk_ctx.submit_req_list = &submit_req_list; next: key->off = pcache_req->off + walk_ctx.req_done; key->len = pcache_req->data_len - walk_ctx.req_done; if (key->len > PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK)) key->len = PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK); cache_subtree = get_subtree(&cache->req_key_tree, key->off); spin_lock(&cache_subtree->tree_lock); search: prev_node = cache_subtree_search(cache_subtree, key, NULL, NULL, &delete_key_list); if (!list_empty(&delete_key_list)) { list_for_each_entry_safe(key_tmp, key_next, &delete_key_list, list_node) { list_del_init(&key_tmp->list_node); cache_key_delete(key_tmp); } goto search; } walk_ctx.start_node = prev_node; walk_ctx.key = key; ret = cache_subtree_walk(&walk_ctx); if (ret == SUBTREE_WALK_RET_RESEARCH) goto search; spin_unlock(&cache_subtree->tree_lock); if (ret == SUBTREE_WALK_RET_ERR) { ret = walk_ctx.ret; goto out; } if (ret == SUBTREE_WALK_RET_NEED_REQ) { walk_ctx.pre_alloc_req = cache_miss_req_alloc(cache, pcache_req, GFP_NOIO); pcache_dev_debug(CACHE_TO_PCACHE(cache), "allocate pre_alloc_req with GFP_NOIO"); } if (walk_ctx.req_done < pcache_req->data_len) goto next; ret = 0; out: if (walk_ctx.pre_alloc_req) cache_miss_req_free(walk_ctx.pre_alloc_req); list_for_each_entry_safe(backing_req, next_req, &submit_req_list, node) { list_del_init(&backing_req->node); backing_dev_req_end(backing_req); } return ret; } static int cache_write(struct pcache_cache *cache, struct pcache_request *pcache_req) { struct pcache_cache_subtree *cache_subtree; struct pcache_cache_key *key; u64 offset = pcache_req->off; u32 length = pcache_req->data_len; u32 io_done = 0; int ret; while (true) { if (io_done >= length) break; key = cache_key_alloc(&cache->req_key_tree, GFP_NOIO); key->off = offset + io_done; key->len = length - io_done; if (key->len > PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK)) key->len = PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK); ret = cache_data_alloc(cache, key); if (ret) { cache_key_put(key); goto err; } ret = cache_copy_from_req_bio(cache, key, pcache_req, io_done); if (ret) { cache_seg_put(key->cache_pos.cache_seg); cache_key_put(key); goto err; } cache_subtree = get_subtree(&cache->req_key_tree, key->off); spin_lock(&cache_subtree->tree_lock); cache_key_insert(&cache->req_key_tree, key, true); ret = cache_key_append(cache, key, pcache_req->bio->bi_opf & REQ_FUA); if (ret) { cache_seg_put(key->cache_pos.cache_seg); cache_key_delete(key); goto unlock; } io_done += key->len; spin_unlock(&cache_subtree->tree_lock); } return 0; unlock: spin_unlock(&cache_subtree->tree_lock); err: return ret; } /** * cache_flush - Flush all ksets to persist any pending cache data * @cache: Pointer to the cache structure * * This function iterates through all ksets associated with the provided `cache` * and ensures that any data marked for persistence is written to media. For each * kset, it acquires the kset lock, then invokes `cache_kset_close`, which handles * the persistence logic for that kset. * * If `cache_kset_close` encounters an error, the function exits immediately with * the respective error code, preventing the flush operation from proceeding to * subsequent ksets. */ int cache_flush(struct pcache_cache *cache) { struct pcache_cache_kset *kset; int ret; u32 i; for (i = 0; i < cache->n_ksets; i++) { kset = get_kset(cache, i); spin_lock(&kset->kset_lock); ret = cache_kset_close(cache, kset); spin_unlock(&kset->kset_lock); if (ret) return ret; } return 0; } int pcache_cache_handle_req(struct pcache_cache *cache, struct pcache_request *pcache_req) { struct bio *bio = pcache_req->bio; if (unlikely(bio->bi_opf & REQ_PREFLUSH)) return cache_flush(cache); if (bio_data_dir(bio) == READ) return cache_read(cache, pcache_req); return cache_write(cache, pcache_req); }